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Textile industry wastewater is a principal source of environmental contamination, posing serious health and environmental risks;
consequently, appropriate treatments are necessary before ultimate discharge to ensure environmental and public health safety. In
this study, 10% Ca-doped MgO (Ca0.10Mg0.90O) has been prepared via a green and ecologically benign approach using aqueous
solution of gum arabic (GA) and then used to eliminate Congo red (CR) from aqueous solution. The XRD analysis reveals a
size reduction of MgO nanoparticles from 11 to 6 nm after doping with a surface area reaching 50.1m2·g-1 for the synthesized
heterostructure. An excellent adsorption efficiency of 97% has been achieved under the following optimal operational
conditions, i.e., adsorbent dosage of Ca0.10Mg0.90O (0.400 g/L), contact time of 120min, and solution pH of 7.00. As indicated
by pH, isotherm, and FTIR examinations, the CR sorption process is related to chemisorption and hydrogen bonding. The
findings indicate that the synthesized nanomaterial is a suitable candidate for dyes containing effluent treatment due to its
facile green synthetic approach using a natural product GA, low-cost, mesoporous nature, and high uptake capacity under
neutral solution pH.

1. Introduction

Water is regarded as a vital resource for the survival of life
on earth. The textile industry has contaminated clean water
supplies for decades [1]. The use of synthetic dyes through-
out the industrial processes results in massive wastewater
effluents discharged into the environment on a daily basis
[2]. Synthetic organic dyes, such as Congo red (CR), are
resistant to the biodegradation, and thus, they are hazardous
to the environment and human health [3–6]. Congo red dye
(C32H22N6Na2O6S2) is a class of dyes mostly utilized to color
industrial items and hence discharged in significant amounts
into water resources [7]. CR dyes cause serious environmen-
tal and health concerns; the most prevalent are cancer, gene
mutation, and lung and kidney diseases [8].

In this context, numerous viable solutions have been
developed for treating CR-contaminated waters and mini-
mizing their further discharge into water resources [9–11].
Diverse physical and chemical processes for the removal of
organic dyes have been proposed, including Fenton oxida-
tion [12], biological approaches [13], membrane separation
[14], electrochemical oxidation [15], photocatalysis [16],
and electrocoagulation. Nonetheless, adsorption methods
have gained considerable attention, thanks to their simplic-
ity, low cost, and effectiveness [6, 17].

Nanostructured materials exhibit appreciably novel and
improved chemical, biological, and physical properties
[18], which can be tuned by chemical composition (doping,
composites), particle’s shape and size, surface treatment, and
functionalization. The observed outstanding and unique
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properties at the nanoscale are associated with quantum
confinement, surface plasmonic resonance, and surface-to-
volume ratio (surface area). Hence, nanoparticles have
found widespread applications in various fields, including
photocatalysis [19], wastewater treatment [20], and air puri-
fication [21].

Magnesium oxide (MgO) with its rock-salt cubic struc-
ture (Fm-3m space group no. 225) possesses interesting
properties such as good thermal conductivity, transparency
to infrared, chemical stability, and excellent corrosion resis-
tance [22]. Besides, it offers broad range of usage in fuel cells,
supercapacitors, paints, batteries, ceramics, catalysts, and
electronics [23, 24]. MgO nanoparticles have also been
tested as an effective adsorbent to remove heavy metals
and organic dyes from contaminated waters [25, 26].

MgO was synthesized using different methods, such as
sonochemical route [27], chemical vapor deposition [28],
precipitation [29], hydrothermal [30], microwave [31], com-
bustion [32], and carbothermic reduction [33]. Sol-gel is a
simple and common method already adopted to synthesize
MgO nanostructures, since it manifests a high yield with
minimal temperature requirement [34]. Furthermore, dop-
ing of metal oxide nanomaterials has been reported as an
effective approach for the removal of dyes from contami-
nated waters by adsorption or photodegradation. Indeed, it
was found that doping modifies and tunes markedly nano-
material’s properties, notably the porosity and surface area,
and consequently improves the sorption capacity and kinet-
ics. Due to the existence of polysaccharides (galactosyl, ara-
binosyl, rhamnosyl, glucuronosyl, and 4-O-methyl-
glucuronosyl) which are competent reducing agents, gum
arabic (GA) was employed as a reducing dispersing agent
to prepare nanostructures with enhanced properties to
achieve high performance in diverse applications, specifi-
cally the elimination of hazardous organic and inorganic
pollutants from contaminated wastewaters [35, 36].

