
Research Article
Clothing Nanometer Antimite and Antibacterial Based on Deep
Learning Technology

Hai Liu 1,2

1Department of Big Data, Jiangxi Institute of Fashion Technology, Nanchang, 330201 Jiangxi, China
2Clothing Big Data Research Center, Jiangxi Institute of Fashion Technology, Nanchang, 330201 Jiangxi, China

Correspondence should be addressed to Hai Liu; liuhai@jift.edu.cn

Received 19 March 2022; Revised 18 April 2022; Accepted 28 April 2022; Published 18 May 2022

Academic Editor: Awais Ahmed

Copyright © 2022 Hai Liu. This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

With the improvement of people’s living standards, the living conditions and environment of residents have changed, and there
are also more and more electrical appliances such as air conditioners, air purifiers, and humidifiers. People’s living environment
and office environment are increasingly closed, which makes it easy for mites to breed and multiply. The changes in the living
environment have made many people more and more aware of health and safety issues. Under these conditions, it is mainly
used in the field of biomedicine. In the high-tech field, nanomaterials with antimite and antibacterial properties have entered
the field of clothing and home textiles. With the advancement and development of science and technology, nanomaterial
technology tends to mature and becomes a major player in the field of clothing. However, nanosilver alone has some defects,
such as large nanoparticles, poor antimite and antibacterial effect, high cost, easy oxidation, and strong toxicity. Therefore, the
preparation of new nanocomposite materials is of great significance for the application of nanotechnology to the field of
clothing. In this paper, the antimite and antibacterial properties of different nanomaterials on clothing were explored
through deep learning technology combined with experimental methods. According to the experiments in this paper, the
Ag/TiO2(ATA) nanocomposites have obvious antibacterial and acarid effects, and the antibacterial and acarid rates are
close to 100% under the conditions of visible light and dark light.

1. Introduction

Bacterial mites are ubiquitous organisms in human life. It
has strong vitality, rapid reproduction, and strong ability to
adapt to the environment. Some pathogenic microorganisms
invade the human body through direct contact or the sur-
rounding environment, which seriously threatens human
health and interferes with human normal life. As a necessi-
ties of human life, textiles are very easy to breed bacteria
and be contaminated with microorganisms such as mites
that endanger human health due to their own structural
problems. Coupled with the surface temperature, humidity,
oil, and sweat of the human body, natural conditions are cre-
ated for the reproduction of microorganisms. With the
development of society and the advancement of science
and technology, people’s demand for the comfort and func-
tionality of textiles is increasing, so some textiles with special
functions are favored by consumers. With the introduction

and rapid development of the concept of deep learning, people
use some of its algorithms and features to apply deep learning
technology to antibacterial and antimite nanoclothing.
Through these algorithms, the antibacterial and antimite
properties of nanocomposites are more deeply recognized.

Because nanocomposite materials have the characteris-
tics of antibacterial, antimite, nontoxic, tasteless, and strong
stability, clothing fabrics have also begun to use this special
material. This has made a significant contribution to the
promotion of the textile industry. The use of deep learning,
a multilayer neural network learning algorithm, to explore
the antibacterial and antimite effect of clothing nanometers
better demonstrates the benefits of nanocomposite materials
used in clothing fabrics.

