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Because of its large specific surface area, small particle size, high surface energy, and unique nanoeffect, the morphological
characteristics of nanoparticles are the key factors affecting the properties of materials. How to detect and evaluate the
morphological characteristics of nanoparticles is the first problem to be solved in the preparation and application of
nanomaterials. The main purpose of this paper is to use TEM to recognize the image features of nanoparticles and introduce
the transmission electron microscope and image edge segmentation method and random forest algorithm. A method
integrating the in situ characterization of modern electron microscopy and the measurement of the electrical properties of
nanomonomers was developed. In this paper, a multielectrode TEM in situ electrical measurement platform is prepared, which
improves the contact during the integration of nanomaterials and improves the electrical measurement accuracy of the TEM in
situ electrical method. In this paper, based on the random forest algorithm, a multirandom forest algorithm is proposed. Due
to the different gray levels of images referenced by the multirandom forest algorithm, the segmentation results are processed by
FCM clustering algorithm. Experimental results show that in terms of image segmentation accuracy, the minimum Jaccard
coefficient obtained by multiple random forest algorithm is 89% and 95%, respectively, which is obviously better than
watershed segmentation method and maximum entropy threshold segmentation. In the aspect of automatic image
segmentation of nanoparticles, the image segmentation accuracy is the highest when the sample block size and the number of
sample blocks selected in the multiple random forest algorithm are 5 ∗ 5, 7500, and 35, respectively. Therefore, the
multirandom forest algorithm has achieved high accuracy in image segmentation of nanoparticles, which provides valuable
information for the preparation and application of nanomaterials. A new type of TEM dark-field imaging diaphragm was
prepared, which greatly improved the imaging quality of weak-phase bulk materials represented by graphene and nonspiral
biological samples represented by intracellular polyvesicles.

1. Introduction

At present, the traditional CMOS process is close to the limit
of development, and the traditional means of improving the
performance of nanoelectronic devices by reducing the
device size will become less and less feasible in the foreseeable
future. Application requirements such as high-performance
computing and big data have put forward higher requirements

on the computing speed and reliability of electronic devices. In
recent years, with the continuous research of image processing
technology in the field of computer, the emergence of electron
microscope provides the possibility for people to explore the
mystery of the micro world. After years of development, it
has become an indispensable tool in modern science and tech-
nology. For nanomaterials, the size and distribution of nano-
particles determine the physical and chemical properties of
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nanomaterials. Therefore, the measurement and characteriza-
tion of nanoparticle size are an important aspect of nanomate-
rial structure research, especially the measurement of
nanoparticle distribution has important practical significance.
Nanoparticle recognition refers to the extraction and analysis
of particle features in nanoparticle images. Transmission elec-
tron microscopy (TEM) is an important tool for characteriz-
ing nanomaterials [1]. It can observe the submicroscopic or
ultramicrostructure which cannot be seen under the optical
microscope below 0:2 μm.

Strzeciwilk et al. describe the results of TEM training at
TiC Crystal and Co. Teak crystals are prepared using high
temperature superconductivity (HTS) technology using
cobalt as high temperature oil. The physical structure of
the crystal is investigated by natural metal. X-ray phase
analysis of the samples was performed. Li et al. focused on
the study of twins in bulk metals FCC and BCC and their
effects on the mechanical properties of all metals. It is possi-
ble that these unique defects are directly related to the prop-
erties of the macro machine that uses the flexible mounting
tool to simultaneously degrade the nanomachine and the
nanoimage [2, 3]. Mayer et al. combine double-angle shear
geometry and flat-bore compression at nanointerter to
determine the mechanical properties of these films under
shear stress. In order to further explain the voltage attenua-
tion failure device, TEM-mounted tests were performed on
TEM sheets with dual markers. Aluminum layer thicknesses
of 50 nm and 100nm were used to indicate the effect of the
restriction on deformation. Compared to the 100nm sample
(423 ± 28:7MPa), the tensile strength of the 50 nm sample is
higher (690 ± 54MPa) [4]. Shen and Sun introduce external
fields such as electronics, thermal energy, light field, and
electricity to TEM, which can create a nanolaboratory at
TEM and compare real-world environments. Therefore, in
addition to static structural design, the indoor TEM can also
recognize the capabilities of the two-dimensional material
structure and the evolution of performance. This extension
is expected to handle and create two-dimensional materials
in individual size, providing the necessary features and prop-
erties for future applications [5].