Nowadays, green technologies attract great interest for
environmental protection. In this study, aqueous solution
of gum arabic has been used as a natural stabilizing and cap-
ping agent for the green synthesis of Ca-loaded MgO
(Ca0.10Mg0.90O) nanoparticles and then evaluated for the
adsorption of Congo red dye. Microstructural, structural,
and surface area and pore size and functional groups are
checked by SEM, XRD, BET, and FTIR analyses. The influ-
ence of operational parameters, such as dye dose, contact
time, and pH on sorption capability, has been examined.
Besides, kinetic and adsorption isotherm experiments were
conducted. The possible mechanism of CR dye removal by
Ca-doped MgO nanoparticles was proposed.

2. Experimental Procedures

2.1. Chemicals. Magnesium carbonate dehydrate (≥99.0%),
calcium carbonate (≥98.0%), sodium chloride (NaCl,
≥99%), sodium hydroxide (NaOH, ≥99%), hydrochloric acid
(HCl, 37%), Congo red (CR, ≥ 97.0%), basic fuchsin (BF,
≥85%), malachite green (MG, ≥90%), crystal violet (CV,
≥90%), methyl orange (MO, ≥85%), and methylene blue
(MB, ≥82%) purchased from Merck Company were used

without further purification. Gum arabic (Acacia senegal)
with the required concentrations (5 to 100 ppm) was
obtained by diluting CR stock solution (200 ppm).

2.2. Material’s Preparation. The Ca-doped MgO 10%
(Ca0.10Mg0.90O) nanoparticles were synthesized via the sol-
gel method. First, 21 g of magnesium carbonate dehydrate
(MgCO3) and 2.5 g of calcium carbonate (CaCO3) were dis-
solved in 500mL of distilled water (DW). Then, 125mL of
NaOH ethanolic solution (0.02M) was added dropwise
while sonicating for 30min. After that, 25mL of gum arabic
(Acacia senegal) solution (5 g in 100mL of DW) was added
and sonicated for 15min. The mixture was left 24 h; subse-
quently, the as-formed white gel was washed thoroughly
with DW and dried at 90°C for 5 h. The formed product
was then calcined at 700°C for 120min. The same procedure
was repeated by taking similar quantities of the reagents
without adding CaCO3 to synthesize MgO nanoparticles.

2.3. Characterizations. Scanning electron microscopy (SEM)
was used to examine the morphology of the as-prepared
powders using a JEOL JEM-6700F apparatus equipped with
electron dispersive X-ray spectroscopy (EDS) to determine
the elemental chemical composition. X-ray diffraction
(XRD) was used to check the phase purity and the crystal
structure using a Rigaku Mini Flex 600 (Tokyo, Japan) dif-
fractometer equipped with a CuKα radiation source
(λ = 1:5418Å). A Micrometrics ASAP 2020 analyzer was
used to determine the surface area and pore size of the fab-
ricated nanopowders. The Brunauer-Emmett-Teller (BET)
formula and Lippens and de Boer’s t-plot approach were
used to determined nanopowders’ surface area and porosity.
A JASCO FT-IR spectrometer was used to study the vibra-
tion modes of Ca0.10Mg0.90O nanoparticles before and after
CR dye adsorption.

2.4. Adsorption and Kinetic Studies. The sorption process
was utilized to estimate the CR dye removal rate by
Ca0.10Mg0.90O nanopowders. For the kinetic and contact
time experiments, 150mL of CR dye solution with
150 ppm initial concentration was mixed with 60mg of
Ca0.10Mg0.90O2 nanopowders. A small suspension volume
was removed at defined periods of time and then centrifuged
to estimate the remaining CR dye quantity using a
LABOMED UVS-2800 spectrophotometer. The residual
CR concentration was obtained at a maximum wavelength
of 497nm, and the quantity of CR dye extracted per gram
of sorbent Ca0.10Mg0.90O2 at any interval (min) is calculated
using the following formula [37]:

Qt =
Ci − Ctð ÞV

w
, ð1Þ

where Qt (in mg·g−1) is the capacity of CR dye removed per
mass of sorbent (w (g)) at each time t (min), Ci and Ct rep-
resent the concentrations of CR dye (in ppm) before and
after adding CR ultimately at any time, and V is the CR
dye volume (L).
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Figure 1: SEM images and corresponding EDX spectrum of MgO (a–c) and Ca0.10Mg0.90O nanoparticles (b–d).
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Figure 2: XRD patterns of MgO and Ca0.10Mg0.90O nanopowders.

