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The present study evaluated the anticancer potential of copper oxide nanoparticles (CuO NPs) synthesized from pumpkin seed
extract in human breast cancer cell line (MDA-MB-231) using a battery of tests such as MTT [3-(4,5-dimethylthiazol-2-yl)-
2,5-diphenyltetrazolium bromide] assay, morphological alteration, reactive oxygen species (ROS) generation, and changes in
mitochondrial membrane potential (MMP). The biogenic CuO NPs showed a dose-dependent decline in cell viability with 50%
inhibitory concentration (IC50) at 20 μg/ml. Treatment with an IC50 dose of CuO NPs resulted in considerable morphology
changes, such as shrinkage, detachment, membrane blebbing, and deformed shape in MDA-MB-231 cells. We also observed a
significant dose-dependent increase in ROS production and MMP modulation due to CuO NP treatment. Overall, CuO NPs
showed significant anticancer potential in the breast cancer cell line. However, further validation of our data is required in
ex vivo and in vivomodels before this nanoformulation could be exploited for the treatment/management of human breast cancer.

1. Introduction

Cancers are considered one of the foremost reasons of mor-
tality, where 1.9 million new cases and around 609,360 can-
cer deaths are expected in the United States by the end of
2022 [1]. Breast cancer (BC) is the most common cancer
in women globally and the primary cause of cancer-related
deaths in women, with the second-highest incidence rate
(11.6%) among all cancers, necessitating the development
of effective therapies [2, 3]. Currently, available chemothera-
peutics for BC are costly, have frightening side effects, and
could also lead to resistant cells [4–6]. Traditional therapies
can reduce aggressive BC to moderately invasive BC; how-
ever, most invasive kinds have no effective treatment till
now. Therefore, the urgent need is to find an effective, bio-

compatible, and cost-effective therapeutic agent for BC espe-
cially invasive one, that has few or no adverse effects [7].

In this regard, cancer nanomedicine has taken a signifi-
cant stride in the last few decades and improved the thera-
peutic index of cancer drugs [8, 9]. Nanotechnology has
extensive application in biomedical sciences, particularly
cancer therapeutics [10]. The advantages of nanomaterials
are their large surface area and small particle size, making
them excellent for synthesizing pharmaceutical formulations
[11–13]. Metal oxide nanoparticles have recently come up as
a promising research area due to their vast range of applica-
tions [9, 14]. Copper oxide nanoparticles (CuO NPs) have
been widely studied nanoformulation owing to their intrigu-
ing physical, biochemical, and pharmacological features [9,
15]. Cu-based products have been permitted for human
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use by the United States Environmental Protection Agency
(USEPA) since February 2008 [7]. These nanoparticles are
widely explored because they are essential trace element
and have significant roles in metabolism and physiological
processes [16, 17]. Different tumor cells, such as lung adeno-
carcinoma (A549), leukemia monocytic cells (THP-1), and
colon cancer (HCT-116), have exhibited substantial toxicity
to these nanoparticles [7, 9, 18].

Plant seeds are considered a significant source of bio-
genic nanoparticles production [19–21]. Among plants,
pumpkin is a popular vegetable found in many foods such
as bonbons, comestibles, and rice cakes and has shown sev-
eral benefits [22]. The diverse bioactive compounds such as
carotenoids, polysaccharides, para-aminobenzoic acid, fixed
oil, sterol, protein, and peptides in pumpkins make them
suitable against various cancer [23, 24]. Previous studies
have shown the significant anticancer potential of pumpkins
against gastric, breast, lung, colon, and prostate cancer [25,
26]. Biogenic nanoparticles have gained considerable atten-
tion lately because of their low-cost, eco-friendly nature, reli-
ability, and relative safety [27, 28].

In our earlier study, we successfully synthesized and
characterized biogenic CuO NPs from pumpkins seed
extract using a green, environmental friendly, and nontoxic
approach [9]. The biosynthesized CuO NPs showed signifi-
cant anticancer against HCT-116 cell lines. The current
study is a continuation of our previous work, and it aims
to analyze the anticancer potential of CuO NPs in breast
cancer cell lines (MDA-MB-231) in order to compare its effi-
cacy. Based on the findings, we intend to expand our
research to the most responsive cancer model.

2. Materials and Methods

All the chemicals utilized in this investigation were acquired
commercially from companies like Merck, Sigma, and
others. Streptomycin, penicillin, phosphate-buffered saline
(PBS), 3-(4,5 dimethylthiozol-2-yl)-2,5-diphenyl tetrazolium
bromide (MTT), 2′7 ′diacetyl dichlorofluorescein (DCFH),
trypsin-EDTA, acridine orange, and ethidium bromide were
obtained from the companies mentioned above. All the
other chemicals were purchased locally and were of analyti-
cal grade.