Lyon et al. reduced Au to water-soluble gold-plated iron
magnetic oxide nanoparticles with a diameter of 60nm on
the surface 2-Fe2O3 or Fe3O4 oxidized particles partially
from recycled hydroxylamine. The morphology and optical
properties of the core/shell particles depend on the amount
of gold deposited, while the magnetic properties are very
independent of the amount of gold added [6]. Wei et al.
solve this problem by synchronizing 30nm nanoprecipita-
tion via Ostwald maturation. When the prefrontal cortex
has a large swelling of the membrane, 2 hours of boiling or
10 days of ambient aging allow the gelatinous material to
grow into a nonuniform nanoparticle [7]. Nayral et al. pre-
pared core-core nanocomposites consisting of a sn0 core
and a thin-layer tin oxide with thermal decomposition of
[{Sn (Nm2) 2} 2] containing a small amount of water control
in anisole. The particles are exposed by electron microscopy
(TEM, HRTEM, and SEM), X-ray diffraction (XRD), photo-
electron spectroscopy (XPS), and Mossbauer (Mssbauer)
spectroscopy. TEM micrographs show the magnitude of a

particle’s rotation, and their distribution depends on the
initial test conditions, such as temperature, time, water
concentration, and pretin concentration [8]. Copolymers of
ε-caprolactone and L-lactide (pCLLA) with different mono-
mer fractions were synthesized at the rate of GEH polymer-
ization and the drug accumulated in large amounts of PCL,
PLLA, and their copolymers were prepared by precipitation.
Large particles are indicated by XRD, TEM, and attenuation
luminescence. The size of LiYF4 molecules can be adjusted
by converting the F ratio to lanthanide ions. After passiv-
ation with oleic acid ligands, LiYF4 nanoparticles can be
readily dispersed in various nonpolar liquids, such as hex-
ane, cyclohexane, dichloromethane, and toluene [9, 10].

This paper mainly introduces the transmission electron
microscope, image edge segmentation method, and random
forest algorithm. In this paper, based on the random forest
algorithm, a multirandom forest algorithm is proposed.
Due to the different gray levels of images referenced by the
multirandom forest algorithm, the segmentation results are
processed by FCM clustering algorithm. The experimental
results show that the multirandom forest algorithm achieves
high accuracy in the segmentation of nanoparticles. The
electrodes prepared by this technique can be easily improved
into excellent ohmic contacts when integrated with nanoma-
terials, which can reduce the influence of contact resistance
on the measurement of electrical properties. In addition,
the technology realizes the adjustable number, size, and
spacing of electrodes, and it is easy to obtain contact resis-
tance information by multiterminal electrical measurement,
so as to obtain more reliable electrical properties.

2. TEM and Nanoparticles

2.1. Transmission Electron Microscope. Since the advent of
the world’s first transistor in 1947, integrated circuits based
on microelectronics technology have greatly changed human
production and lifestyle. During this period, the develop-
ment of integrated circuits has always followed Moore’s
law, that is, the number of integrated transistors per unit
area doubles every 18 months, and the critical size of transis-
tors shrinks by a factor of 0.7 every 18 months. By 2009, the
feature size of the marketed microprocessors in integrated
circuits has reached 45 nm, the 32nm size is brewing into
mass production, and the industry and academia have aimed
at 22 nm.

Transmission electron microscope (TEM) is one of the
important tools to detect the micromorphology, crystal
structure, and chemical composition of materials. It uses a
short wavelength high-energy electron beam as the incident
light source [11]. Under a certain accelerating voltage, the
electron beam converges through the electromagnetic lens
and passes through the sample, thus obtaining the subang-
strom spatial resolution.

TEM is generally composed of three parts: electronic
optical part (lighting system, imaging system, observation,
and recording system), vacuum part (vacuum system and
vacuum display instrument), and electronic part (various
power supply, safety system, and control system). Electron
optics is the core part of electron microscope. According to
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the different types of electron gun in lighting system, TEM
can be divided into thermal emission transmission electron
microscope and field emission transmission electron micro-
scope. In TEM, an incident electron beam is generated by
heating the filament with lanthanum hexaborate (LaB6).
Tungsten wire is used as electron emission source of field
emission TEM. Under the strong electric field, the internal
electrons will be emitted from the filament surface above
the barrier due to the tunneling effect. Compared with ther-
mal emission, field emission can produce electron beam with
higher brightness, better coherence, and single wavelength.
Combined with the TEM-SPM technique, the structure-
dependent in situ electrical measurement experiments were
carried out on a variety of nanomaterials. First press the gold
tip of the STM with the gold electrode inside the sample
holder. It was then slowly separated under TEM observation
until atomically sized gold nanowires were obtained. Since
the entire stretching process can be imaged in TEM, the width
of the nanowires is controlled to be only a single atom wide.