3Journal of Nanomaterials



The equilibrium removal experiment was carried out in
a 25mL glass vial containing 10mg of sorbent material,
and 25mL of CR dye with varying concentrations (25, 50,
100, 150, 250, and 300 ppm) was enrolled under a magnetic
agitation for 1440min. Following the removal equilibrium
study, the mixture was then centrifuged and separated,
whereby the remaining CR concentration was calculated as
follows [38]:

Qe =
Ci − Ceð ÞV

w
, ð2Þ

where Qe (mg·g−1) is the capacity of CR dye eliminated
through the mass of sorbent nanopowders and Ce is the

CR dye concentration at equilibrium in mg·L−1. After the
sorption experiment, the utilized Ca0.10Mg0.90O nanopow-
ders have been recovered by filtration and subsequently cal-
cined at 773K for 2 h. After that, the collected Ca0.10Mg0.90O
nanopowders have been utilized for additional adsorption
tests.

3. Results and Discussion

3.1. Ca0.10Mg0.90O Nanoparticle Description. MgO and
Ca0.10Mg0.90O SEM images are presented in Figure 1. SEM
images of MgO (Figure 1(a)) and Ca-doped MgO
(Figure 1(b)) show irregular spherical crystallized particles
with amean diameter ≈ 100 nm. EDX spectra display intense
signals at 1.2 and 0.5 keV related to Mg and O for MgO
(Figure 1(c)) and 3.7, 1.2, and 0.5 keV corresponding to
Ca, Mg, and O for Ca0.10Mg0.90O (Figure 1(d)). This con-
firms the formation of Ca-doped MgO nanoparticles with-
out the presence of any impurities. The weight proportions
of the elements determined from the EDX analysis provided
as an inset in Figures 1(c) and 1(d) are consistent with the
starting chemical composition.

The phase purity of MgO and Ca0.10Mg0.90O nanopow-
ders was determined by XRD analysis (see Figure 2). The
principal peaks located at 2θ = 36:9°, 42.9°, 62.2°, 74.6°, and
78.6° correspond, respectively, to (111), (200), (220), (311),
and (222) reflections of MgO face-centered cubic-FCC phase
(Fm�3m, 225, a = 4:213Å) with a rock salt-type structure
[39], in agreement with JCPDS No. 87-0653. Two minor
peaks located at 2θ = 36:9° and 42.9° are associated with
organic molecules of the gum arabic extract [40].

For Ca0.10Mg0.90O, the XRD pattern manifests similar
diffraction peaks with a slight shift towards higher 2θ angles,
indicating a contraction of the unit cell of MgO crystal struc-
ture. Meanwhile, two additional peaks located at 2θ = 32:3°
and 53.9° are indexed as (110) and (433) reflections, respec-
tively, belonging to the CaO phase with a cubic structure
(Fm�3m, 225, a = 4:801Å) [41] .
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Figure 3: (a) Nitrogen adsorption-desorption isotherm and (b) pore size distribution of Ca0.10Mg0.90O nanopowders.
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Figure 4: FTIR spectra of MgO and Ca0.10Mg0.90O nanopowders.
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The calculated values of the crystallite size are 10.93 nm
for pure MgO and then reduced by almost half with 10%
Ca doping reaching 5.98 nm. The obtained smaller particle
size can contribute to the increased total surface area per
unit volume and enhance the diffusion of dye molecules
from the bulk solution toward the solid phase. Because the
active sites exposed to the surrounding are greatly increased
with reduced particle size, besides the interior surface of par-
ticles may be available for adsorption in comparison to
larger size particles [42]. However, both values of the micro-
strain are found negative, i.e., −2:4 × 10−3% and −5:6 ×
10−3% for MgO and Ca0.10Mg0.90O, respectively. The as-
obtained compressive microstrain (negative values) may be
explained by the existence of oxygen and magnesium vacan-
cies inside the crystal structure of MgO.

