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Engineering design can be regarded as an iterative optimization process. This process is difficult because of two main problems:
the first is that computer-aided engineering (CAE) is time-consuming in terms of evaluating design solutions, while the second is
the high dimensionality of design solutions. In the research community, a surrogate model is proposed to deal with the first
problem while an evolutionary algorithm is adopted for the second. In this work, we develop a new method with only sparse
scattered data, which is very common in many practical scenarios. The surrogate model can also assign a penalty factor for the
predicted value, and this penalty factor can be used as one of the targets of the evolutionary algorithm to balance global
exploration and local exploit. We also adopt a new evolutionary strategy, which can search high-dimensional space. Three
groups of experiments are conducted to validate the proposed methods. The experimental results show that the surrogate
model can predict performance and the corresponding penalty factor, the evolutionary strategy is better in terms of searching
high-dimensional space compared with other evolutionary strategies, and the whole method can generate new design solutions
that are near to the known design solutions. The experimental results show that this method can be used in practical scenarios,
especially where they only have sparse scattered data.

1. Introduction

Engineering design is a complex process involving different
design activities, and it can be generally regarded as the
iteration of design and validation. Currently, with the
help of well-developed computer-aided design (CAD) and
computer-aided engineering (CAE) systems, the design
model can be parameterized and the validation process can
be simulated computationally. Therefore, engineering design
can be regarded as an optimization problem [1], and different
aspects of product can be optimized, such as shape optimiza-
tion [2] and reliability optimization [3].

x̂ = arg max f xð Þ, ð1Þ

x ∈Ω, ð2Þ
where x = ½x1, x2,⋯, xn� is a parameter vector representing a
design solution, Ω is the feasible solution space of x, x̂ is the

optimal solution, and f ðxÞ is the evaluation function of
design solutions. CAE has played the role of f ðxÞ successfully
in engineering design for many years. However, two charac-
ters of such function make the optimization extremely com-
plex and difficult. The first is derivative unavailable, which
means the gradient-descent methods are invalid [4]; the sec-
ond is time-consuming [5], which means the evaluation of
the function requires extensive computational resources. In
addition to above difficulties, the high dimensionality of the
design space is another problem making the optimization
difficult.

A response surface model (RSM) [6] is a method
adopted to deal with the first two difficulties, and it is a sta-
tistical method that explores the relationships between
design variables x and one or more response variables f ðxÞ
[7]. The RSM method is also called as a surrogate model,
metamodels, or emulators in different scenarios [8], and
the underlying idea is to replace the computationally expen-
sive model with a computationally cheaper one [8, 9]. In this
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work, we use the terminology of “surrogate model” referring
to the latter one.

Many technical methods can be used to build a surrogate
model, such as linear or nonlinear interpolation, Kriging
[10], neural network, radial basis function [11], and Gauss-
ian process [12]. Although these methods have been success-
fully applied in solving many engineering problems, some
remaining problems are hindering the applications of the
surrogate model in engineering design. In many scenarios
of applying the surrogate model successfully, either the avail-
able data is sufficient or the method of data collection is
deliberately designed, such as “grid” data or “orthogonal”
data. However, there are many different scenarios where
the data is “sparse,” which means the amount of available
data is small, and “scattered,” which means the data is
located randomly in the feasible design space.

The main contribution of this paper is to propose a sur-
rogate model method and a high-dimensional design space
exploration method, respectively. We first attempt to build
a surrogate model based on “sparse scattered” data and then
use a new evolutionary strategy to explore and exploit the
high-dimensional space. The combination of the two can
realize the rapid generation from sparse scattered point data
to a design scheme. The rest of the paper is structured as
follows. Section 2 provides some related works for this study.
Section 3 explains the technical details of both building a
surrogate model and the evolutionary strategy. Section 4
conducts several groups of experiments to validate the pro-
posed method. Section 5 summarizes this research and iden-
tifies some possible future works.

