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Time-dependent viscosity and thermal conductivity have been studied in relation to flow and thermal energy propagation along a
vertical turning cone. Except the density variance, the other fluid’s properties are assumed to be constant. Using the similarities
procedure, the nonlinear system of differential equations is simplified to dimensionless ODEs. The resultant nonlinear ODEs
system is computed while using fractional code FDE12, and the findings are quantitatively examined using the bvp4c approach
for accuracy and consistency. In form of figures and tables, the behavior of momentum, energy, and mass is interpreted versus
the physical constraints. The axial and radial velocity, both declines with the variation of unsteadiness parameter S. The axial
velocity of the fluid is considerably increased when the mixed convection parameter is elevated, but the radial velocity is
reduced. Similarly, when the variable viscosity increases, the velocity profile develops.

1. Introduction

The results of this study show that disk-cone appliances are
used in a variety of technical applications, including deter-
mining the viscosity of a fluid (viscosimetry), convective dif-
fusion, medical devices, and biomedicine for oxygen
measurement [1]. The heat transfer through a spinning cone
is also addressed in this research. Many academics are drawn
to this sort of study to investigate its properties, behavior,
and applications. Turkilmazoglu [2] investigated a steady
Newtonian viscous fluid over a rotating cone using the
homotopy analysis technique. The mixed convective simula-
tion with momentum and heat distribution across a perfo-
rated upward spinning cone in an ambient liquid was
numerically calculated by Chamkha and Al-Mudhaf [3].
They hypothesized that when cone angular velocity varies,
axial, and tangential velocity increases considerably. Garrett
et al. [4] investigated the fluid flow across a turning cone
(half angle) in axial direction. The MHD (magnetohydrody-

namics) nanoliquid flow with Brownian motion and ther-
mophoresis influence over a revolving cone was deled by
Nadeem and Saleem [5] and Towers and Garrett [6]. It is
worth noting that surface temperature and Mach number
destabilise the system, whereas suction stabilises it. Hayat
et al. [7] used a shooting method to emphasize the MHD
chemical reactivity of an unsteady viscous fluid over a turn-
ing cone. Chamkha et al. [8] evaluated the influence of a
rotating cone on a 3D CNT hybrid nanofluid in a trapezoid
permeable cavity, considering MHD interactions.

The upshot of unsteady viscosity on viscous fluid charac-
teristics causes some variation. The viscosity of liquids, for
example, decreases as temperature goes up, but the viscosity
of gases improves. The rises in thermal energy cause friction
in oily fluids, which affects fluid viscosity, and the viscosity
no longer holds consistent. In light of this deficiency, a
growing number of researchers are focusing their efforts on
demonstrating the impact of changing viscosity phenomena
under various situations. The effects of fluctuating viscosity
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of third-grade dispersed fluid flow via a conduit have been
explored by Christie and Massoudi [9]. The numerical out-
puts were discovered using the finite difference method. Sed-
deek [10] investigated unstable free convection MHD flow
across an infinite plate under the influence of a magnetic
field and changing viscosity. The computational solution of
the simulated equations is done using the finite difference
method. MHD boundary layer flow over an extending
heated surface with variable viscosity is reported by Pantok-
ratoras [11]. Their analysis also included a graphical repre-
sentation of viscosity variations. Mukhopadhyay and Layek
[12] looked studied heat exchange across a stretched vertical
porous surface with changing fluid viscosity. They discov-
ered that increasing the viscosity, enhances the velocity
while decreasing the energy field. Using a discrete variant
of HAM known as spectral homotopy evaluation over a
stretched surface, Dada and Onwubuoya [13] addressed
mass and energy distribution through fluid flow with chan-
ging viscosity and activation energy. Hazarika et al. [14] eval-
uated the upshots of changing viscosity, thermal radiation,
and MHD on fluid flow through a vertical cone.

The thermal transition rates are affected by viscous dissi-
pation, which acts as an energy source. The relevance of vis-
cous dissipation is determined by whether the cone is
freezing or warmed. Reddy et al. [15] estimated MHD flow
and energy propagation across a stretched substrate as a
function of heat source and viscous dissipation. Mabood
et al. [16] evaluated the MHD flow, energy transport, and
chemical reaction of a nanofluid containing copper Cu and
aluminium oxide particulates in a porous media under the
viscous dissipation influence. Deebani et al. [17] assessed
the role of viscous dissipation and MHD across a revolving
cone. Gayatri et al. [18] studied viscous dissipation in 2D
fluid flow with varying thickness and slip coefficients across
a stretched surface. They discovered that the slip parameters
increase friction while lowering fluid velocity. Using the
Atangana-Baleanu fractional method, Saqib et al. [19] inves-
tigated electro-osmotic nanofluid flow.