The following related researches on deep learning and
antibacterial and antimite composite nanomaterials were
found through sorting out. Dong Y has summarized recent
advances in deep learning-based acoustic models under his
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research and investigated the motivations and insights
behind the techniques. Models such as recurrent neural net-
works U+0028 RNNs U+0029 and convolutional neural net-
works U+0028 CNNs U+0029, which can effectively utilize
variable-length contextual information, were discussed, as
well as their various combinations with other models. Then,
the end-to-end optimized model was described, focusing on
feature representations learned jointly with the rest of the
system, connectionist temporal classification U+0028 CTC
U+0029 standard, and attention-based sequence-to-sequence
translation models. Robustness issues in speech recognition
systems were further elaborated, and acoustic model adapta-
tion, speech enhancement, and separation, and robustness
training strategies were discussed [1]. Oshea T proposed and
discussed several new applications of deep learning at the
physical layer. A fundamentally new approach was developed
by interpreting the communication system as an autoencoder.
It shows how to extend this idea to networks of multiple trans-
mitters and receivers and presents the concept of radio trans-
former networks as a means of incorporating expert domain
knowledge into machine learning models. Finally, the applica-
tion of convolutional neural networks on raw IQ samples for
modulation classification is shown. Its accuracy is competitive
compared to traditional schemes relying on expert features
[2]. Kermany D S has built a deep learning framework-based
diagnostic tool for screening patients with common treatable
blinding retinal diseases. It used transfer learning to train neu-
ral networks with a fraction of the data of traditional methods.
This approach can be applied to a data set of optical coherence
tomography images, demonstrating comparable performance
to human experts in classifying age-related macular degenera-
tion and diabetic macular edema. By highlighting the regions
identified by the neural network, a more transparent and
interpretable diagnosis can be provided. This further demon-
strated the general applicability of the artificial intelligence sys-
tem in diagnosing pediatric pneumonia using chest X-ray
images. This tool may ultimately help to expedite the diagnosis
and referral of these treatable diseases, thereby facilitating
early treatment and thus improving clinical outcomes [3]. Ravi
D provided a comprehensive up-to-date review of research
employing deep learning in health informatics. A critical anal-
ysis of the technology’s relative merits, potential pitfalls, and
future prospects is presented. They mainly focused on key
applications of deep learning in translational bioinformatics,
medical imaging, pervasive sensing, medical informatics, and
public health [4]. Wang D L summarized the recent research
progress of deep learning-based supervised speech separation.
First, the background of speech separation and the concept of
supervised separation are introduced. Then, it discusses the
three main components of supervised separation: learning
machine, training target, and acoustic features. Most of the
overview is about separation algorithms and reviewing
monophonic approaches, including speech enhancement
(speech-nonspeech separation), speaker separation (multi-
speaker separation), and speech deredundancy, as well as
multimicrophone techniques. Generalization problems spe-
cific to supervised learning are discussed. They provided a his-
torical perspective on how progress was made [5]. Cheng C
showed that functional graphene nanomaterials (FGNs) are

an emerging material. It has extremely unique physical and
chemical properties and physiological capabilities to interfere
with and/or interact with biological organisms. Therefore,
FGN offers multiple possibilities for various biological applica-
tions. In addition to their use in drug/gene delivery, photo-
therapy, and bioimaging, recent studies have shown that
FGNs can significantly facilitate interfacial biological interac-
tions, especially with proteins, mammalian cells/stem cells,
and microbes. FGNs can adsorb and concentrate nutritional
factors including proteins in physiological media. In addition,
FGNs can also interact with cocultured cells through physical
or chemical stimulation, thereby significantly modulating
their cell signaling and biological properties [6]. Shivakumar
D T demonstrated thatmetallization layers of aluminum, gold,
or copper can be prevented from interacting with silicon sub-
strates by thin boron layers grown by chemical vapor deposi-
tion (CVD) at 450°C. A 3-nm-thick boron layer was
investigated in detail. It forms the p-anode region of the PureB
diode with zero metallurgical junction depth on the n-type
silicon. Metals were deposited by electron beam-assisted phys-
ical vapor deposition (EBPVD) at room temperature. It is
annealed at temperatures up to 500°C. In all cases, the B layer
is an effective material barrier between metal and silicon. The
almost unchanged I–V characteristics of the PureB diodes and
the microscopy of the deposited layers were examined and
verified. In order to obtain this result, it is required that the sil-
icon surface must be cleaned before B deposition. Otherwise,
any silicon surface contamination will prevent complete B
coverage, resulting in increased current flow, sometimes
Schottky-like. For Au, the room temperature interaction with
Si is excessive through such pinholes in the B layer after
annealing at 500°C [7]. These documents are very detailed
for the introduction of deep learning and nanomaterials and
have great reference value for the writing of this article.

In this paper, the antibacterial and antimite properties of
nanocomposites under different conditions were explored
through deep learning methods. And during the experiment,
it was found that the ATA nanocomposite is the most suit-
able for clothing fabrics. Under the same conditions, com-
pared with elemental Ag nanomaterials, ATA has stronger
stability and antimite and antibacterial properties, and the
cost of using materials is lower.