(1) Lighting system

The electrical system is essentially an electrical circuit
breaker, a condenser, an electronic pistol, and a printer.
Your job is to provide a light source with high brightness,
low beam angle, good contrast, and stable beam. In order
to meet the requirements of the dark field image, the light
beam can be adjusted to 2-3 degrees.

(1) Electron gun

The electron gun is the light source that emits electrons.
It is actually an electrostatic lens composed of cathode, grid,
and anode. The cathode is the source of free electrons. There
are usually direct heating and close contact heating as well as
cathode separation, each of which remains independent. In
electron microscopy, the cathode is usually made of heated
filament and tungsten metal, which has the characteristics
of low cost, low brightness, and short life. The cathode is
the source of free electrons. Once the cathode is heated, it
can produce free electrons, anode, and cathode electric field.
The anode can attract the cathode that emits free electrons
and change its motion state from chaos to orderly orienta-
tion. After the cathode grid is biased, it can produce the con-
vergence effect of the electron beam, that is, to gather to the
central axis, so that the electron beam is in the center of the
axis the movement can be carried out through anode and
injection gun to form the required light source to irradiate
the sample.

Within a certain limit, the amount of free electrons emit-
ted by the filament is proportional to the heating current
intensity, but after this limit is exceeded, the current con-
tinues to increase, which can only reduce the service life of
the filament, but cannot increase the amount of free elec-
trons emitted. We call this critical point the filament satura-
tion point, which means that the emission of free electrons
has reached “full capacity” and can no longer be added. In
normal use, the heating current of the filament is often
adjusted and set at a position close to saturation, which is

called “undersaturation point.” In this way, the service life
of the filament can be extended to the maximum extent
under the condition that a large amount of free electron
emission can be obtained.

The grid is located between the cathode and anode, near
the end of the filament. It is a cap-shaped metal object with a
small hole in the center for the electron beam to pass
through. Apply a negative voltage of 0-1000 v (cathode) to
the grid. This negative voltage is called gate bias, its height
is different, and users can adjust it according to their needs.
The grid bias voltage can make the electron beam converge
to the central axis and control and restrain the electron
emission on the filament to a certain extent.

The working principle of the electron gun: under the
action of the filament power supply, the current flows
through the cathode of the filament and heats it to above
2500°C. Free electrons are generated and escape from the
surface of the filament. When the power is turned on, an
accelerating voltage is generated. The positive charge gener-
ated on the anode surface forms a positive electric field, and
the free electrons on the cathode surface escape after being
affected by the electric field and are emitted by the electron
gun to form a power supply. In the process of electron
microscope, the filament can be adjusted to the low satura-
tion point, and the beam current can be controlled by adjust-
ing the gate bias voltage.

In the electron microscope, the acceleration voltage is
also adjustable, so as long as the acceleration voltage is
increased, the penetration can be enhanced, because the
acceleration of voltage will reduce the wavelength, and the
smaller the wavelength, the stronger the penetration.
Although this can improve the resolution, but also brings
the corresponding disadvantages, that is, the reduction of
imaging contrast. Therefore, when the application of high-
resolution observation is not pursued, a lower acceleration
voltage can be selected to obtain a larger imaging contrast,
especially for biological samples with low contrast, it is
sometimes advantageous to choose a lower acceleration
voltage.

(2) Condenser

The capacitor is under the gun. The condenser is com-
posed of a first condenser and a second condenser. The pur-
pose of setting a condenser in the electron microscope is to
gather the electron beam emitted by the electron gun into
a spot with uniform brightness and adjustable irradiation
range and project it on the sample below. After the electron
beam passes through the capacitor, a uniform spot with
adjustable irradiation range is formed and projected onto
the sample. The first condenser is a strong magnetic field
lens, and the second one is a weak magnetic field lens. All
levels of capacitors are used together to adjust the diameter
of the light beam spot, so as to change the intensity of illumi-
nation brightness. The corresponding adjustment knob is
generally set on the control panel of the electron microscope.
The first concentrator and the second concentrator have dif-
ferent magnetic pole shape and working current, so the first
concentrator has stronger magnetic field strength, while the
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second concentrator has lower magnetic field strength. The
method of changing the brightness by adjusting the capaci-
tance current is actually an indirect method. The maximum
brightness is limited by the electron beam. In order to
change the brightness of the light to a greater extent, the size
of the electron beam can be fundamentally changed by
adjusting the gate bias voltage in the electron gun mentioned
above. The main requirements for magnifying imaging
lenses such as intermediate mirrors and projection mirrors
are to obtain the highest magnification required for high res-
olution and the lowest magnification required to find a suit-
able field of view under the condition of shortening the
height of the lens barrel as much as possible. It is also hoped
that their aberrations, distortions, and axial astigmatism are
as small as possible when conducting electron diffraction
image analysis, doing special observations such as selected-
area diffraction and small-angle diffraction.