2. Related Works

In this section, some existing key techniques related to this
work will be explained, including the surrogate model and
evolutionary strategies.

2.1. Surrogate Model. There are many methods for building a
surrogate model, and these methods can be categorized
based on different criteria. From the perspective of data
characteristics, there are methods for both grid data and
scattered data. If the data is collected through Design of
Experiment (DOE) [13], we can get regular grid data, and
the surrogate model is easy to build. For low-dimensional
problem, the Delaunay triangulation [14], natural neighbor
interpolation [15], spline interpolation [16], and so on can
be used to build the surrogate model, while for high-
dimensional problems, the simple nearest-neighbor interpo-
lation [17], Kriging [10], and so on can be used to build the
surrogate model. Zhou et al. presented the nearest-neighbor
value (NNV) interpolation algorithm for the improved novel
enhanced quantum representation of digital images
(INEQR). Experiments show that the proposed interpolation
method has higher performance in high-resolution image
recognition [18]. Qian et al. proposed a general sequential
constraint updating approach based on the confidence inter-
vals from the Kriging surrogate model (SCU-CI). Results
illustrate that the proposed SCU-CI approach can generally
ensure the feasibility of the optimal solution under a reason-

able computational cost [19]. If the data is collected ran-
domly, we can only get irregular grid data, which are also
called scattered data. In this situation, the surrogate model
becomes difficult to be constructed. There are already some
methods to deal with this problem, such as triangulated
irregular network, radial basis function [20, 21], and Kriging
[10]. de Oliveira et al. proposed a new approach for occlu-
sion detection—the surface-gradient-based method (SGBM)
applied to a triangulated irregular network (TIN) represen-
tation. Experimental results demonstrated the feasibility of
the SGBM for occlusion detection in the true orthophoto
generation [22]. She et al. present a novel battery aging
assessment method based on the incremental capacity anal-
ysis (ICA) and radial basis function neural network
(RBFNN) model [23].

From the perspective of key techniques, the methods can
also be categorized as interpolation and fitting. The former
attempts to build a hypersurface that exactly passes the exist-
ing data, while the latter treats existing data as noise-
contained data and attempts to find a hypersurface that min-
imizes the errors, and the hypersurface is unnecessary passing
existing data. From the perspective of complexity, the methods
can be categorized as a linear model or nonlinear model.

Although the surrogate models have been used widely in
many domains, the successful applications always rely on
either grid data or sufficient data. However, in many practi-
cal scenarios, the existing data is neither grid data nor suffi-
cient. The data is sparse and scattered, and methods that fit
for such situations should be developed.

2.2. Evolutionary Computation. Evolutionary computation is
a commonly used method to search optimal solutions from
design space. Most of the evolutionary computation
methods follow the same framework, but they improve the
algorithm by developing different evolutionary strategies,
including crossover, mutant, and selection.

Many evolutionary strategies are developed to improve the
algorithm from two perspectives. The first perspective is devel-
oping a new crossover and mutant method to generate new
offspring, such as differential evolution- (DE-) based method
[24, 25], immune-based method [26], particle swarm optimi-
zation- (PSO-) based method [27], and probabilistic model-
based method [28]. The second perspective is developing a
new selection method, such as decomposition-based method
[29], preference-based method [30], indicator-based method
[31], and hybrid method [32]. Although the above improve-
ments contribute to solving many design problems, there is
also requirement for developing evolutionary strategies for
optimizing a high-dimensional problem.

3. Methodology

In this section, we will explain the proposed method in
detail. Generally, the method has two main parts, includ-
ing surrogate model construction and design solution
searching. In the first part, a surrogate model, which
receives design solutions as input and return performances
as output, will be constructed based on a two-stage inter-
polation process. In the second part, we adopt a new
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mutant strategy, to search the high-dimensional space. The
two parts will be detailed in the following two sections,
respectively.

