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Background. Pancreatic cancer (PC) leads to high human malignancy mortality worldwide. This study explored the role of
Astragalus polysaccharide (APS) on human PC PANC-1 cells and its underlying mechanisms. Method. Cell viability,
proliferation, apoptosis, invasion, and migration were measured by CCK-8, EdU incorporation, flow cytometry, Transwell, and
wound healing assay, respectively. ELISA assay was utilized to detect the IL-1α, IL-4, IL-6, IL-8, and TNF-α levels. The western
blot assay was performed to measure the level changes of cell function-related proteins. The transportation of NF-κB P65
protein was detected through immunofluorescence assay. Results. Compared with the control group, APS treatment could
significantly inhibit cell proliferation. APS treatment could also suppress cell migration and invasion ability and induce
apoptosis and inflammation in PANC-1 cells. Furthermore, APS inhibited the activation of TLR4/NF-κB signaling pathway via
suppressing the phosphorylation and transportation of NF-κB P65 into the PANC-1 cell nucleus. Conclusion. APS suppresses
PANC-1 cell viability, proliferation, migration, and invasion while inducing inflammation and apoptosis. APS might regulate
PC cell motility via downregulating TLR4/NF-κB signaling pathway.

1. Introduction

Pancreatic cancer (PC) has the characteristic of rapid progres-
sion, insidious onset, and low survival rate [1], thus resulting
in high human malignancies mortality worldwide [2]. Nowa-
days, the survival rate of PC has been reduced with the devel-
opment of surgical removal and target therapy [3]. However,
the PC survival rate has a minor progression since PC metas-
tasis often develops dramatically, and surgical removal cannot
cure [4]. The prognosis of PC remains poor since around 50%
of the PC patient recurrence in the following year after their
first surgery [5]. Therefore, a specific and effective therapeutic
agent is required to improve the prognosis of PC patients.

Astragalus polysaccharides (APS) is isolated from the
root of A. membranaceus and serves as a traditional medi-
cine. Many recent studies indicated that APS promotes var-
ious bioactivities including immunomodulation, anti-
inflammation, and anticancer [6]. Furthermore, ASP pos-

sesses immunomodulatory properties and promotes the pro-
duction of antibodies [7]. The early stages of obstructive
pancreatitis apoptosis results in cell death of pancreatic aci-
nar cells [8]. The apoptosis process is implemented through
multiple pathways and intersected and has three major bio-
logical pathways, including the death receptor, the mito-
chondrial, and the endoplasmic reticulum pathway. The
cascade reaction is the central link for both the death recep-
tor pathway and the mitochondrial pathway, in which
caspase-3 acts as the ultimate executor of apoptosis. Recent
studies reported that APS could reduce cell viability and pro-
mote cell apoptosis, indicating a strong anticancer effect of
APS treatment [9, 10]. However, the role and underlying
mechanisms of APS in PC still need more research.

In this study, we aimed to investigate the roles of APS in
PC cells’ viability, proliferation, migration, invasion, inflam-
mation, and apoptosis and its association with the TLR4/
NF-κB signaling pathway.
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Figure 1: Continued.
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2. Material and Methods

2.1. Cell Culture. The pancreatic cancer cell line PANC-1 was
obtained from Shanghai Fuheng Biotechnology (China). The
PANC-1 cells were cultured in Dulbecco’s modified Eagle’s
medium (DMEM, Gibco, USA) containing 10% fetal bovine
serum (FBS) (Gibco, USA) and 1% penicillin-streptomycin
(Gibco, USA). The cells were cultured in a humidified incuba-
tor (Thermo Fisher, USA) with 5% CO2 at 37

°C.

2.2. Cell Viability Assay. The PANC-1 cells were seeded in
the 96-well plates (2 × 103 cells/well). Then, 200μL normal
culture medium containing various doses of APS (0, 1, 5,
10, 15, and 20mg/mL) was added to PANC-1 cells for 24 h
[11]. Then, 10μL of CCK-8 (Dojindo, Japan) was added,
and the cells were cultured for another 1 h. Subsequently, a
microplate reader (Bio-Rad, USA) was used to detect the
absorbance at the wavelength of 450nm.

2.3. Cell Proliferation Assay. 5-Ethynyl-2′-deoxyuridine
(EdU) incorporation assay (Beyotime Biotechnology, China)

was utilized to examine cell proliferation. The cells were
seeded and treated according to the instruction. The staining
was captured by a fluorescence microscope.