2. Method of Nanometer Antimite and
Antibacterial for Clothing Based on
Deep Learning

Research on deep learning has a long history. Deep learning
originated from artificial neural networks and is also classi-
fied as machine learning. Deep learning conveys image cate-
gories and features through a multilayer information
network [8–10]. It is mainly used in the field of artificial
intelligence and studies multiple interdisciplinary subjects,
such as neural networks, image feature modeling, image rec-
ognition, and target detection. In 1943, the deep neural net-
work based on deep learning was first proposed, and it was
found that the neural network had a strong ability to learn
self-features; in 1957, the perceptron model came out to deal
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with the two-class problem; in 1986, the BP neural network
based on neural network was proposed; in 2006, the concept
of deep learning was first proposed; since 2014, the extensive
application of deep learning in deep learning in image recog-
nition has improved the accuracy of image recognition.
With the continuous development and maturity of deep
learning technology, the application of deep learning is
becoming more and more extensive, and this technology is
used in more and more fields.

2.1. Autoencoder. Autoencoder is an unsupervised learning
algorithm that connects encoder and decoder across layers
[11]. The input layer, hidden layer, and output layer constitute
the autoencoder. By compressing the input data into another
low-dimensional data to output the data set, it is divided into
two parts: the encoder and the decoder [12]. In general, deter-
mining the expression of input data is mainly to see whether
the output data is consistent with the input data. If they are
inconsistent, the parameters should be adjusted so that the
resulting data has the smallest error and is close to the output
data and the input data [13]. The results are shown in Figure 1.
The entire encoder contains two convolutional layers and one
pooling layer. The convolutional layers work together to
extract feature maps. The pooling layer performs downsam-
pling and finally outputs the feature map. The decoder is the
final network output. The connection layer between the
encoder and the decoder mainly connects the corresponding
feature maps and then becomes the data input of the next con-
volutional layer.

When the decoder activation function is followed by
identity, the squared error function is obtained. The identity
condition needs to satisfy the normal distribution:

Q t, xð Þ = t − x2: ð1Þ

When the decoder activation function is a sigmoid func-
tion, the cross entropy function is obtained:

Q t, xð Þ = −〠
n

o=1
to log xoð Þ + 1 − toð Þ log 1 − xoð Þ½ �: ð2Þ

Finally, the overall loss function is obtained:

K AFð Þ εð Þ =〠
c∈s
Q t, g f tð Þð Þð Þ: ð3Þ

2.2. Restricted Boltzmann Machine. Restricted Boltzmann
machine neurons are relatively simple. It consists of two
groups of neurons in the input layer and the hidden layer
and is a stochastic network model [14]. Here, it is assumed
that the input layer is b and the hidden layer is a. As can
be seen from Figure 2, each neuron in the input layer and
the hidden layer is related to each other. But if the neurons
in each network model are independent, the neurons in each
layer are not connected to each other [15]. Restricted Boltz-
mann machine has been applied in dimension reduction,
classification, collaborative filtering, feature learning, and
topic modeling.

The basic structure of RBM is not limited by orientation.
Assuming that the values of neurons in these two layers are
between 0 and 1, ki ∈ f0, 1g, mx ∈ f0, 1g, w and e represent
the number of neurons in the input layer and hidden layer,
respectively. If the specific values of the input neurons have
been given, pi is not equal to 0. The formula that will result
in the combined model is

E k,m, αð Þ = −〠
w

i=1
〠
e

x=1
gixkimx − 〠

w

i=1
piki − 〠

e

x=1
qxmx, ð4Þ

where gix represents the weight coefficients of the input layer
and the hidden layer; pi represents the bias term of each neu-
ron in the input layer; qx represents the bias term of each
neuron in the hidden layer; and α represents the grid param-
eter of the RBM.
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Figure 1: Unsupervised learning and supervised learning modes.
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Using the Boltzmann algorithm to determine the pro-
portional distribution function ZðεÞ, the formula can be
obtained. Boltzmann machine is used to combine the advan-
tages of multilayer feedforward neural network and discrete
Hopfield network in network structure, learning algorithm,
and dynamic operation mechanism. It is based on discrete
Hopfield network and has learning ability. It can find the
optimal solution through a simulated annealing process.