3.1. Surrogate Model Construction. We first define the data
structure used to build a surrogate model and then explain
the underlying ideas of the two-stage interpolation process,
and finally, we explain the technical detail of this method.
The mathematical symbols used in this work are summa-
rized in Table 1.

3.1.1. Data Structure. Typically, there are two kinds of data
in many engineering design problems, and they are design
solution and the corresponding performance. A design solu-
tion can be represented by a vector x = ½x1, x2,⋯, xd�, in
which x1, x2,⋯, xd are parameters that determine the design
solution, and d is the dimensionality of the design solution x.
A performance is a measurement of design solution x, and
design solution x commonly has several performances for
evaluation. Besides, the performance can be different under
different working conditionsc = ½c1, c2,⋯, cl�, in which c1, c2
,⋯, cl are parameters that determine the working condi-
tions, such as temperature and velocity which can jointly
define a two-dimensional l = 2 working condition. There-
fore, the performance can be represented by a k ×m matrix
where k is the kinds of performances andm is the total num-
ber of working conditions.

p =

p11 p12 ⋯ p1m

p21 p22 ⋯ p2m

⋮ ⋮ ⋮ ⋮

pk1 pk2 ⋯ pkm

2
666664

3
777775
: ð3Þ

Generally, we have a n × k ×m matrix as database D for
building the surrogate model, where n is the number of
known design solutions. As shown in Figure 1, we know
the k kinds of performance under m different working con-
ditions of n known design solutions. It is noteworthy to say
that the n known design solutions are scattered in the high-
dimensional space.

3.1.2. Underlying Considerations and Assumptions. Based on
the above data, the goal is to construct a surrogate model
that receives a design solution x′ and a group of working
conditions c′ as input and outputs the corresponding per-
formances of the design solution x′ under working condi-
tions c′. It is noteworthy that the design solutions x′ and
working conditions c′ are generally not contained in the
database D.

We can regard the surrogate model as a function p =
f ðx, cÞ. This function maps value from d + l dimensional
space Rd+l to k dimensional space Rk, and this high-
dimensional mapping requires more data to train. Since we
only have sparse scattered data, two critical assumptions are
drawn before learning the surrogate model.

Assumption 1. For different design solutions, the mappings
from working condition to performance are identical.

Based on Assumption 1, we do not need to learn a ded-
icated mapping (maps from working condition to perfor-
mance) for different design solutions, which is necessary if
the surrogate model is built, like p = f ðx, cÞ. Therefore, we
can divide the surrogate model into two stages, of which
the first stage maps design solution x′ to performances pc
under existing working conditions c by pc = gðx′Þ, while
the second stage maps c′ to performance under unknown
working condition by p = hðc′Þ. By this assumption, some
dependences among design solutions, working conditions,
and performance are ignored, and this loses the data require-
ment for training the surrogate model.

Assumption 2. The design solutions that are like existing
design solutions are more feasible.

Based on Assumption 2, we make the surrogate model to
assign a penalty factor for the predicted performance. If the

new design solution x′ is far from the known design

Table 1: The mathematical symbols used in this work.

# Symbols Explanation

1 x A design solution

2 x A parameter of the design solution x
3 d The dimensionality of the design solution x
4 c A working condition

5 c A parameter of the working condition c
6 l The dimensionality of the working condition c
7 p The performance of a design solution

8 k The total kinds of performance

9 m The total number of working conditions

10 n The total number of known design solutions

11 D The training database

P1

P2

P
k

...

c1 c2 ............ cm

x1

x2

......
xn

Figure 1: The data structure of the existing training data.
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solutions, the penalty factor should be high and vice versa.
This penalty factor will be used during the design optimiza-
tion process, and it helps to shrink the searching space and
keeps the design solution close to the regions where some
design solutions are known.