The condenser is located below the electron gun and is
generally composed of one stage, which are called the first
and second condensers in order from top to bottom. The
purpose of setting the condenser in the electron microscope
is to condense the electron beam emitted by the electron gun
into a light spot with uniform brightness and adjustable illu-
mination range and project it on the sample below. The
structures of the first condenser and the second condenser
are similar, but the shape of the pole piece and the working
current are different, so the strength and use of the magnetic
field formed are also different. The first condenser is a strong
magnetic field lens, and the second condenser is a weak
magnetic field lens. The condensers of all levels are used
together to adjust the diameter of the illumination beam
spot, thereby changing the intensity of the illumination
brightness. Generally, it is set on the electron microscope
control panel. There are corresponding adjustment knobs.

(2) Imaging system

(1) Sample room

The sample chamber is under the condenser, and there is
a sample stage for loading the sample. The sample stage
must be able to move on the horizontal plane and direction
to select and move the observation field. Correspondingly, it
is equipped with a joystick or a rotating handwheel, which is
a precise adjustment mechanism to move left and right in a
certain direction. Modern high-end electron microscopes
can be equipped with a computer-controlled motor-driven
sample stage, which strives to be accurate when moving, sta-
ble when fixed, and can make label-type positioning marks
on the sample by the computer, so that users can rely on it
when they need to do retrospective comparison. Computer
positioning search is difficult to achieve in manual selection
operations.

Because of the short electron wavelength and weak pen-
etration, it is necessary to make very thin samples. At this
time, ultrathin slicing machine is needed for cutting. In
order to achieve better cutting effect, diamond cutter or spe-
cial glass cutter is required for ultrathin slicer. The sample is
first installed on the copper wire and then fixed on the sam-

ple table. The sample table and the sample holding rod are
integrated, which is a very fine part. There is an O-shaped
rubber sealing ring in the middle of the sample bar, and
the surface of the sealing ring is coated with vacuum grease
to isolate the vacuum between the sample chamber and the
outside of the mirror body.

(2) Objective

The objective lens is the most important part of electron
microscope. Its function is to keep the phase of the elastic
scattering beam converging on the focusing plane from the
difference direction of the sample. A scattering pattern con-
taining the sample structure or diffraction pattern will con-
verge the elastic scattering beam of the same sample point
on the image plane to form the sample group corresponding
to the microscopic image. The quality of TEM depends on
the quality of objective lens to a great extent.

The objective lens is a strong magnetic lens with a very
short focal length, which requires extremely high working
conditions such as material purity, processing accuracy, and
pollution conditions during use. The core problem of improv-
ing the resolution index of an electron microscope is the com-
prehensive assessment of the performance design and process
manufacturing of the objective lens. The focal length is as
short as possible, the aberration is small, and the space is
expected to be large, which is convenient for sample manipu-
lation, but there are many contradictory links in the middle.

The function of the objective lens is to enlarge the main
image, change the working current of the objective lens, and
adjust the focal length. An electron microscope is used to
change the operating current of the objective. After passing
through the sample, the electron beam is projected onto
the objective lens to form the first image, which usually
determines the imaging accuracy. If there is an error in this
kind of imaging, even if the error is very small, it will be dis-
played at a higher magnification once it is amplified.