2.1. Synthesis and Characterization of CuO NPs. In our pre-
vious study, we described the synthesis and characterization
of CuO NPs from pumpkin seeds extract in detail [9].
Briefly, the pumpkin seed extract was prepared and subse-
quently added in 3mM of Cu(OAc)2 solution with continu-
ous stirring. The addition of NaOH to the extract solution
resulted in the formation of CuO NPs. CuO NPs were char-
acterized using a variety of analytical techniques, including
UV-vis absorption spectroscopy, Fourier transform infrared
spectrum analysis (FTIR), X-ray diffraction (XRD), energy
dispersive X-ray analysis (EDX), scanning electron micros-
copy (SEM), and transform electron microscopy (TEM).
These techniques confirmed the biogenic synthesis of CuO
NPs in the 20 nm range.

2.2. Cell Culture Maintenance. The National Centre for Cell
Sciences (NCCS) in Pune, India, provided the MDA-MB-
231 breast cancer cell line. The cell line was grown in
DMEM media supplemented with 10% FBS, penicillin
(100U/ml), and streptomycin (100 g/ml) at 37°C in 5%
CO2 incubator.

2.3. Cytotoxicity (MTT) Assay. To measure cytotoxicity,
MDA-MB-231 cells were treated with different doses of
CuO NPs (5-35 g/ml) in 96-well plate for 24 hours. After
treatment, each well was added with 10μl of MTT, followed
by 2 hours of incubation at 37°C. The purple precipitated
formazan was dissolved by adding 100μl of DMSO, and
the absorbance was measured at 540 nm using a multiwell
plate reader [9]. The cytotoxicity of CuO NPs was calculated
by comparing the percentage of treated cells to control cells.

Inhibitory of cell proliferation ð%Þ = ðMean absorbance
of the control −Mean absorbance of the sampleÞ/ðMean
absorbance of the controlÞ × 100.

The sample CuO NP dose-responsive curve was used to
calculate the 50% inhibitory concentration (IC50).

2.4. Induction of Apoptosis Using Acridine Orange/Ethidium
Bromide (AO/EB) Dual Staining Technique. Microscopic
fluorescence assessment of apoptotic induction was per-
formed using the approach described by Baskic et al. [29].
Before being examined under a fluorescence microscope,
the treated cells were rinsed in cold PBS and stained with
AO/EB (1 : 1 ratio; 100μg/ml) for 5 minutes. The number
of cells undergoing apoptosis was computed as a fraction
of the total number of cells (40× magnification).

2.5. Measurement of Reactive Oxygen Species (ROS). Intracel-
lular ROS generation was detected using the dichloro-
dihydro-fluorescein diacetate (DCFH-DA) [30]. After wash-
ing the treated cells with PBS, it was exposed with 25μM
DCFH-DA for 30 minutes at 37°C as we reported previously
[27]. The fluorescence was measured every 5 minutes for up
to 30 minutes using a spectrofluorometer (excitation 485nm
and emission 535nm) (Shimadzu, Columbia, USA). A mean
slope/min was used to calculate the increase in ROS produc-
tion, which was then normalized to the unexposed control
cells.

2.6. Measurement of Mitochondrial Membrane Potential
(MMP). The established approach by Bhosle et al. [31] was
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Figure 1: A dose-dependent decrease in MDA-MB-231 cell
viability.
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used to measure the modulation in mitochondrial mem-
brane potential. The Rh-123 dye was used to stain the
treated cells and was incubated for 15 minutes. The cells
were fixed after being washed twice with PBS, and the fluo-
rescence intensity was measured at 535nm.

3. Results and Discussion

3.1. Cytotoxicity Assay and Morphological Alterations. A
concentration-dependent rise in cytotoxicity was recorded
in the MDA-MB-231 cell line in response to the treatment
of CuO NPs. The IC50 concentration was found to be
20μg/ml. The cell viability percentage was reduced to 24%
at the highest tested dose, i.e., 35μg/ml (Figure 1). The cyto-
toxicity of CuO NPs synthesized from various biological
sources has previously been reported in several cancers cell
lines, such as HepG2, Amj 13, MCF-7, MDA-MB-231,
A549, and HCT-116 [9, 32–36]. The characteristics of NPs,
such as nanoparticle size, surface charge, and functional
groups determine the therapeutic potential of NPs [11]. A
recent study highlighted the better pharmaceutical and bio-

medical capacity of CuO NPs with smaller NPs sizes [37].
The advantage of our synthesized CuO NPs is the lower par-
ticle size (20 nm) compared to earlier reported ones [37].
The smaller size of CuO NPs could results in extensive tissue
distribution, deeper penetration inside specific tissues, better
cellular uptake, and increased toxic effects to the cancer cells
[37–39]. Earlier studies also reported higher IC50 of CuO
NPs in human breast cancer cell lines compared with our
biogenic CuO NPs, i.e., 20μg/ml indicating its better efficacy
[34, 35]. The smaller size and varied surface characteristics
of CuO NPs could explain the lower IC50 value of our
nanoformulation.