3.1.3. Two-Stage Interpolation. The surrogate model can be
implemented by two-stage interpolation. In both two stages,
the inverse distance weighting (IDW) [33] is adopted to
implement the interpolation, which computes an unknown
value based on the following equation:

ŷ = ∑Q
i=1wi × yi
∑Q

i=1wi

, ð4Þ

where Q is the total number of data points used to predict
new value ŷ and wi is the weight of the ith data point. In
the IDW method, the weight is calculated by

wi =
1

x/−xik kP/2
, ð5Þ

where x′ is the data point that the performance is unknown;
xi is the ith data point; k k is to calculate the distance between
two data points in the high-dimensional space Rn; P is the
order the distance, and this is a metaparameter to control
the weights.

Based on this, given an unknown design solution x′ and
unknown working condition c′, we can first interpolate to
get the performances of the design solution x′ under known
working conditions c and then further interpolate to get the
performances of the design solution x′ under unknown
working conditions c′. We also need to assign penalty fac-
tors to the predicted performances of unknown design solu-
tions and working conditions. In this work, we simply use
the Euclidean distance as a measurement of penalty factors,
and the value can be calculated by

PF = PF1 + PF2, ð6Þ

where PF1 is the penalty factor of the first stage and it can be
obtained by (7), while PF2 is the penalty factor of the second
stage and it can be obtained by (8).

PF1 =
1
Q
〠
Q

i=1
x′ − xi

�� ��p/2 ð7Þ

where Q is the total number of design solution used to pre-
dict the performance; x′ is the data point that the perfor-
mance is unknown; xi is the ith data point used to predict
the performance; k k is to calculate the distance between
two data points in the high n dimensional space Rn; P is
the order of the distance, and this is a metaparameter to con-
trol the weights.

PF2 =
1
R
x〠

R

j=1
c′ − cj

�� ��p/2 ð8Þ

where R is the total number of known working conditions
used to predict the performance of unknown working condi-
tions, c′ is the working condition that the performance is
unknown, and cj is the jth working condition used to predict
the performance.

3.2. Design Solution Searching. Based on the method of sur-
rogate model construction in Section 3, a surrogate model
can be obtained, which receives design solution and working
conditions as input and predicts performances and its corre-
sponding penalty factor as output. Based on this surrogate
model, we will adopt an evolutionary algorithm to explore
the design space. The penalty factor will be taken as one of
the fitness functions during the evolutionary process.

Basically, most evolutionary algorithms follow the
same framework. As shown in Figure 2, the critical differ-
ence is the operation of “generating offspring population,”
which is marked by a bold rectangle. The traditional cross-
over and mutant operations are replaced by a simple ergo-
dic system. The detail can be found in Algorithm 1. As
shown in the algorithm, the ergodic system adopted in this
work is a logistic map, and it is used to generate a random
number for generating new offspring. The ergodic evolu-
tion method has the advantages of ergodicity and regular-
ity and performs better in dealing with high-dimensional
design space.

4. Experiment

In this section, we conduct three groups of experiments to
validate the proposed method. The first group is to test
whether the surrogate model can predict the performance;

Begin

Generating initial
population

Evaluating
population against

all objectives

Generating offspring population
[supported by ergodic systems

(replace crossover and mutant)]

Selecting parent generation
[support by non-dominated sorting

and crowding distance]

Stop?

End

Yes

No

Figure 2: The main framework of ergodic evolution.
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the second group is to test whether the ergodic evolution can
search the high-dimensional space; the last group is to test
the method as a whole and to validate the feasibility of
applying it in practice.

Generate an initial population. Evaluate the fitness for each individual.
/∗ D and EP initialization∗/ for i =1 to PS do
for j =1 to Dim do
/∗ DR as a random value∗/ if rand [0, 1) < DR then
Di,j = −1
else
Di,j = +1
end if
EPi,j = rand(0,1)
end for end for
Evaluate the fitness for each offspring individual
Select n individuals as target individuals
/∗Ergodic Search∗/for G =1 to maxIter do
for i =1 to PS do
k=rand(1,Dim)
for j =1 to Dim do
if rand[0, 1) < Cr or j == k then mutanti,j = targeti,j ∗ (1 + Di,j ∗ EPi,j) ergodici,j = mutanti,j
else
ergodici,j = targeti,j
end if end for
/∗Selection∗/
Nondominant sort target vectors of Gth and G −1th generations Apply crowding distance
Select n individuals as target individual
end for
/∗ D and EP update∗/ for i =1 to PS do
for j =1 to Dim do
EPi,j = logistic map(EPi,j)
if rand[0, 1) < DR then
Di,j = −1
else
Di,j = +1
end if end for
end for end for
return the optimum