2.4. Migration and Invasion Assay. To measure the cell
migration ability, PANC-1 cells were cultured in the top
chamber; the normal medium was added into the lower
compartment. The plates were cultured in a humidified
incubator for 24 h. After fixing, the cell was stained in crystal
violet. To detect the cell invasion ability, the Transwell mem-
branes were procoated with Matrigel (BD Biosciences, USA).

2.5. Wound Healing Assay. After seeding cells for 24h, a
pipette tip was utilized to scratch three parallel lines on the
bottom of plates, and cell debris was rinsed with DMEM.
After the corresponding treatment for 24 h, a light micro-
scope was used to assess the ability of the cells to migrate
into a cell-free area.

2.6. Flow Cytometric Analysis of Cell Apoptosis. The annexin
V-FITC/PI double-stained kit (Invitrogen, USA) was utilized
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Figure 1: APS inhibited viability and proliferation of PANC-1 cells. (a) CCK-8 assay was used to detect the effects of Astragalus
polysaccharides (APS) on cell viability and proliferation in human normal pancreatic cell line HPC-Y5 and pancreatic cancer cell lines
including PANC-1, SW1990, and AsPC-1. Various doses of APS (0, 1, 5, 10, 15, and 20mg/mL) were treated to the cells and cultured
for 24 h. (b) PANC-1 cell line STR identification. (c) CCK-8 assay was applied to explore the cell viability of different concentrations (0
(control), 1, 5, 10, 15, and 20mg/mL) of APS treatment in PANC-1 cells. (d) EdU assay was used to examine the proliferation of APS on
PANC-1 cells. (e) RNA-Seq analysis was used to detect the differentially expressed genes in PANC-1 cells treated with APS. (f) Western
blot assay was performed to detect the expression of proliferation related proteins. (g) Protein interaction network of differentially
expressed genes after APS treatment. The thicker the line, the stronger the interaction. ∗P < 0:05, ∗∗P < 0:01, and ∗∗∗P < 0:001, compared
with the control group. Scale bar = 100 μm.
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to detect cell apoptosis. After resuspending in binding buffer,
the cells were stained with the fluorescent dye for 15min at
temperature without light. The treated cells were detected
through flow cytometry. FlowJo software (Tree Star, USA)
was utilized to analyze the portion of apoptotic cells.

2.7. ELISA Analysis. IL-1α, IL-4, IL-6, IL-8, and TNF-α were
detected using enzyme-linked immunosorbent assay kits
(Boster Biological Technology, China) at a wavelength of
405nm.

2.8. Real-Time Quantitative PCR. TRIzol reagent was used to
extract the total cell RNA (Thermo Fisher, USA). After syn-
thesizing cDNA, real-time PCR was performed with the
SYBR Green master mix (Takara, Japan).

2.9. Western Blot. RIPA (Thermo Fisher, USA) was utilized
to extract total cell proteins. After running a 12% SDS-
PAGE electrophoresis (Beyotime Biotechnology, China),
the proteins were transferred to a PVDF membrane (Milli-
pore, USA). The primary antibodies against CyclinD1
(1 : 1000, ab134175, Abcam, UK), P21 (1 : 1000, ab109520,
Abcam, UK), MMP2 (1 : 2000, ab92536, Abcam, UK),
MMP9 (1 : 2000, ab76003, Abcam, UK), vimentin (1 : 1000,
ab92547, Abcam, UK), N-cadherin (1 : 1000, AB76001,
Abcam, UK), Bcl-2 (1 : 1000, ab196495, Abcam, UK), Bax
(1 : 2000, ab182733, Abcam, UK), P62 (1 : 2000, ab109012,
Abcam, UK), TLR4 (1 : 2000, ab13556, Abcam, UK),
Myd88 (1 : 2000, ab133739, Abcam, UK), phosphorylated
NF-κB P65 (p-P65, 1 : 1000, ab76302, Abcam, UK), P65
(1 : 2000, ab32536, Abcam, UK), and β-actin (1 : 3000,

ab8226, Abcam, UK) were used. After being cultured with
the corresponding second antibodies (Beyotime Biotechnol-
ogy, China), the signal of the protein band was detected in a
ChemiDoc XRS+ system (Bio-Rad, Berkeley, CA, USA).