(3) Intermediate mirror and projection mirror

An intermediate mirror, a first projection mirror, and a
second projection mirror are arranged below the objective
to complete the further magnification of the objective lens
imaging. The total magnification of electron microscope is
the product of objective lens, intermediate lens, and projec-
tion lens. The intermediate lens is mainly used for secondary
magnification or reduction of objective lens imaging. By
changing the position of the intermediate lens, the imaging
operation or electron diffraction operation is controlled.
The imaging operation is to enlarge the image of the objec-
tive lens and display it on the fluorescent screen. In order
to obtain the imaging operation, the objective plane of the
central lens and the image plane of the objective lens should
overlap. The operation of electron diffraction is to reduce the
object image and display it on the fluorescent screen.
Through the imaging operation mode, we can obtain the
morphology, structure, and other information of the sample,
while the phase analysis of the sample requires the diffrac-
tion operation mode.
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In the TEM-SPM method, the Schottky contact between
the sample and the electrode is easy to form, which affects
the measurement of the electrical properties of nanomateri-
als. Currently, TEM-SPM optimizes the contact between
nanomaterials and electrodes by applying Joule heat gener-
ated by a suitable current. The contact Schottky resistance
obtained in this way is large, the resistance difference
between different contacts is obvious, and the TEM-SPM
method is difficult to improve to the ohmic contact.

2.2. Medical Ultrasound Imaging Based on Edge
Segmentation Method. Edge is the important visual informa-
tion contained in the image, and it contains most of the
information of the image [12]. Edge detection is a key step
in image processing and machine vision. The effect of edge
detection is very important for image analysis and under-
standing. Images contain a lot of information, but not all
of it [13–15]. By edge detection, not only the structural attri-
butes of the image are preserved but also the information irrel-
evant to the image processing target is eliminated, greatly
reducing the amount of data contained in the image, and
finally, the edge information we need is obtained [16–18].
The edge-based segmentation method is used to detect the
gray change of the discontinuous position image in terms of
texture, gray level, and color and reflect the gray level gradient,
represented by ∇f ða, bÞ = ∂f /∂f i + ∂f /∂f j [19]. The edge

detection operator eða, bÞ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

f 2aða, bÞ + f 2bða, bÞ
q

is defined,

which is the amplitude of∇f ða, bÞ. To simplify the calculation,
it can also be defined as the sum of the absolute values of the
partial derivatives f a, f b:

e a, bð Þ = f a a + bð Þj j + f b a + bð Þj j: ð1Þ

(1) Sobel operator

Sobel operator image a point is as the center, in the
neighborhood of 3 ∗ 3D direction and the partial derivative
of the direction [20, 21]. The formula of Sobel operator is
as follows:

In the vertical direction:

S1 x, yð Þ = f x − 1, y − 1ð Þ + 2f x, y − 1ð Þ + f x + 1, y − 1ð Þj
− f x − 1,ð y + 1ð Þ + 2f x, y + 1ð Þ + f x + 1, y + 1ð ÞÞj:

ð2Þ

In the horizontal direction:

S2 x, yð Þ = f x − 1, y − 1ð Þ + 2f x − 1, yð Þ + f x − 1, y + 1ð Þj
− f x + 1, y − 1ð Þ + 2f x + 1, yð Þ + f x + 1, y + 1ð Þð Þj:

ð3Þ

Select a threshold T , if S1ðx, yÞ > T , it means there is edge
passing in the vertical direction of ðx, yÞ, and ðx, yÞ is edge
point. In the same way, if Sðx, yÞ > T , also means edge point
in ðx, yÞ [22].

(2) Roberts operator

The gradient in the Roberts algorithm can be seen as the
difference between two pixels in any vertical direction. The
Roberts operator, on the other hand, takes the difference
between two adjacent pixels in the diagonal direction:

Δi f = f x, yð Þ − f x + 1, y + 1ð Þ, ð4Þ

Δj f = f x, y + 1ð Þ − f x + 1, yð Þ: ð5Þ
Its gradient amplitude value is

R x, yð Þ = Δi fj j + Δj f
�

�

�

�, ð6Þ

or

R x, yð Þ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Δ2
i f + Δ2

j f
q

: ð7Þ

The convolution operator is expressed as

Δi f =
1 0
0 −1

�

�

�

�

�

�

�

�

�

�

, Δj f =
0 1
−1 0

�

�

�

�

�

�

�

�

�

�

: ð8Þ

Select the close value T appropriately, if Rðx, yÞ > T ,
then, ðx, yÞ is the edge point.