The lattice parameter a of the MgO phase has been cal-
culated using the main diffraction peak (200) by using the

following expression:

a =
λ

2 sin θ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2 + k2 + l2

p
, ð3Þ

where d is the interplanar distance, θ is the diffraction
angle, λ the wavelength of the X-ray source (1.5418Å), and
ðh, k, lÞ are Miller indices of the diffraction peak. The calcu-
lated lattice constants for MgO and Ca0.10Mg0.90O are found
to be 4.5337 and 4.5304Å, respectively. It is noted that the
calculated MgO lattice parameter is lower than the rock salt
bulk phase value reported in the literature [43], which may
be due to insufficient oxygen/magnesium interstitials, self-
interstitials substituting oxygen with magnesium, and di-
interstitials.

Furthermore, it is important to mention that the incor-
poration of Ca ions into MgO host lattice by occupying
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Figure 5: (a) Influence of pH on CR % removal for initial dye concentration of 100 ppm, (b) plot for the pHPZC for Ca0.10Mg0.90O, (c)
impact of the initial CR concentration at pH = 7, and (d) contact time on the sorption rate onto Ca0.10Mg0.90O nanoparticles for initial
dye concentration of 150 ppm and pH = 7.
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Mg sites would be accompanied by an expansion of the unit
cell, since Ca2+ possesses higher ionic radius (0.99Å) com-
pared to Mg2+ (0.65Å). However, it is noticed that the value
of the lattice parameter of Ca0.10Mg0.90O (4.5304Å) is
slightly lower than that of pure MgO (4.5337Å). This dis-
crepancy can be explained by lattice distortion upon partial
substitution of much larger Ca ions replacing smaller Mg
ions and the possibility of the formation of oxygen vacancies
during the synthesis process.

N2 adsorption-desorption curves have been recorded to
examine the nature of the microstructure and determine
the surface area and mean pore size of Ca0.10Mg0.90O (see
Figure 3). The isotherm (Figure 3(a)) manifests type V, sug-
gesting that the presence of mesopores in phase change like
pore condensation could occur [44]. The Ca0.10Mg0.90O BET
surface area is found to be around 50.1m2·g-1 with a pore
distribution and volume of 11.79 nm and 0.277 cm3 g-1,
respectively (Figure 3(b)).
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Figure 6: PFO (a), PSO (b), Elovich models (c) for CR sorption onto Ca0.10Mg0.90O nanoparticles, and (d) intraparticle diffusion plots for
CR adsorption by Ca0.10Mg0.90O nanoparticles for initial dye concentration of 150 ppm and pH = 7.

Table 1: Kinetic models for CR sorption onto Ca0.10Mg0.90O nanoparticles.

Kinetic model Kinetic equation Parameters Values

PFO [53] ln qe − qtð Þ = ln qe − k1t

qe (mg/g) 166 ± 1:32

K1 (min-1) 13:7 × 10−3 ± 0:19

R2 0.97

PSO [53]
t
qt

=
1

k2q2e

� �
+

1
qe
t

qm (exp) (mg/g) 130:7 ± 1:19
qm (cal) (mg/g) 370

K2 (g/mg·min) 0:45 × 10−3 ± 0:39
h0 (mg·g-1·min-1) 61.6

t1/2 (min) 0.166

R2 0.99

Elovich [54] qt =
1
β
ln αβð Þ + 1

β
ln t

β 0:032 ± 0:58

α 8192 ± 0:62

R2 0.92

Intraparticle diffusion [54] qt = kdif t
1/2 + C

Kdif1 (mg·min1/2/g) 15.22

C1 184.85

R2 0.98

Kdif2 (mg·min1/2/g) 0.58

C2 349.57

R2 0.55
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FTIR analysis has been performed to determine the
chemical bonds and composition (purity) of the prepared
compounds (see Figure 4). FTIR spectra display a broad
band at 3465 cm-1 assigned to the stretching vibration of
the O–H group [45], whereas the band at 1639 cm-1 is
ascribed to the adsorbed water molecule’s -OH stretching
mode. In addition, the three bands observed at 1524, 1406,
and 1056 cm-1 are related to a unidentate carbonate
adsorbed on the surface of nanoparticles [46]. The charac-
teristic band located at 420 cm-1 is assigned to Mg–O vibra-
tion mode [47], hence confirming the formation of the MgO
phase. Furthermore, the appearance of a band at 871 cm-1 is
associated with CaO stretching [48], hence asserting the
incorporation of Ca within the MgO host lattice, in accor-
dance with XRD analysis.