f y, xð Þ = 1
z εð Þ exp −E y, x ; εð Þð Þ = 1

z εð Þ
Y
ij

ewryix j
Y
i

eaiyi
Y
j

ebjx j ,

ð5Þ

Z εð Þ =〠
y

〠
x

exp −E y, x ; εð Þð Þ: ð6Þ

A proportional distribution function ZðεÞ of t is input to
the data. According to the marginal distribution of the com-
bined probability distribution f ðy, xÞ, the problems encoun-
tered in real life can be solved, and the following formula can
be obtained:

f tð Þ = 1
Z εð Þ〠x

exp −E t, x ; εð Þð Þ: ð7Þ

The grid parameter ε is calculated using the RBM feature
extraction method. The subsequent input data is obtained
through the calculated grid parameters. It refers to the
boundary of grid parameter domain calculated according
to the characteristics of 3D grid (while the fixed boundary
method is artificially specified). Assuming that the number
of samples is W, then, the measurement method of the
grid parameters is the likelihood function, and the formula
is as follows:

ε = arg maxε 〠
W

w=1
log p t wð Þ

� �� �
: ð8Þ

The optimal parameter ε of the network with the
maximum value of the LðεÞ = arg maxε∑W

w=1 log ðpðtðwÞÞÞ
function is measured by the method of stochastic gradient
ascent (SGA). The partial derivative value of each network
parameter is a log ðpðtðwÞÞÞ function, which can be
obtained by the following formula:

χl
χε

= 〠
W

w

χ −E t qð Þ, x
� �� �
χε

* +

p εð Þ
−

χ −E t, xð Þð Þ
χε

� �
p t,xð Þ

0
@

1
A:

ð9Þ

When the partial derivatives of the specific parameters
gix, pi, and qi of the likelihood function have only one
simple parameter facing the training grid, the following
formula can be obtained:

χp tð Þ
χgij

= tixj
� 	

p xð Þ − tixj
� 	

p t,xð Þ, ð10Þ

χp tð Þ
χ pið Þ = tih ip xð Þ − tih ip t,xð Þ, ð11Þ

χp tð Þ
χ qið Þ = tih ip xð Þ − tih ip t,xð Þ: ð12Þ

Assuming that t0 represents the input layer data,
according to the obtained data visualization, the activation
value of each hidden layer w0 is calculated by the method
of the sigmoid network activation function, and the fol-
lowing formula is obtained:

p t0 = 1 wojð Þ = 1/ 1 + exp −〠
i

vigij + qi

 ! !
: ð13Þ

According to the characteristics of the symmetry of the
RBM grid structure, when the hidden layer is in the active
state, the activation value of the input layer can be
obtained according to the following formula:

p ti = 1 t0jð Þ = 1/ 1 + exp −〠
j

tiwij + aj

 ! !
: ð14Þ

2.3. Deep Belief Network. A deep belief network is a type
of machine learning that consists of multiple RBM net-
works. It is a probabilistic generative model built between
data and labels, which can be applied to both unsupervised
learning and supervised learning [16–18]. RBM network
consists of visible layer and hidden layer. By definition,
unsupervised learning is used to deal with the sample set
not marked by classification when designing the classifier.
Supervised learning refers to the process of using a group
of samples of known categories to adjust the parameters of
the classifier to achieve the required performance, which is
also called supervised training or teacher learning. The dif-
ference is that supervised learning means that a set of data
is given manually and the attribute value of each data is
also given. For each sample in the data set, we want the
algorithm to predict and give the correct answer: regres-
sion problem and classification problem. In unsupervised
learning, data is not labeled or has the same label. Its net-
work structure is shown in Figure 3.

As can be seen from Figure 3, the deep belief network is
composed of RBM structures [19]. Deep belief networks

(a)

(b)

Figure 2: Restricted Boltzmann machine model.
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solve the difficult problem of training multilayer neural net-
works. It achieves data features by training the weights
between each constituent neuron. The deep belief network
training process is carried out step by step. In the training
process of each layer of neurons, the feature image of the
hidden layer is inferred through the data, and the previously
obtained hidden layer is used as the data vector of the next
layer to progress layer by layer, and so on. Finally, the entire
deep belief network is fine-tuned through supervised learning
[20]. After the above actions, a basic supervised learning algo-
rithm is completed by concatenating the final results [21].

3. Deep Neural Network

Since the deep neural network is extended from the tradi-
tional neural network, the research of the deep neural net-
work has not been effectively developed for a long time,
and it has been in the research stage of one or two hidden
layers [22]. It does not perform well in forward propagation,
back propagation, and gradient descent, and is not even as
good as a single hidden layer neural network. In this regard,
many scholars have been exploring what causes the deep
neural network to have poor ability to deal with problems
[23]. At present, the methods of training neural networks
are based on the idea of back propagation; that is, according
to the error calculated by the loss function, the weight of
the depth network is updated and optimized by gradient
back propagation.