(3) Laplace operator

Laplace operator is a second derivative operator, whose
center of function is zero in the frequency domain is sym-
metric, so it has rotation invariance. This graph is processed
by Laplace operator, and the pixel has the feature of zero
gray mean. The Laplace transform of a two-dimensional
graph function is the isotropic second derivative. The for-
mula is as follows:

∇2 f a, bð Þ = ∂2 f a, bð Þ
∂a2

+ ∂2 f a, bð Þ
∂b2

: ð9Þ

Let us write it as a difference:

∇2 f x, yð Þ = f x − 1, yð Þ + f x, y + 1ð Þ + f x + 1, yð Þ
+ f x, y − 1ð Þ − 4f x, yð Þ: ð10Þ

2.3. Random Forest Algorithm

2.3.1. Bagging Algorithm. The principle of bagging algorithm
is to determine the training set, get the number of training
samples, and determine the number of weak classifiers.
Then, the samples are randomly put back from the training
set until the samples are equal to the training samples. If the
number of existing weak classifiers reaches the standard,
stop sampling and construct a strong classifier by voting
strategy as the final classification result. If the number of
weak classifiers is not enough, the samples are randomly
put back from the training set.
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2.3.2. Random Forest Algorithm. The principle of a random
forest algorithm is the development of many independent
decision trees, and each decision tree can be trained indepen-
dently with training samples [23]. Each decision tree is accord-
ing to the training plan. In order to create decision trees, it is
necessary to create a corresponding number of training pro-
grams. Creation ofN training units is from an original training
base with a statistical modeling process. The test samples are
categorized according to randomly assigned subtrees, and the
results of each background are summarized. As a powerful
classifier, the random forest algorithm has a strong power.

Random forest algorithm has many excellent character-
istics. Random forest algorithm can be applied in many
fields and has achieved excellent performance. It has the fol-
lowing advantages: (1) the algorithm is simple and easy to
understand and easy to implement; (2) it can detect the
interaction between features in the training process; (3) it
has good antinoise ability and good ability to deal with a cer-
tain amount of data loss; (4) it can be processed in parallel.

3. Experimental Design

3.1. Experimental Design. These data include 800 transmis-
sion electron microscope (TEM) images of nanoparticles
with an acceleration voltage of 70 kV and a magnification
of 6000.

When the nearest neighbor field is initialized, a 5 × 5
window is used to sample the reference image set a uni-
formly and independently, and a set of 8000 effective blocks
is obtained.

In the process of image block matching, the matching
block of the block to be searched is searched step by step.
Table 1 shows the experimental results of one query block
under three different search steps and calculates the best five
matching blocks. Di represents the distance between the
query block and the 6-neighborhood block.

The weights of the corresponding tag matching blocks
are extracted and optimized. Six query blocks are selected,
and the similarity weights between the optimal matching
of each query and the five blocks are calculated according
to the formula.

From Tables 1 and 2, we can get the di and wi values of
each query block, search out the optimal image matching
block of the query block, and finally extract the optimal
matching block for weighting to reconstruct the initial seg-
mentation results of nanoparticles.

3.2. Experimental Steps. In this experiment, n reference
images with different gray levels are extracted from database
X and y for decision tree algorithm processing: (1) generate
n-ary tree through training set; (2) analyze the path genera-
tion rules of n-tree generated; (3) predict or classify new data
according to the generated rule set. After processing, n deci-
sion trees are generated, and a single random forest is col-
lected to form multiple random forests. Input the image a
to be segmented and output the segmentation result of
image a of each random forest classifier. In the experiment,
n different random forest classifiers are used to get the seg-
mentation results of N graphs a. After getting n different

segmentation results, FCM clustering algorithm is used for
processing. The steps of FCM clustering algorithm are as
follows:

(1) The gray values of N pixels with the same coordi-
nates in the segmentation results are extracted, and
the X ∗ y samples with sample size n are finally
obtained

(2) According to the obtained x ∗ y samples of N, the
probability of the points expressed as nanoparticles
in each sample s is calculated. Let n ða, bÞ be the
number of points labeled as nanoparticles in row a
and column B of N segmentation results, and P ða,
bÞ is the probability of points labeled as nanoparti-
cles in column A and column B in n segmentation
results

(3) By calculating the probability p of nanoparticles for
all the sample data, we can construct the probability
map of the base film obtained by N results

(4) FCM clustering is performed on the calculated prob-
ability graph

(5) Through the above four steps, after completing the
classification of X ∗ y samples, the postprocessing
of N segmentation results is completed. After con-
structing the probability map of nanoparticles, the
structure of nanoparticles was extracted by FCM
clustering, and the segmentation results with high
accuracy were obtained after optimization

4. Analysis of Experimental Results

4.1. Evaluation of Image Segmentation Accuracy. In this
paper, the segmentation results are compared with the

Table 2: Similarity weight between query block and optimal block.