3.2. Adsorption Measurements

3.2.1. Effect of pH, Initial CR Concentration, and Contact
Time. The pH value plays a critical role in the adsorption
mechanism because it influences the sorbent’s surface charge
hence enabling the adsorption of the dye molecules. The
adsorption of CR onto Ca0.10Mg0.90O has been evaluated at
pH value varying in the range 3 to 11 (see Figure 5(a)). It
is noted that the adsorption efficiency increases markedly
when the pH value increases in the acidic medium range
(3 to 7) and then decreases at basic pH values. The zero-
point charge experiment has been conducted to better eluci-
date the adsorption mechanism in terms of surface charge
effect. From Figure 5(b), the point zero charges (pHPZC) of
Ca0.10Mg0.90O have been estimated; i.e., its value is found
to be 10. Thus, its surface is positively charged at pH below
10 and negatively charged above pH10. Hence, it can be
deduced that when the pH is increased, the Ca0.10Mg0.90O
surface becomes negatively charged, resulting in an electro-
static repulsion between the Ca0.10Mg0.90O surface and the

anionic CR dye molecules, and consequently, a reduced
adsorption rate is attained. The decrease in the adsorption
capacity of CR in the alkaline pH might be attributed to
the excess OH− and the anionic CR (−SO3

−) competition
[49] as well as the hydrolysis of MgO in basic medium.

In addition, the influence of CR dye concentration on
the amount of dye adsorbed is examined. Figure 5(c) indi-
cates that when the concentration of CR dye is raised grad-
ually from 25 up to 300mg. L-1, the CR adsorption rate
increases significantly and linearly from 63.2 up to
769.2mg·g-1, respectively. Herein, it can be observed that
increasing the initial concentration of CR generates an effi-
cient force that overcomes any resistance to CR migration.

3.3. Contact Time and Kinetic Studies. The effect of equilib-
rium time for the CR adsorption onto Ca0.10Mg0.90O nano-
particles has been examined for a fixed CR initial
concentration of 150 ppm over an agitation time in the range
5-1440min (see Figure 5(d)). The elimination of the CR is
enhanced with the contact time and reaches the equilibrium
within 120min. The adsorption rate is found to increase sig-
nificantly during the first few min of the process
(h0 = 61:6mg · g−1 · min−1), due to the accessibility of many
active sites available onto Ca0.10Mg0.90O nanoparticles’ sur-
face. Eventually, the concentration of the active sites falls
once approaching the equilibrium resulting in a lower sorp-
tion rate; hence, the CR molecules’ removal remains almost
unchanged.

A kinetic study for the CR elimination by Ca0.10Mg0.90O
nanoparticles has been carried out for a sorbent dose of
500mg/L and ½CR�0 = 150 ppm, while varying the contact
time at 5, 10, 20, 40, 80, and 120min. Four models, namely,
pseudo-first-order (PFO), pseudo-second-order (PSO),
intraparticle diffusion, and Elovich models, have been
adopted to elucidate the adsorption kinetics; as shown in
Figure 6, the relevant equations and the obtained results

Table 2: Isotherm models for CR sorption onto Ca0.10Mg0.90O nanoparticles.

Equilibrium model Linear form Parameters Values

Langmuir [55]
Ce

qe
=

1
qmKL

+
Ce

qm

qm (mg/g) 526 ± 4:94

KL (mg/g) 0:528 ± 1:21 × 10−3

RL (L/mg) 0.006

R2 0.98

Freundlich [56] ln qe = ln KF +
1
n
ln Ce

n 0:752 ± 0:123

KF (L/mg) 35:95 ± 2:86

R2 0.96

Dubinin-Radushkevich [57] qe =
RT
b

ln KT +
RT
b

ln Ce

qm (mg/g) 457 ± 17:61

β × 10−9 (mol/kJ)2 7:84 ± 1:13 × 10−5

E (KJ/mol) 17:43 ± 11:12

R2 0.95

Temkin [58] ln qe = ln qm − Kε2
B (J/mol) 6:418 ± 5:21

KT (L/mg) 4:29 ± 0:145

R2 0.92
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(the kinetic parameters k1 and k2 and the correlation coeffi-
cient R2) are given in Table 1. It can be noted that the R2

value obtained from the PSO plots (R2 = 0:9998) is greater
than that obtained from the PFO model (R2 = 0:8615), man-
ifesting that the kinetics and the sorption process fit
extremely well with the PSO model. Moreover, the adsorp-
tion capacity assessed using the PSO curve
(qm = 370mg · g−1) is very close with the experimental value
(qm = 365mg · g−1).