Fractional calculus, which is an extension of regular cal-
culus, has a 300-year history. This field has exploded in
popularity in recent years. Almost all activities in applied
sciences are described by signal processing, fluid flow in
permeable substances, wave transference in mechanical
properties, finance theory, and biological system electric
conductance [20, 21]. Many definitions exist for the frac-
tional derivative; however, the Caputo and Riemann Liou-
ville fractional derivatives are particularly important in
terms of applicability [22]. We know that the kernel was sin-
gle in both fractional definitions. To overcome this difficulty,
Caputo and Fabrizio presented a new point of view of non-
integer order derivative with nonsingular kernel [23] in
2016, which is highly beneficial for a variety of physical pro-
blems. Manzoor et al. [24] analyzed the uniqueness and exis-
tence of solutions of fractional order differential equations
with Caputo derivatives. They came up with a set of require-
ments to assure solution validity while maintaining Hyers-
Ulam stability. The fractional assessments for Darcy hybrid
nanoliquid flow over a perforated spinning disc were elabo-
rated by Li et al. [25]. The proposed model has been put up

using Matlab fractional code Fde12 to produce the fractional
solution. The outputs are compared to the fast-approaching
numerical Matlab scheme boundary value solver for correct-
ness and validity of the resultant framework.

We generalized the approach of [26] based on the afore-
mentioned literature and its application in the actual world.
The goal of this study is to assess the upshots of time-
dependent viscosity on flow, thermal energy, and mass
transfer in a vertical rotating cone. The spinning phenom-
enon is arranged in the format of a system of PDEs for this
reason. Which are solved using the fractional code FDE12,
and the results are checked for validity and correctness using
the Matlab numerical software boundary value solver
(bvp4c). The findings are depicted graphically and shortly
reviewed.

2. Mathematical Formulation

We considered axisymmetric, an incompressible and
unsteady fluid flow with an angular velocityΩ across a rotat-
ing cone. The u, v, and w are the velocity component has
been considered along x, y, z direction. The gravity g impact
is downward, and the buoyancy force exist due to the tem-
perature variation. The tangential direction influences tem-
perature Twvariability near the cone’s edge, while
temperature T∞ away from the cone kept fixed. Fluid flow
mechanism over a rotating cone is depicted through
Figure 1. Furthermore, the variable thermal conductivity
and viscosity are expressed as [26]: the variable viscosity
model used here is the Reynold’s model. The Taylor series
expansion has been used to obtain.

μ = μ0 1 − Aθð Þ, μ = μ0e
−η T−T∞ð Þ,

k = k0e
−c T−T∞ð Þ, k = k0 1 − εθð Þ:

ð1Þ

Where

A = Tw − T∞ð Þη and ε = − Tw − T∞ð Þc: ð2Þ

Here, k0 and μ0 is the fluid conductivity and dynamic
viscosity.

The governing system of nonlinear PDEs for momen-
tum, mass, and energy may be written as by utilising Boussi-
nesq approximation boundary layer theory and the
aforementioned assumption [26]:

∂ xuð Þ
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= 0: ð3Þ
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Where α∗, β, k, ρ, and g are the cone vertical angle, ther-
mal expansion, thermal conductivity, density, and gravity,
respectively.

The boundary conditions are:

u 0ð Þ = 0, v 0ð Þ = 1
1 − st∗ð ÞΩ x sin α∗, T 0ð Þ = Tw, C 0ð Þ = Cw,

u ∞ð Þ⟶ 0, v ∞ð Þ⟶ 0, T ∞ð Þ⟶ T∞, C ∞ð Þ⟶ C∞:

ð8Þ

To simplify the PDEs to ODES, we commence the pre-
ceding similarity variables [26]:

u = 1
2 1 − st∗ð ÞΩx sin α∗ f ′ ηð Þ,

w = 1
1 − st∗ð ÞΩx sin α∗

� �1
2
f ηð Þ, η = Ω sin α∗

v0 1 − st∗ð Þ
� �1

2
z,

T = T∞ + Tw − T∞ð Þθ ηð Þ, Tw − T∞ = T0 − T∞ð Þ
1 − st∗ð Þ2

x
l
,

v = 1
1 − st∗ð ÞΩx sin α∗g ηð Þ,

C = C∞ + Cw − C∞ð Þϕ ηð Þ, where t∗ = Ω sin α∗ð Þt, ð9Þ

By plunking Equation (9) in Equation (3)–(8), we track
down:

f ′′′ 1 − Aθð Þ − f ′′Aθ′ + 1
2 f ′
� �2

− 2g2 − f f ′′

− 2λθ − s
η

2 f
′′ + f ′

� �
= 0,

ð10Þ

g′′ð1 − AθÞ − Ag′θ′ + gf ′ − f g′ − sððη/2Þg′ + gÞ = 0,
(11)ð1/PrÞðεðθ′Þ2 + ð1 + εθÞθ}Þ − f θ′ + 1/2f ′θ − sððη/2Þθ +
2θÞ + Ecððg′Þ2 + 1/4ð f ′′Þ2Þð1 − AθÞ = 0,(12)

ϕ″ − Sc gϕ′
� �� �

= 0: ð11Þ

The reduced conditions are:

f 0ð Þ = 0, g 0ð Þ = 1, f ′ 0ð Þ = ϕ 0ð Þ = 0, θ 0ð Þ = 0,
f ′ ∞ð Þ⟶ 0, g ∞ð Þ⟶ 0, ϕ ∞ð Þ⟶ 0, θ ∞ð Þ⟶ 0,

ð12Þ
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Figure 1: Fluid flow mechanism over a rotating cone.

Table 1: Comparative analysis with [26] α = 1.

Ref. [26] Present work
η f ″ ηð Þ g′ ηð Þ θ′ ηð Þ f ″ ηð Þ g′ ηð Þ θ′ ηð Þ
1.0 0.5666 1.2994 1.5036 0.5667 1.2996 1.5039

4.0 0.6616 1.3526 1.3883 0.6635 1.3740 1.3911

8.0 0.6633 1.3738 1.3909 0.6642 1.3761 1.3909

12 0.6642 1.3758 1.3903 0.6645 1.3761 1.3899

16 0.6645 1.3761 1.3899 0.6645 1.3761 1.3899

20 0.6645 1.3761 1.3899 0.6645 1.3761 1.3899

Table 2: Comparative analysis between fractional and numerical
outcomes.

Numerical (bvp4c) Fractional (FDE12)
Pr λ Cf xRex1/2 0:5Cf yRex1/2 Cf xRex1/2 0:5Cf yRex1/2

0 1.1254 0.7153 1.1256 0.7155

1.7 1 2.3008 0.9492 2.3009 0.9494

10 8.6042 1.4990 8.6045 1.4993

0 1.1256 0.7157 1.1257 0.7161

9 1 1.5627 0.7835 1.5630 0.7845

10 5.1821 0.9941 5.1823 0.9950

Table 3: Comparative analysis between fractional and numerical
outcomes.

Numerical (bvp4c) Fractional (FDE12)
Pr λ NuRex−1/2 Re−1/2Shr NuRex−1/2 Re−1/2Shr

0 0.3255 0.5276 0.3257 0.5278

1.7 1 0.6121 0.7123 0.6126 0.7127

10 1.0097 1.2099 1.0099 1.2102

0 1.4110 1.5112 1.4121 1.5121

9 1 1.5660 1.6662 1.5678 1.6671

10 2.3581 2.5583 2.3593 2.5592
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Figure 2: Viscosity parameter A effect on axial velocity profile f ′ðηÞ.
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Figure 3: Mixed convection parameter λ effect on axial velocity profile f ′ðηÞ.
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Figure 4: Unsteadiness parameter S effect on axial velocity profile f ′ðηÞ.
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The parameters generated are rebound as:

Pr = υ

α
, ReL =Ω sin α∗

L2

v0
,Gr = g T0 − T∞ð Þ L

3

v20
β cos α∗,

λ = Gr
ReL

, Ec = xL Ω sin α∗ð Þ2
Cp T0 − Twð Þ , Sc =

υf
Df

:

ð13Þ

Where Pr, Sc, and Ec are the Prandtl, Schmidth, and
Eckert number, respectively. While S is the unsteadiness
and λis the mixed convection coefficient.