Image block number
Similarity weight W1 between the query

block and the best matching block
W1 W2 W3 W4 W5

1 0.2235 0.2156 0.2030 0.1985 0.1923

2 0.2185 0.2015 0.1985 0.1867 0.1815

3 0.2376 0.2278 0.2056 0.1975 0.1862

4 0.2163 0.2085 0.1989 0.1875 0.1832

5 0.2623 0.2073 0.1975 0.1865 0.1812

6 0.2185 0.2015 0.1956 0.1929 0.1918

Table 1: Experimental results of three different search steps.

Search step size
The distance value Di between query block

and 6 domain block
D1 D2 D3 D4 D5 D6

4 38 65 295 85 125 315

2 59 315 65 326 106 178

1 79 48 71 35 105 299
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manual segmentation golden standard image, and the Jaccard
index is used to evaluate the segmentation results. Jaccard
index is a geometric similarity measure function. The larger
the Jaccard value, the better the segmentation performance.
The formula is as follows:

Jaccard X, Yð Þ = X ∩ Yj j/ X ∪ Yj j: ð11Þ

In the formula, a and B are the results of manual segmen-
tation and automatic segmentation, respectively, and the over-
lap rate of nanoparticle regions between the two results is
calculated. The similarity coefficient is between [0,1]. The Jac-
card value is 1 when the manually segmented nanoparticle
region completely overlaps with the auto segmented basement

membrane region, and 0 when there is no overlap term. The
closer to 1, the higher the similarity, the better the segmenta-
tion effect.

In this paper, we use multiple random forest algorithm,
watershed segmentation method, and maximum entropy
threshold segmentation to detect TEM images of 800 groups
of nanoparticles. Jaccard similarity coefficient of three differ-
ent methods is shown in Table 3.

As can be seen from Figure 1, the minimum Jaccard
coefficient obtained by the multiple random forest algorithm
is 89%, and the highest is 95%. The lowest and highest Jac-
card coefficients are 86% and 92%, respectively. The lowest
and highest Jaccard coefficients are 45% and 58%, respec-
tively. For the same group of images, from left to right is
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Image 3

Image 4
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Weighted median filter

Watershed segmentation method
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Figure 1: Jaccard similarity coefficient of three different methods.
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Figure 2: Effect of sample size on segmentation accuracy.

Table 3: Jaccard similarity coefficient of three different methods.

Method Image 1 Image 2 Image 3 Image 4 Image 5

Multiple random forest algorithm 0.92 0.93 0.89 0.95 0.91

Watershed segmentation method 0.88 0.86 0.92 0.92 0.89

Weighted median filter 0.58 0.45 0.58 0.64 0.55
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Figure 3: The influence of sample number on segmentation results.
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corresponding to the multirandom forest algorithm, water-
shed segmentation method, and maximum entropy thresh-
old segmentation Jaccard coefficient.

4.2. The Size of Sample Block Affects the Segmentation Result.
In the initialization process, the size of sample block directly
affects the accuracy of segmentation results. In this experi-
ment, eight groups of images are selected to calculate the
influence of sample block size on the segmentation results
of each group, as shown in Figure 2.

As can be seen from Figure 2, when the size of the sam-
ple block is less than 5 ∗ 5, the segmentation accuracy does
not change much; when the size of the sample block is
greater than 5 ∗ 5, the segmentation accuracy begins to
decline. Considering the segmentation results and computa-
tional complexity, the computational complexity of 5 ∗ 5
size is less than 3 ∗ 3 size in the case of low image accuracy.
Therefore, the size of the sample block is suggested to be 5
∗ 5.

4.3. The Influence of the Number of Evenly Distributed
Samples on Segmentation Results. In the process of image
block matching, the number of evenly distributed samples
directly affects the result of image segmentation. In this
experiment, we selected 8 groups of images to calculate the
effect of sample size on the segmentation effect of each group
of images, as shown in Figure 3.

The smaller the number of samples, the worse the seg-
mentation effect. This is mainly because the sample block
contains too little information, resulting in poor matching
effect and resulting in poor segmentation effect. When the
number of samples is more than 7500, the accuracy of seg-
mentation has little change. Considering the segmentation
results and computational complexity, this paper suggests
that 7500 is the most suitable sample size.

4.4. The Influence of the Number of Random Forests on
Segmentation Results. In the process of multirandom forest
algorithm segmentation, the number of constructed forests
has a direct impact on the image segmentation results. In

this experiment, eight groups of images are selected, and
the influence of the number of forests on the segmentation
effect is calculated.