Algorithm 1:Nondominant sorting- and crowding distance selection-based ergodic evolution algorithm. PS: population size; Dim:
dimension; D: direction factor; DR: direction factor rate; EP: ergodic parameter; G: generation; maxIter: maximum generation; i: index of
individual; j: index of dimension; Cr: mutant rate; targeti,j: individual to generate offspring.
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Figure 3: The 2-dimensional representation of the 20 known
design solutions.

Table 2: Experiment result of this surrogate model (first stage).

P Q 15 10 5 3 2

1 0.01440 0.01371 0.01310 0.01340 0.01344

2 0.01488 0.01443 0.01362 0.01398 0.01359

3 0.01511 0.01462 0.01397 0.01398 0.01365

4 0.01518 0.01471 0.01406 0.01440 0.01369

5 0.01522 0.01476 0.01412 0.01445 0.01371

Table 3: Experiment result of the surrogate model (second stage).

P R 10 5 3 2 1

1 0.02360 0.01690 0.01533 0.01289 0.01879

2 0.02619 0.01766 0.01533 0.01289 0.01879

3 0.02717 0.01781 0.01533 0.01289 0.01879

4 0.02761 0.01787 0.01533 0.01289 0.01879

5 0.02775 0.01790 0.01533 0.01289 0.01879
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RE, and the red dot is NSGA-II.
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During the experiments, we use a small dataset provided
by a research institute of aerodynamic. This dataset includes
20 known design solutions with 4 design parameters in each
design solution and 4 kinds of performance under 28 work-
ing conditions. Since the 4-dimension design solutions can-
not be shown in a figure, we process the 20 design solutions
by Principal Component Analysis (PCA) and plot the first
two components in a figure. From Figure 3, we can find that
the data is sparely scattered in the design space. We regard
the data with less training data and sparse distribution of
the main parameter data points in the problem as sparse
scattered data.

4.1. Experiment on the Surrogate Model. Based on the
method illustrated in surrogate model construction of Sec-
tion 3, a surrogate model based on sparse scattered data
can be constructed. This section conducts several experi-
ments to test the model and find the optimal metapara-
meters of the surrogate model, such as Q in (4) and P in (5).

Since the proposed method involves two stages, we test
the two stages, respectively. For the first stage, we conduct
experiment based on the 10-fold crossvalidation method.
This method splits all 20 data into 10 groups and uses 9
groups as training data and uses the last group as test data
in each experiment. In each experiment, we calculate an
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averaged error by (9), and after 10 times of experiment, the
error of the first stage is averaged again.

e = 1
2 × 〠

2

i=1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
28 × 〠

28

j=1
p̂ij − pij

� �2
vuut , ð9Þ

where Pij is the value of the ith predicted performance

under the jth working condition, while the Pij is the real

value of the ith performance under the jth working condition.
Table 2 shows the results of different configurations of Q and
P, and we can find that the surrogate model has the smallest
error when P = 1 and Q = 5.

Table 4: The design solutions in nondominated Pareto front of 4 runs.