The skin friction, mass transfer, and Nusselt number are
written as:

Cfx =
2τxzjz=0

ρ Ω sin α∗/ 1 − st∗ð Þ½ �2 , Cfy =
−2τyz

��
z=0

ρ Ω sin α∗/ 1 − st∗ð Þ½ �2 ,

ð14Þ

Shr = −
x ∂C/∂zð Þjz=0
Cw − C∞ð Þ ,Nux =

x ∂T/∂zð Þjz=0
Tw − T∞ð Þ : ð15Þ
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Figure 5: Viscosity parameter A effect on radial velocity profile gðηÞ.
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Equations (14) and (15) dimensionless set up are:

Cf x Re
1
2
x = − 1 − Aθð Þf ′′ ηð Þ

h i
η=0

,

Cf y Re
1
2
x = − 1 − Aθð Þg′ ηð Þ

h i
η=0

,

Nux Re−1/2x = −θ′ ηð Þη=0, Re−1/2Shr = −ϕ′ 0ð Þ: ð16Þ

Where

Rex =
1

v0 1 − st∗ð ÞΩx2 sin α∗: ð17Þ

3. Preliminaries

Definition 1. For a function g : R+ ⟶R, the fractional
integral of order α ≻ 0 is defined as:

Iαt g tð Þð Þ = 1
Γ αð Þ

ð
t − χð Þα−1g χð Þdχ: ð18Þ

Definition 2. For function g ∈ Cn, the Caputo noninteger
order derivative is defined as:

cDα
t g tð Þð Þ = In−αDng tð Þ = 1

Γ n − αð Þ
ðt
0

gn χð Þ
t − χð Þα+n−1 dχ: ð19Þ

Clearly cDα
t ðgðtÞÞtends to g′ðtÞas α⟶ 1:
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Figure 6: Mixed convection parameterλeffect on radial velocity profilegðηÞ.
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4. Problem Solution

By defining the preceding variables, the system of ODEs
(10))–(13) and (14) are reduced to a dimensionless first
order differential equations (DE):
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Figure 7: Unsteadiness parameter S effect on radial velocity profile gðηÞ.

η = γ1, f = γ2, f ′ = γ3, f″ = γ4, g = γ5, g′ = γ6, θ = γ7, θ′ = γ8, ϕ = γ9, ϕ′ = γ10:
o

γ1 = 1, γ2 = γ3, γ3 = γ4

γ4 =
1

1 −Aγ7
Aγ8γ4 −

1
2 γ3ð Þ2 + γ2γ4 + 2 γ5ð Þ2 + 2λγ7 + S γ3 +

η

2 γ4
� �� �

,

γ5 = γ6, Dα
t γ6 =

1
1 −Aγ7

Aγ8γ6 + γ2γ6 − γ5γ3 + S γ5 +
η

2 γ6
� �n o

, γ7 = γ8,

γ8 =
1

1 + εγ7
Pr γ2γ8 −

1
2 γ3γ7 + S

η

2 γ7 + 2γ7
� �

− Ec
1
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1 −Aγ7ð Þ

	 

− ε γ8ð Þ2

� �
,

γ9 = γ10,γ10 = Sc γ5γ10ð Þ:

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

ð20Þ
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We now use the Caputo fractional derivative to extend
the previous system of first order DEs to noninteger order:
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Figure 8: Viscosity parameter A effect on energy profile θðηÞ.
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5. Result and Discussion

The purpose of this section is to quantify and compare the
functionality of energy and mass transition rate based on
various physical factors. The findings are produced using
Matlab fractional package (fde12), and a fast-approaching
numerical technique bvp4c, has been applied to ensure the
validity and correctness of the outcomes.

Table 1 shows the adequacy of the current study when
compared to [26]. While the fractional and numerical meth-
ods have been compared in Tables 2 and 3, respectively. For
mixed convection and Prandtl number Pr, the numerical out-

comes of tangential and azimuthal skin friction is shown in
Table 2. For mixed convection and Prandtl number, Table 3
shows the quantitative results of Sherwood Nusselt number.

The schematic drawing of a revolving cone is depicted in
Figure 1. Figures 2–12(a) depict the behavior of various flow
entities when α = 1, whereas Figures 2–12(b) describe the
fractional behavior of basic constraints when α = 0:8:

The upshot of A (variable viscosity) on the velocity field
is noticed in Figure 2. At t = 0, the velocity at the cone sur-
face is assumed to be zero, and with increasing credit of visc-
osity variation, the fluid velocity rises in both Figures 2(a)
and 2(b).
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Figure 9: Prandtl number Pr effect on enery profile θðηÞ.
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Figures 3(a) and 3(b) demonstrate the distribution of the
mixed convection λ vs the axial velocity profile f ′ðηÞ. Physi-
cally, mixed convection has a beneficial influence on bound-
ary layer thickness, resulting in an increase in fluid axial
velocity. Convection decreases fluid density, causing fluid
particles to move as a result of forces and pressure.