It can be seen from Figure 4 that the segmentation effect
is gradually enhanced with the increase of the number of
selected forests (n ≤ 35). This is mainly because the informa-
tion of gray distribution is too little, which will lead to poor
matching effect and poor segmentation effect. When the
number of random forests is 15, the segmentation accuracy
of 8 groups of images is very different. The main reason is
that when building multiple random forests, some images
will choose the training images with similar gray levels, so
the segmentation accuracy is higher than other images. With
the increase of the number of random forests, the segmenta-
tion accuracy of 8 groups of images is gradually improved.
When the number of trees is more than 35, the segmentation
accuracy changes little. Considering the segmentation results
and computational complexity, the number of forests should
be set to 35.

The experimental results show that in terms of image
segmentation accuracy, the Jaccard coefficient obtained by
the multiple random forest algorithm is significantly better
than watershed segmentation method and maximum
entropy threshold segmentation and is more suitable for
the segmentation of nanoparticles. Multiforest algorithm
uses multiple random forest classification. When the num-
ber of forests is large enough, there will always be one or
more training images whose gray value is close to the gray
value of the segmented image. It overcomes the problem of
low image accuracy caused by gray difference between differ-
ent images and improves the segmentation accuracy of
nanoparticles. When the size of the sample block is less than
5 ∗ 5, the segmentation accuracy does not change much
when the size of the sample block is less than 5 ∗ 5; when
the size of the sample block is greater than 5 ∗ 5, the seg-
mentation accuracy begins to decline. It is suggested that
the size of the sample block should be 5 ∗ 5. When the num-
ber of samples is more than 7500, the accuracy of segmenta-
tion does not change much. With the increase of the number
of selected forests (n ≤ 35), the segmentation effect is
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Figure 4: The influence of the number of random forests on segmentation results.
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gradually enhanced. When the number of trees is more than
35, the segmentation accuracy changes little. When the mul-
tiple random forest algorithm is used, the best result is when
the number of forests is set to 35.

5. Conclusion

With the development of materials science, nanoparticles
have large specific surface area, small particle size, high sur-
face energy, and unique nanoeffect. The morphology of
nanoparticles is a key factor affecting the properties of
materials.

In this paper, we mainly study the image recognition of
TEM nanoparticles. We mainly introduce transmission elec-
tron microscopy, image edge segmentation, and random for-
est algorithm. In this paper, based on the random forest
algorithm, a multirandom forest algorithm is proposed.
Due to the different gray levels of images referenced by the
multirandom forest algorithm, the segmentation results are
processed by FCM clustering algorithm. This paper
improves the imaging quality of TEM for weak phase bulk
materials and biological samples, builds a multielectrode
TEM in situ electrical platform based on microchips, realizes
pollution-free etching with atomic precision, prepares nano-
dots, and observes coulombs. The blocking phenomenon
was observed, the nanowire-induced fracture process was
observed, and the nanowire fracture mechanism was stud-
ied. The minimum and maximum Jaccard coefficients
obtained by multiple random forest algorithm are 89% and
95%, respectively. The lowest and highest Jaccard coeffi-
cients are 86% and 92%, respectively. The lowest and highest
Jaccard coefficients are 45% and 58%, respectively. The Jac-
card coefficient of the proposed algorithm is higher than that
of watershed segmentation and maximum entropy threshold
segmentation. In the aspect of automatic image segmenta-
tion of nanoparticles, the image segmentation accuracy is
the highest when the sample block size and the number of
sample blocks selected in the multiple random forest algo-
rithm are 5 ∗ 5, 7500, and 35, respectively. As the feature size
of CMOS shrinks to the nanometer scale, the electromigra-
tion of metal interconnects seriously affects the reliability
of microelectronic devices. After the metal nanowires are
prepared on the microchip, the microscopic dynamic
changes in the metal electromigration can be directly
observed by using the TEM in situ electrical technology,
and the metal electromigration mechanism can be further
studied, thereby providing a guarantee for increasing the
reliability of electronic devices. Using TEM in situ electrical
technology to study the working mechanism of new memory
devices, new memory devices such as resistive memory and
phase change memory have attracted much attention
because of their fast speed and high storage density. Unifor-
mity is an urgent problem to be solved in the large-scale
application of these new memory devices. After the new
memory device is fabricated on the microchip, the working
process of the device is directly observed by TEM in situ
electrical technology, and the working mechanism of the
device is analyzed, thereby reducing the uniformity problem
of the new memory device.

In this paper, the multirandom forest algorithm is pro-
posed because of the randomness of the automatic segmen-
tation method of nanoparticle image. The next step is how to
improve the speed of automatic segmentation of nanoparti-
cle image and ensure the accuracy of image segmentation.
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