According to the answers given by most scholars, two
main reasons are summarized: First, the value of the initial
parameters affects the neural network, which is also the
drawback of the gradient descent method. Second, the
increase of grid parameters leads to an increase in the num-
ber of neural network layers. The neural network is origi-
nally a fitter, which aggravates the overfitting of the deep
neural network, and the final result is not good [24]. At first,
each object is regarded as a cluster, and then, these clusters
are merged step by step according to some criteria. The dis-

tance between the two clusters can be determined by the
similarity of the nearest data points in the two different clus-
ters. The clustering process is repeated until all clusters meet
the number of clusters.

It has been proven by practice that the weight matrix can
be shifted by training the initial weights of the deep neural
network step by step, which makes the in-depth study of
the deep neural network go a step further. Some experts pro-
posed to train a DBN in the forward direction based on the
RBM network and then expand the DBN in the reverse
direction. Finally, the whole network is regarded as a com-
plete AE using the traditional BP algorithm for repeated
training [25]. BP network can learn and store a large number
of input-output mode mapping relationships without reveal-
ing the mathematical equations describing this mapping
relationship in advance. In this way, AE actually becomes
the first successfully trained deep autoencoder on the intelli-
gent algorithm. The initial training process of the deep neu-
ral network is shown in Figure 4.

3.1. Convolutional Neural Network. Convolutional neural
network is divided from artificial neural network, which is
a multilayer neural network structure with the ability of deep
learning [26]. Convolutional neural networks rely on convo-
lutional and downsampling layers to extract data. The
weight of some neurons in the same layer is the same, and
it is not completely connected with neurons, but each layer
has multiple neurons connected to each other [27]. The con-
volutional neural network is extended into two parts: The
first part is the convolutional layer and the pooling layer
(downsampling layer). The second part is the fully con-
nected layer and the output layer. The input layer is where
the algorithm begins to affect the entire network output
value. The convolutional layer mainly plays the function of
extracting features and is an important part of the entire neu-
ral network. The pooling layer samples the output data and
obtains the feature map after the convolutional layer. Each
neuron of the fully connected layer is connected to the neu-
rons of the output layer to achieve the function of a classifier.

The concept of weight sharing means that the value of the
local receptive field in the convolutional neural network is the
same in the process of feature image generation. Neurons have
the same features but recognize staggered two-dimensional
planes. The weight sharing feature allows the neural elements
of the neural network in a two-dimensional plane to be trans-
lated but not deformed. It also shows the same feature data
during the weight sharing process.

The downsampling operation is a nonlinear dimension-
ality reduction operation. It can make difficult-to-recognize
special images easier to identify through dimensionality
reduction methods. It simplifies the entire neural network
and reduces the number of neural elements in the neural
network, but does not affect the final output. As shown in
Figure 5, it is the basic structure of convolutional neural
network.

Convolutional neural networks are more widely used in
object detection. A new breakthrough has been found for
improving the accuracy of target detection through the
convolutional neural network method.

RBM

RBM

RBM

Data output

Input data

Figure 3: DBN deep learning model.
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A feature map on a convolutional layer in a convolu-
tional neural network is connected to the corresponding
convolution kernel. By introducing an activation function
after calculation, and then calculating the feature with the
activation function, each input data can be accurately
obtained [28]. The data of each output is formed by combin-
ing multiple feature maps, and the formula is obtained:

vwi = f xwið Þ, ð15Þ

xwi = 〠
k∈Mi

vw−1i ⋅ awki + rwi , ð16Þ

where vwi is the i-th output data of each convolutional layer
w in the convolutional network; xwi is the activation value of
the i-th layer of the w-th convolutional layer of the convolu-
tional network; Mi is the feature data set for calculating the
activation value xwi ; f ð•Þ is the activation function in the
convolutional neural network; awki is the convolution kernel
vector set in the convolutional network; and rwi is the final
bias function of the convolutional network.