Run # Run 1 Run 2

1 12 0 13 3.3 12 0 13 3.2

2 12 0 13 3.4 12 0 13 3.3

3 12 0.4 7 3.5 12 0 13 3.4

4 12.8 0.4 7 3.5 12 0 7 3.5

5 12.8 0.8 7 3.5 12 0.4 7 3.5

6 13.6 0.8 7 3.5 12.8 0.4 7 3.5

7 13 0.5 7.1 3.5 12.8 0.5 7 3.5

8 12.8 0.9 7.1 3.5 13 0.6 7 3.5

9 13 0.9 7.1 3.5 12.9 0.8 7 3.5

10 12.8 0.4 7.3 3.5 13 0.6 7.1 3.5

11 12.8 0.4 7.7 3.5 12 0 13 3.5

12 12 0 13 3.5 13.2 0.8 7 3.6

13 12.8 0.4 7 3.7 12.9 0.7 7 3.8

14 12.8 0.8 7 3.9 12.9 0.8 7 3.8

15 12 0.7 13 4.6 12.9 0.8 7.1 3.8

16 12 0.7 13 4.7 12 0.7 13.1 4.7

17 12 0.7 13 4.8 12 0.5 13.1 4.8

18 12 0.7 13.1 4.9 12 0.6 13.1 4.8

19 12 0.9 13.1 4.9 12 0.6 13.1 4.9

20 12 0.9 13.7 4.9 12 0.8 13.1 4.9

Run # Run 3 Run 4

1 12 0 13 3.2 12 0 13 3.3

2 12 0 13 3.3 12 0 13 3.4

3 12 0 13 3.4 12 0 7 3.5

4 12 0 7 3.5 12.8 0.4 7 3.5

5 12.8 0.4 7 3.5 12.8 0.5 7 3.5

6 13.2 0.5 7 3.5 12.8 0.9 7 3.5

7 12.8 0.8 7 3.5 12.8 1.1 7 3.5

8 13.2 1.2 7 3.5 12 0 13 3.5

9 12.8 0.6 7.2 3.5 12.8 0.6 7 3.6

10 13 0.6 7.4 3.5 12.8 0.7 7 3.6

11 12 0 13 3.5 13 0.7 7 3.6

12 12.8 0.9 7 3.6 12.9 1 7 3.7

13 12.8 0.4 7 3.8 12.8 0.5 7 3.8

14 12.8 0.6 7 4.1 12.8 0.5 7 4

15 12 0.4 13 4.8 12 0.4 13 4.5

16 12 0.7 13 4.8 12 0.4 13 4.6

17 12 0.7 13.1 4.8 12 1.4 13 4.7

18 12 0.9 13.1 4.8 12 0.2 13 4.8

19 12 0.4 13 4.9 12 0.4 13 4.8

20 12 1.2 13.1 4.9 12 0.4 13 4.9
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For the second stage, we also conduct experiment based
on the 10-fold crossvalidation method. In each experiment,
we calculate an averaged error by (9), and after 10 times of
experiment, the error of the second stage is averaged again.
Table 3 shows the results of different configurations of R
and P, and we can find that the surrogate model has the
smallest error when P = 1 and R = 2.

4.2. Experiment on Ergodic Evolution. In this section, we val-
idate the ergodic evolution algorithm in terms of the capabil-
ity of searching high-dimensional space. In this experiment,
16 benchmark functions are adopted as the test problems,
including SCH, FON, POL, KUR, ZDT1, ZDT2, ZDT3,
ZDT4, ZDT6, DTLZ1, DTLZ2, DTLZ3, DTLZ4, DTLZ5,
DTLZ6, and DTLZ7. These benchmark functions are well
known, and the detail can be found in [34].

We compare the performance of ergodic evolution with
NSGA-II, which is a well-known evolutionary algorithm
proposed in [35], and random evolution (RE), which is the
same as Algorithm 1 except that the ergodic system is
replaced by a general random generator. The crossover rate
and mutation rate of NSGA-II are set to 0.9 and 0.1,
respectively.