Through the intraparticle transport/diffusion mecha-
nism, the CR dye molecules may be transported from the
solution to the surface of Ca0.10Mg0.90O nanoparticles [50]
(see Figure 6(d)). It can be observed that the adsorption pro-
cess occurs upon two distinct stages [51]. The first stage
reflects the transport of CR molecules from the bulk solution
through the boundary layer to the surface of Ca0.10Mg0.90O
nanoparticles [52], whereas the second stage manifests the
equilibrium state in which intraparticle diffusion starts to
diminish due to low CR concentration [52].

3.4. Adsorption Equilibrium Study. One of the furthermost
important characteristics to evaluate the adsorption ability
of Ca0.10Mg0.90O nanoparticles is the CR maximum quantity
(Qmax). The adsorption data has been fitted using different
isotherms to estimate the uptake capacity of Ca0.10Mg0.90O
nanoparticles. Dubinin-Radushkevich, Freundlich-Lang-
muir, and Temkin’s adsorption models are examined at
equilibrium under isothermal conditions. The correspond-
ing formulas of the used isotherm models and the computed
parameters are given in Table 2.

The isotherm graphs for CR elimination by
Ca0.10Mg0.90O nanoparticles are illustrated in Figure 7. It
can be observed from the fitting curves and the data reported
in Table 2 that the Langmuir isotherm model has the highest
R2 (0.98). The equilibrium value of RL is approximately
0.006, indicating a favorable equilibrium adsorption. These
results demonstrate that the Langmuir isotherm model pro-
vides the most accurate match to the experimental data.
According to the Langmuir isotherm model, the maximum
sorption capacity of Ca0.10Mg0.90O nanoparticles for CR
dye is 526mg×g-1 (Table 2).
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Figure 7: Adsorption of CR equilibrium data fitted using (a) nonlinear models and (b) Langmuir, (c) Freundlich, (d) Temkin, and (e)
Dubinin-Radushkevich models at pH = 7.

Table 3: Sorption capacity of various sorbents for the CR removal
as reported in the literature.

Adsorbents
Adsorption

capacity (mg/g)
Time
(min)

Reference

MgO nanoplates 131 30 [61]

Hierarchical hollow
Fe2O3

160 25 [62]

Co3O4@Fe3O4 hollow
spheres

125 20 [63]

Jujuba seeds 56 100 [64]

Porous alumina 370 30 [65]

Zinc curcumin oxide 94 70 [66]

Porous ZnO
microspheres

334 180 [60]

Fe3O4@bacteria 320 30 [67]

Polypyrrole-iron oxide 500 40 [59]

Ca0.10Mg0.90O
nanoparticles

526 110
Present
study
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Figure 8: (a) FTIR spectra of Ca0.10Mg0.90O, CR, and Ca0.10Mg0.90O@CR and (b) the proposed sorption mechanism of CR onto
Ca0.10Mg0.90O.

Table 4: FTIR characteristic bands for Ca0.10Mg0.90O, Ca0.10Mg0.90O@CR, and CR.

Vibration modes CR (cm–1) Ca0.10Mg0.90O (cm–1) Ca0.10Mg0.90O@CR (cm–1)

OH stretching — 3460 3452

N–H stretching 3475 — 3454

N=N stretching 1594 — 1581

C=C stretching 1445 — 1420

C−N bonding 1363 — 1359

SO3
- stretching 1220, 1178, and 1119 — 1212, 1136, and 1061

Ring vibrations 833 — 831
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3.5. Comparison Study. The ability of Ca0.10Mg0.90O nanopar-
ticles to adsorb CR dye molecules has been compared to that of
other sorbents previously reported in the literature. As seen in
Table 3, the produced Ca0.10Mg0.90O nanoparticles exhibit a
greater capacity for CR adsorption than the previously reported
sorbents, indicating its potential as a promising nanosorbent for
the elimination of hazardous organic dyes from wastewaters.
Indeed, Sarojini et al. successfully obtained the polypyrrole-
iron oxide for CR dye adsorption from aqueous solutions
[59]. The achieved capacity of 500mg/g is slightly lower com-
pared to the value obtained in this study. Lei et al. investigated
the elimination of CR from an aqueous solution by adsorption
onto porous ZnOmicrospheres [60]. Themaximum adsorption
capacity was found to be 334mg/g, which is very lower than
that of Ca0.10Mg0.90O nanopowders.