The activation function set by the pooling layer in each
convolutional network is denoted by downð•Þ. In each pool-
ing layer, the output feature map convolved by each convo-
lutional network can be obtained by the following formula:

xwi =
ðw
i
down vw−1i

� �
+ rwi : ð17Þ

In a convolutional network where each convolutional
layer is connected to each other, the input of all connected
convolutional layers is the combination of all 2D feature
images. All input influence degree coefficients are summed
by convolution. Finally, the feature output of each connected
convolutional layer can be obtained by using the preset acti-
vation function, which can be obtained

xwi =mw
i v

w−1 + rwi : ð18Þ

According to each weight, the final output is the convo-
lutional layer sensitivity. The object can be classified, identi-
fied, predicted, or decided according to its characteristics. In
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Figure 4: Pre-training process of deep neural network.
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Figure 5: The structure of the convolutional neural network.
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this process, the most important step is feature extraction,
that is, how to extract the features that can distinguish things
to the greatest extent:

ϕlx =
ð l+1
x

λ′ ulx
� �

∘ up ϕl+1x

� �� �
: ð19Þ

By implementing the convolutional layer using the
Kroneckers product, the function can be obtained:

up zð Þ = z ⊗ 1n×n: ð20Þ

According to the maximum pooling used above, put 4 in
the model ×4 region is regarded as the set of some character-
istics, that is, the set of activation values of a certain layer in
the neural network. A large number means that some spe-
cific features may be detected. The features in the upper left
quadrant may be a vertical edge, an eye, or cap features that
people are afraid to encounter. The upsampling operation
shown in Figure 6 can be obtained.

After the input image is extracted by the convolution
layer image, additional image features are obtained by
pooling. Figure 7 is a process diagram of image convolution
and pooling.

The fully connected layer inputs a multidimensional
vector. Each vector is converted into a bunch of vectors,
and the sensitivity can be used to calculate the weight of each
neuron. The formula for calculating the sensitivity of the
fully connected layer is

ϕlx = wl+1
� �R

ϕl+1 ∘ f ′ vl
� �

: ð21Þ

The actual training of the convolutional neural network
has nothing to do with the previous input variables; it only
reacts to the input variables. Because the bacteriostatic rate
of ATA composites within 24 hours is constantly changing,
in a day, if the time data of a certain hour of the day is ran-
domly selected to analyze the results, the fluctuation of the
data of the previous hour or the next hour will be ignored.
Therefore, the change data of one day must be sampled.

4. The Research Experiment and Analysis of
Nanometer Antimite and Antibacterial of
Clothing Based on Deep
Learning Technology

The application of nanomaterials in clothing is mainly to
integrate nanomaterials into fabric fibers. For the antimite
and antibacterial properties of clothing nanometers, the
main method is to add substances with antibacterial proper-
ties into nanofibers. With the deepening of research, sub-
stances with antibacterial properties are mainly divided
into the following two categories according to the properties
of the substances: (1) Metals and metal oxides. Metal oxide
antibacterial materials mainly include ZnO, TiO2, and
Fe3O4. (2). The surface chemical structure of house dust
mite before and after ATA nanomaterial treatment showed
that the structure of lipid, protein, and polysaccharide of
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mite body wall changed; TiO2 is a typical photocatalytic
antibacterial material, which has the characteristics of low
toxicity, low price, acid and alkali resistance, and strong
antibacterial ability under UV irradiation; and Ag ion is
the most efficient metal ion antibacterial agent known at
present. It has the advantages of good antibacterial effect,
low antibacterial concentration, killing many kinds of bacte-
ria, and strong drug resistance. Taking Ag, TiO2, and ATA
as research objects, their antibacterial properties were ana-
lyzed. Ag ion is a metal ion antibacterial agent that can kill
many kinds of bacteria and has strong drug resistance;
TiO2 is a good photocatalyst; ATA has strong stability. The
absorbance values of different materials are detected using
deep learning techniques. Bacterial growth kinetics were
analyzed according to the degree of change in absorbance
value. The absorption coefficient is related to the wavelength
of the incident light and the material passed by the light. As
long as the wavelength of the light is fixed, the absorption
coefficient of the same material will remain unchanged.
When a beam of light passes through a light absorbing sub-
stance (usually a solution), the solute absorbs light energy

and the intensity of light decreases. Absorbance is a physical
quantity used to measure the degree of light absorption.

4.1. Preparation of ATA Antibacterial Fabric. 9 pieces of
treated fabrics (20 cm × 20 cm) were immersed in ATA nano-
solution at different times. Each corresponds to a different par-
allel sample. They were taken out at different times, squeezed
out excess liquid, and passed through an oven drying process
at 125°C for 15 minutes. Then, the change of the fabric before
and after loading and the loading of the antibacterial agent of
the fabric in different time periods were measured. The longer
the load time, the worse the fabric load.