For each benchmark function, we run the three algo-
rithms 30 times. For each run, the algorithms run 1000 gen-
erations with 100 individuals in each generation. After all
experimental results are obtained, we conduct nondominant
analysis. First, all individuals in the same generation of the
three algorithms are combined, and then, count the number
of individuals in the nondominant frontier after nondomi-
nant analysis. Figure 4 shows the averaged result (30 runs)
of the top 100 generations. From the figure, we can clearly
see that the proposed method is superior to NSGA-II and
RE for most of the benchmark functions except DTLZ2,
DTLZ4, and DTLZ5.

In addition, we plotted the Pareto frontiers of 5th, 10th,
20th, 50th, 100th, 200th, 500th, and 1000th generation of the
three algorithms. Considering the length limitation, we only

show the figures of ZDT3 (Figure 5) and DTLZ2 (Figure 6)
in this paper.

4.3. Experiment on the Whole Method. In this section, we
validate the proposed method. For the ergodic evolution,
two targets are adopted. The first is a function of the 4 per-
formances provided by the aerodynamic institute, while the
second is calculated by equation (5). The surrogate model
is constructed with P = 1, Q = 5, and R = 2.

We run the whole algorithm 20 times, and Figure 7
shows the evolutionary process of the two targets. For each
run, the algorithm evolves 200 generations, and there are
100 individuals in each generation. The figures include 20
lines indicating the evolutionary process of the 20 runs,
and each point in the line indicates the minimum value of
targets in one generation. As we can see, the algorithm con-
verges to minimum targets almost within 100 generations.

We randomly select 4 runs and list 20 design solutions in
the nondominated Pareto front in Table 4. We plot the gen-
erated design solutions and known design solutions in a sin-
gle figure, and both are proceeded by PCA. From Figure 8,
we can find that most of the generated design solutions are
near to known design solutions, which prove that the pro-
posed method can achieve rapid exploration of high-
dimensional space. This result is reasonable since the second
target of the CE restricts the algorithm to exploit new design
solutions in the space near to the known design solutions.

From the extensive experiment results above, we find
that (1) the adoption of some basic assumptions or prior
knowledge can relax the requirement of data for training
the surrogate model. The prior knowledge here represents
views of designers on design problems. In this work, we sim-
ply adopt two basic assumptions, and the whole model is
divided into two parts, and some unimportant relationships
are ignored by the surrogate model. Therefore, we think
transferring basic assumption or prior knowledge into a
computational manner and integrating it with the surrogate
model are feasible ways to build a surrogate model with only
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Figure 8: The 2-dimensional representation of the 20 known design solutions.
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sparse and scattered data. (2) The simple IDW method can
train the surrogate model. However, in different scenarios,
IDW may not always be feasible, and some advanced
methods like Kriging and RBF network should be adopted
and validated. (3) One of the merits of the proposed method
is that the searching space can be expanded with the addi-
tion of more known design solutions. This means that this
method is fit for both sparse and scattered data and relatively
bigger data.

5. Conclusion

To train a surrogate model with only sparse and scattered
data and find new design solutions based on this surrogate
model, this work proposed a two-stage interpolation-based
method for the surrogate model and adopts CE to explore
the high-dimensional space. This paper uses PCA to reduce
the dimension of data and prove the characteristics of sparse
and scattered data. Then, combining the two-stage interpo-
lation and ergodic evolution method, the sparse scattered
point data is generated into the design method. Three
groups of experiments show that the surrogate model can
predict performances, and the CE is efficient in terms of
exploring high-dimensional space.

Although this work proposes a feasible method to deal
with the problems, some remaining problems require exten-
sive research works. In the future, we will enhance the
method from the following aspects.

(i) This work only adopts basic assumptions to relax the
data requirement, and the data requirement can be
further relaxed by incorporating prior knowledge,
such as experts’ experience and physical law. The
main problem will be the technique of embedding
prior knowledge into surrogate models

(ii) In this work, the penalty factor is important and the
simple Euclidean distance is used. In the future,
some nonlinear function of the Euclidean distance
can be used to measure the penalty factor. The diffi-
culty will be how to predefine or learn a nonlinear
function for the penalty factor
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