Figures 4(a) and 4(b) show that increasing the value of
the unsteadiness parameter S lowers fluid velocity.
Figures 5(a) and 5(b) exhibit the radial velocity features ver-
sus the variable viscosity coefficient A. It has been discovered
that when the variable viscosity A increases, the fluid’s radial
velocity decreases. Figures 6(a) and 6(b) depict the effect
of the convection component on radial velocity. The con-
vection component has a significant impact on fluid
motion, and as a result, the velocity drops. In the presence

of the unsteadiness parameter S, the radial velocity
responds similar as an axial velocity. The radial velocity
decreases with the increment in S as elaborated through
Figures 7(a) and 7(b).

Figures 8(a) and 8(b) show a reduction in thermal gradi-
ent when the variable viscosity factor is increased. The inter-
action forces within fluid molecules grow as the amount of
variable viscosity rises, which results in the lowering fluid
energy profile. It is self-evident that when the Prandtl num-
ber Pr increases, the fluid temperature significantly reduces.
Because a fluid with a higher Prandtl number has a lower
thermal diffusivity (Figures 9(a) and 9(b)).

In Figures 10(a) and 10(b), an increase in energy profile
is observed against the Eckert number Ec. The Eckert num-
ber describes a fluid’s self-rising thermal rate as a result of

0 2 4 6 8

0.0

0.2

0.4

0.6

0.8

1.0

𝜂

𝜃 
(𝜂
)

α = 1.0, Ec = 0.1
α = 1.0, Ec = 0.3
α = 1.0, Ec = 0.5

(a)

0 2 4 6 8

0.0

0.2

0.4

0.6

0.8

1.0

𝜂

𝜃 
(𝜂
)

α = 0.8, Ec = 0.1
α = 0.8, Ec = 0.3
α = 0.8, Ec = 0.5

(b)

Figure 10: Eckert number Ec effect on energy profile θðηÞ.
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viscous dissipation. The fluid temperature is efficiently
increased using a variable thermal conductivity as revealed
through Figures 11(a) and 11(b). The result of Schmidt
number vs mass transmission rate is shown in
Figures 12(a) and 12(b). The fluid’s mass transfer rate is
reduced as the Schmidt number is increased.

6. Conclusion

The rotating flow of a viscous fluid with time-dependent
viscosity and thermal conductivity across a vertical cone is
evaluated in this study. A comparison of the numerical
bvp4c method and fractional fde12 package is also empha-
sized. The study’s compelling observations are listed below:

(i) With a positive increase in unsteadiness entity S,
both the axial and radial velocity declines

(ii) As the value of the mixed convection component
improves, the fluid axial velocityf ′ðηÞ appears to
increase substantially, but the secondary velocity g
ðηÞ gradient decreases

(iii) Similarly, the main velocity f ′ðηÞ increases as the
viscosity variability component A grows, while the
radial velocitygðηÞoperates transversely as A
increases

(iv) Improvements in thermal conductivity, Eckert
number Ec and viscosity constraint A, limit the rate
of thermal energy transference NuRex−1/2
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Figure 11: Variable thermal conductivity ε effect on energy profile θðηÞ.
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(v) Mixed convection has a beneficial influence on
boundary layer thickness, resulting in an increase
in fluid primary velocity. Convection reduces the
density of the fluid, causing fluid particles to flow
owing to forces and pressure

Nomenclature

S: Unsteadiness parameter
α∗: Semi vertical angle of cone
T : Fluid temperature (K)
T∞: Temperature away from cone surface
ε: Variable thermal conductivity coefficient
η: Similarity variable
μ0: Dynamic viscosity
ν0: Kinematic viscosity

Pr: Prandtl number
θ: Dimensionless temperature
ρ: Density
cp: Specific heat
z-axis: Axial or normal to cone
Cf x: Skin friction
Nux: Nusselt number
Bvp4c: Boundary value solver
u, v,w: Velocity component
α: Fractional order
Tw: Wall temperature
β: Temperature expansion coefficient
g: Gravity
λ: Mixed convection
t∗: Dimensionless time
k: Thermal conductivity
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Figure 12: Schmidth number effect on mass profile ϕðηÞ.
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Ω: Angular velocity of disk ðr s−1Þ
ϕ: Dimensionless concentration
k0: Fluid conductivity
Ec: Eckert number
A: Variable viscosity coefficient
Cf y : Skin friction
Shx: Sherwood number
FDE12: Matlab fractional package.
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