It can be seen from Tables 1 and 2 that in the presence of
light, the antibacterial activity of ATA against Escherichia
coli reaches 99.60% and 100% in two time periods; in the
absence of light, the antibacterial activity of ATA against
Escherichia coli reaches 99.60% and 100%. The bacteriostatic
rate of the two cases is basically close to 100%, and the anti-
bacterial effect is excellent.

According to Table 3, the antibacterial performance of
Staphylococcus aureus is very good in the presence of light

Table 2: Antibacterial effect of Escherichia coli fabrics under load time.

Under visible light
Under dark
conditions

Load
time

Parallel plate
number

Number of
colonies/piece

Viable bacteria
concentration/cfu/ml

Bacteriostatic
rate/%

Number of
colonies/piece

Iable bacteria
concentration/cfu/ml

Bacteriostatic
rate/%

3min 1 2 × 10 0:020 × 106
99.60

5 × 10 0:04 × 106
98.88

2 3 × 10 0:03 × 106 7 × 10 0:07 × 106
5min 1 0 0

100
0 0

100
2 0 0 0 0

Table 3: Bacteriostatic rate of Staphylococcus aureus at 3min loading.

Under visible light Under dark conditions

Plate
number

Average number of
colonies/piece

Bacteriostatic
rate/%

Average number of
colonies/piece

Viable bacteria
concentration/cfu/ml

Bacteriostatic
rate/%

1 48 × 10
99.96

48 × 10 4:80 × 106
99.95

2 170 × 10 205 × 10 0:021 × 106

Table 1: Effect of load time on fabric load.

Load time Load fabric number Weight of fabric before load/g Weight of fabric after load/g Load/g Load per 0.75 g fabric/g

1-1 17.42 18.34 0.91 0.04

3min 1-2 17.85 18.78 0.93 0.04

1-3 17.22 18.12 0.91 0.04

2-1 17.72 18.88 1.16 0.05

5min 2-2 17.24 18.41 1.17 0.05

2-3 17.26 18.18 1.20 0.05

3-1 17.51 18.71 1.20 0.05

7min 3-2 18.24 19.41 1.18 0.05

3-3 18.42 18.42 1.18 0.05
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or in the dark, and the bacteriostatic rate is basically close to
100%.

4.2. ATA against Gram-Negative Bacteria. The experimental
objects were Acinetobacter baumannii, Escherichia coli, and
Pseudomonas aeruginosa.

As shown in Figure 8, the minimum inhibitory concen-
tration values of ATA against Gram-negative bacteria are:
Acinetobacter baumannii was 10μg/ml. Escherichia coli was
16μg/ml. Pseudomonas aeruginosa is 16μg/ml. Ag concen-
trations in ATA were 2.11, 3.37, and 3.37μg/ml. The mini-

mum inhibitory concentrations corresponding to elemental
Ag were 4, 8, and 10μg/ml. And 200μg/ml still has only
weak antibacterial effect. The results of the minimum inhib-
itory concentration test showed that ATA has strong anti-
bacterial ability against all the tested strains. With the
increase of ATA and Ag concentrations, its antibacterial
activity was enhanced, and the reproduction and growth rate
of all bacteria slowed down rapidly.

4.3. ATA against Gram-Positive Bacteria. The experimental
subjects were Streptococcus pneumoniae, Staphylococcus
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Figure 8: The analysis of the activity of ATA against Gram-negative bacteria.
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epidermidis, Streptococcus hemolyticus, and Staphylococcus
aureus.

Figure 9 shows that the minimum inhibitory concentra-
tions of ATA against Gram-positive bacteria were 4μg/ml
for Streptococcus pneumoniae, 8μg/ml for Staphylococcus epi-
dermidis, 14μg/ml for Streptococcus hemolyticus, and 16μg/ml
for Staphylococcus aureus. ml. The Ag concentrations in ATA
were 0.84, 1.68, 2.95, and 3.37μg/ml, respectively; the mini-
mum inhibitory concentrations corresponding to elemental