In addition, CuO NP treatment caused morphological
changes in MDA-MB-231 cells, such as shrinkage, detach-
ment, membrane blebbing, and distorted shape. On the
other hand, control cells showed typical intact cell morphol-
ogy (Figure 2).

3.2. Induction of Apoptosis in Response of CuO NP
Treatment. Living cells showed green fluorescence and had
normal nuclear appearance. However, a significant induc-
tion of apoptosis was observed at 20μg/ml CuO NP concen-
tration. Figure 3 depicts a fragmented nucleus showing
yellow fluorescence with condensed chromatin, indicating
early apoptotic cells. However, the orange fluorescence with
chromatin condensation or fragmentation (uniformly red/
orange-stained cell nuclei) indicate late apoptotic cells. In
addition, we also quantitatively measured the percentage of
apoptotic cells, which showed 57% apoptotic cells at 25μg/
ml of CuO NP treatment (Figure 4).

Apoptosis is considered a significant anticancer mecha-
nism that involves the activation of a sequence of molecular
events culminating into cell death with cellular,

Control 20 μg/ml 25 μg/ml

Figure 3: Effect of CuO NPs on the apoptotic incidence in MDA-MB-231 cells.
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Figure 2: Morphological changes in control and treated MDA-MB-231 cells.
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Figure 4: The percentage of apoptotic cells after AO/EB staining.
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morphological, and biochemical changes [40]. It is well-
known that excessive generation of ROS/RNS, oxidative
stress, and cancer cell Sub G1 arrest is connected to DNA
damage and apoptosis/necrosis [41, 42]. Our results agree
with earlier studies that observed induction of apoptosis as
a result of green synthesized nanoparticles [40, 43]. Of late,
endoplasmic reticulum stress-mediated induction of apopto-

sis has also been reported in response to CuO NP treatment
in Wistar rats [44]. Other apoptosis-promoting pathways
have also been identified in response to green synthesized
copper nanoparticles in Hep-2 and MCF-7 cells, that include
upregulation of tumor suppressor genes (p53, Bax, caspase-
3, and caspase-9) and downregulation of oncogenes (Ras
and Myc) [45, 46].

3.3. Effect of CuO NPs on the Intracellular ROS Generation in
MDA-MB-231 Cells. Control cells (dull green fluorescence)
and CuO NP treated cells showed bright DCF stained green
fluorescence indicating production of ROS (Figure 5). The
ROS generation was also quantified by estimating fluores-
cence intensity (Au) in breast cancer cells (Figure 6), show-
ing increased formation of ROS in a dose-dependent
manner. Our findings support previous research that identi-
fied enhanced ROS generation as the key cytotoxic mecha-
nism of green synthesized CuO NPs [41, 47]. In addition,
our study also demonstrated comparatively higher ROS pro-
duction at lesser dose of CuO NP. Increased generation of
ROS is important for cell apoptosis regulation [35].

Control 20 μg/ml 25 μg/ml

Figure 5: Fluorescence microscopic images of MDA-MB-231 cells treated with CuO NPs.
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Figure 6: The quantitative estimation of ROS generation in MDA-MB-231 cells treated with CuO NPs.
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Figure 7: Fluorescence microscope images of breast cancer cells treated with CuO NPs.
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Figure 8: Modulation in MMP quantified by fluorescence intensity
(Au) in breast cancer cells treated with CuO NPs.
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3.4. Effects of CuO NPs on the Mitochondrial Membrane
Potential (MMP) in MDA-MB-231 Cells. We observed a
gradual decrease in green fluorescence with an increasing
concentration of CuO NPs, indicating a dose-dependent
decline in MMP. The fluorescent image at 40×magnification
shows rhodamine accumulation in control cells and its
absence in treated cells (Figure 7). Modulation in MMP
was also quantified by estimating fluorescence intensity
(Au) in MDA-MB-231 cells indicating a notable change in
MMP in response to CuO NP treatment (Figure 8). Green
synthesized CuO NPs from black bean extract have also
affected the mitochondrial structure and modulated mem-
brane potential in Hela cells [36]. Induction of apoptosis
increased formation of ROS/NO, loss of MMP, etc. has been
suggested as possible mechanisms of action of green synthe-
sized NPs in the scientific literature [43, 48, 49]. Our bio-
genic synthesized NPs are also adopting the same
mechanism of action for their anticancer effects.

4. Conclusion

The current study exploited an environmentally safe and
biogenic approach for synthesizing CuO NPs from pumpkin
seed extract. Our findings suggest a robust anticancer poten-
tial of CuO NPs, indicating induction of apoptosis, increased
formation of ROS, and loss of MMP as possible mechanism
of action. We advocate validating our in vitro results in
ex vivo and in vivo models, given the considerable benefits
of these NPs. Adequate replication of our findings could lead
to the utilization of these biosynthesized CuO NPs in phar-
macological, clinical, and biotechnological domains. Under-
standing the specific mechanism of action of these NPs
could also provide a better insight into their application in
different fields.
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