3.6. Adsorption Mechanism. To elucidate the adsorption
mechanism, FTIR measurements of Ca0.10Mg0.90O nano-
powders have been recorded before and after CR adsorption
in addition to the CR dye (see Figure 8(a)). The correspond-
ing bands for Ca0.10Mg0.90O, Ca0.10Mg0.90O@CR, and CR
are given in Table 4.

As seen in Figure 8(a) and Table 4, the characteristic
bands of CR dye are also present in the spectrum of
Ca0.10Mg0.90O after adsorption alongside some changes in
the position and the relative intensity compared to the free
CR bands. After CR adsorption, the stretching O–H band
shifts slightly to 3452 cm-1 due to the hydrogen bond formed
between the amine groups of CR and the OH groups of
moisture present at Ca0.10Mg0.90O nanoparticles’ surface
[68]. Additionally, the SO3

-stretching bands shift to lower
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wavenumbers, indicating the occurrence of a bonding
between Ca0.10Mg0.90O particles’ surface functional groups
and CR dye molecules. The adsorption mechanism can be
predicted by the energy value (E) in the D-R isothermal
model. If the value of E > 8 kJ · mol−1, the adsorption mech-
anism is principally chemical. If the value of E < 8 kJ · mol−1,
it indicates that the physical forces greatly affect the adsorp-
tion process [69]. The calculated energy value is found to be
17.43 kJ/mol, hence suggesting that CR molecules are
chemisorbed-adsorbed onto the Ca0.10Mg0.90O surface.
Rahali et al. established theoretically and experimentally that
CR is chemosorbed onto Ba-doped ZnO [7]. The possible
sorption mechanism of CR onto Ca0.10Mg0.90O nanoparti-
cles’ surface is illustrated in Figure 8(b).

3.7. Reusability Study of the Sorbent Ca0.10Mg0.90O. The
regeneration and the reusability of an adsorbent are key fea-
tures when considering scale-up and industrial applications.
In this regard, it is necessary to test the cyclic viability of
Ca0.10Mg0.90O nanoparticles. The reusability performance
results, as shown in Figure 9, indicate that Ca0.10Mg0.90O
nanoparticles demonstrate effective four adsorption/desorp-
tion cycles for CR removal with a mean value of 89%.

3.8. Adsorption Ability of Ca0.10Mg0.90O for Other Organic
Contaminants. The high adsorption capacity of
Ca0.10Mg0.90O for CR dye has been also examined and com-
pared to other organic dyes (BF, CV, MG, MO, and MB), as
illustrated in Figure 10 under the previous optimal operating
conditions and using 50 ppm dye solution. It is readily
apparent that Ca0.10Mg0.90O nanoparticles demonstrate a
high selectivity for BF, CV MG, and CR and low removal
rate for both MB and MO dyes, i.e., 99.9, 99.8, 99.6, 99.4,
58.6, and 37.3% toward CR, MG, BF, CV, MO, and MB,
respectively. It can be concluded that the as-prepared
Ca0.10Mg0.90O is an efficient sorbent for the removal of BF,
MG, CV, and CR dyes from wastewater.

4. Conclusion

A Ca-doped MgO (Ca0.10Mg0.90O) nanosorbent was success-
fully prepared by a green and ecologically benign approach
using aqueous solution of natural gum arabic (GA) and
exhibited a high efficacy for the removal of CR dye. Batch
experiments revealed that the removal of CR dye by
Ca0.10Mg0.90O was pH-dependent, with the highest adsorp-
tion capacity of 526mg/g achieved at pH = 7. Equilibrium
and kinetic modelling of the experimental data indicated
that the sorption of CR by Ca0.10Mg0.90O followed the
pseudo-first-order kinetics and Langmuir adsorption iso-
therm models. Based on pH (zero-point charge) and FTIR
measurements, the CR adsorption mechanism occurred
through the chemisorption and hydrogen bonding. The
investigation of Ca0.10Mg0.90O nanopowder as adsorbents
for different dyes (MB, MO, CV, BF, and MG) revealed the
overall significant potential of the nanosorbent for hazard-
ous dyes’ elimination from wastewaters.
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