Ag were 2, 4, 6, and 8μg/ml. 200μg/ml TiO2 has only weak
antibacterial effect on all the above bacteria. At the minimum
inhibitory concentration, the content of Ag in ATA was about
1/2 to 1/3 of that of elemental Ag. That is to say, ATA not only
has powerful broad-spectrum antibacterial properties, but also
greatly reduces the use of Ag and achieves the purpose of sav-
ing precious metal Ag. Even if the concentration of pure TiO2
reaches 200μg/ml, there is only a weak antibacterial effect.
These results imply the occurrence of synergistic antibacterial
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Figure 9: The analysis of ATA against Gram-positive bacteria.
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properties of ATA, possibly because Ag and TiO2 have differ-
ent antibacterial action mechanisms. In addition, the mini-
mum inhibitory concentration of ATA was lower than that
of other inorganic antibacterial materials. Table 4 is the com-
parative data of minimum inhibitory concentration of TiO2,
Ag, and Ag/TiO2.

Through experiments, it was found that adding different
amounts of TiO2 to the nanomaterials can effectively inhibit
the activity and survival rate of bacteria. Its main antibacte-
rial mechanism is that TiO2 kills bacteria by destroying their
cell walls. Compared with Ag nanomaterials, ATA nanome-
ters have small particle size and strong stability. Under the
same dosage, the Ag concentration in ATA is about 1/2-1/3
of that of elemental Ag, which saves the cost of Ag to a
great extent.

4.4. Antimite Activity Analysis of ag/TiO2. The antimite
activity of ATA against house dust mites was evaluated by
the method of deep learning technology. It can be seen from
Figure 10 that ATA has a strong ability to remove mites.
According to the treatment of house dust mites with differ-

ent doses of ATA, the survival rates of house dust mites after
24 hours were 76%, 46%, 33%, 27%, 5%, and 2%, respec-
tively. When the time was extended to seven days (168 h),
the survival rate of house dust mites did not change signifi-
cantly, but only slightly decreased. As can be seen from
Figure 10, ATA, Ag, and TiO2 have obvious antimite effects
within 24 hours, and the effect is not so obvious after 24
hours, and ATA has a synergistic antimite effect.

5. Discussion

This paper mainly discusses and studies the antimite and
antibacterial effect of clothing nanometers based on deep
learning technology. In this paper, the antibacterial and anti-
mite effects of Ag, TiO2 and Ag/TiO2 (ATA) nanocompos-
ites were experimentally studied by using deep learning
algorithm. It compares the antibacterial and antimite prop-
erties of different composite nanomaterials under different
conditions. According to the experiments, the nanomaterials
with the strongest antibacterial properties and the most suit-
able for integration into clothing fabrics are obtained. The

Table 4: Comparison of minimum inhibitory concentrations of TiO2, Ag and Ag/TiO2.

Bacterial species
and number

Gram species
(negative-; positive +)

TiO2 minimum inhibitory
concentration (μg/ml)

Ag minimum inhibitory
concentration (μg/ml)

ATA minimum inhibitory
concentration (μg/ml)

A. baumannii — More than 200 4 10 (Ag:2.11; TiO2:7.89)

E. coli — More than 200 8 16 (Ag:3.37; TiO2:12.63)

P. aeruginosa — More than 200 10 16 (Ag:3.37; TiO2:12.63)

S. pneumoniae + More than 200 2 4 (Ag:0.84; TiO2:3.16)

S. epidermidis + More than 200 4 8 (Ag:.68; TiO2:6.32)

S. hemolyticus + More than 200 6 14 (Ag:2.95; TiO2:11.05)

S. aureus + More than 200 8 16 (Ag:3.37, TiO2:12.63)
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Figure 10: The relationship between the antihouse dust mite activity and time of the samples at different concentrations.
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experimental results show that the deep learning technology
can be used in the research on the antibacterial and antimite
of clothing nanometers. And under this technology, the anti-
mite and antibacterial experiments of nanomaterials have
obtained satisfactory results.

6. Conclusions

Ag, TiO2, and Ag/TiO2 (ATA) nanocomposites have certain
antimite and antibacterial effects and are widely used. How-
ever, the Ag/TiO2 (ATA) nanocomposites prepared by Ag
and TiO2 have stronger stability and better antibacterial
properties. With the advancement of social technology, Ag/
TiO2 (ATA) nanocomposites are used more and more
widely as a bacteriostatic agent, and the development pros-
pect is getting better and better. The synergistic antimite
effect of ATA was obtained by evaluating the antimite activ-
ity of ATA against house dust mites by using deep learning
technology. Within 24 hours, TA, Ag, and TiO2 had obvious
antimite effects during this period.
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