2.10. Immunofluorescence (IF) Experiment. The TLR4/NF-
κB signaling pathway agonist, human tumor necrosis fac-
tor-α (TNF-α), was purchased from the Cell Signaling Tech-
nology Company (USA). 24 h before the experiment,
PANC-1 cells were paved with Cellvis board (Shanghai
Kaveson Biotech, no. D29-20-1N, China). Once the cell
density reached 80%, the corresponding drugs, TNF-α and
APS, were treated for 4 h, followed by 24 h cell culture after
the liquid change. The cells were then fixed at room temper-
ature with 4% polyformaldehyde for 30min, followed by
washing with PBS three times, 10min at a time. The cells
were then incubated at 0.1% Triton-100 (Beyotime Biotech-
nology, China) at room temperature for 30min. PBS (Solar-
bio, China) was added to wash the cells three times, 10min
each time. An antidilution solution of p65 antibodies
(1 : 200) was added and incubated throughout the night.
The antibody was collected, and the cells were washed three
times by PBS. After 1 h incubation with goat anti-rabbit fluo-
rescent secondary antibody (Invitrogen, China) at room
temperature at the concentration of 1 : 200, the cells were
washed three times with PBS, 15min each. The distribution
of p65 was then observed under the Leica fluorescence
microscope (Germany).

2.11. Statistical Analysis. All quantitative data were
expressed as mean ± standard deviation (SD). SPSS 17.0
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Figure 2: APS inhibited migration and invasion of PANC-1 cells. (a) Transwell experiment was conducted to study the effects of APS on cell
migration and invasion. (b) Wound healing assay was used to study the effects of APS on cell migration. (c) Western blot assay was used to
measure the protein levels of migration- and invasion-related proteins including MMP2, MMP9, vimentin, and N-cadherin. ∗P < 0:05, ∗∗
P < 0:01, and ∗∗∗P < 0:001, compared with the control group.
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software (SPSS, USA) was used to analyze the data. One-way
analysis of variance (ANOVA) was applied for the signifi-
cant differences between the groups by Tukey’s multiple
range test. The P < 0:05 was considered statistically
significant.

3. Results

3.1. APS Inhibited Viability and Proliferation of PANC-1
Cells. As shown in Figure 1(a), we chose several PC cell lines
including PANC-1, SW1990, and AsPC-1 and human nor-
mal pancreatic cell line HPC-Y5 to detect the cytotoxicity

of APS treatment during the preexperiments. We found that
PANC-1 cells were the most sensitive cell line; thus, we used
PANC-1 cells in the following formal experiment. The
PANC-1 cell line verification was shown in Figure 1(b). In
Figure 1(c), APS treatment inhibited cell viability and prolif-
eration in a dose-dependent manner (all P < 0:05). In the
following APS treatment experiments, 10mg/mL APS was
selected. Compared with the control group, the EdU assay
showed that APS treatment significantly suppressed cell pro-
liferation (P < 0:05, Figure 1(d)). As shown in Figure 1(e),
the intracellular transcription factors CyclinD, p21, p65,
and MMP-2 changed significantly after APS treatment. As
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Figure 3: APS induced the apoptosis of PANC-1 cells. (a) Western blot assay was used to detect the apoptosis-related protein expression
including Bax, Bcl-2, and P62. (b) Flow cytometry assay was performed to detect cell apoptosis rate. ∗∗∗P < 0:001, compared with the
control group; ##P < 0:01, compared with the Z-VAD-FMK group.
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shown in Figure 1(f), western blot assay illustrated that APS
treatment could decrease the protein levels of CyclinD1
(P < 0:05) and increase the P21 protein expression
(P < 0:05). These results suggested that APS inhibited viabil-
ity and proliferation of PANC-1 cells. Additionally, we also
constructed the protein interaction network of APS down-
stream genes. According to the number of interacting genes,
IL-6, Myc, TP53, and MMP9 interact most widely and are at
the core of the network (Figure 1(g)). These genes may be
the key link of APS downstream mechanism.

3.2. APS Suppressed Migration and Invasion of PANC-1
Cells. In Figure 2(a), the migration and invasion of cells were
significantly inhibited after APS treatment (P < 0:05).
Besides, wound healing assay showed consistent results

(P < 0:05, Figure 2(b)). We also detected the migration-
and invasion-related proteins including MMP-2, MMP-9,
vimentin, and N-cadherin. In Figure 2(c), APS treatment
significantly decreased the protein levels of MMP-2, MMP-
9, vimentin, and N-cadherin (all P < 0:05), which indicated
that APS could suppress migration and invasion in PANC-
1 cells.

3.3. APS Induced Apoptosis of PANC-1 Cells. We measure
the protein levels of apoptosis-related proteins including
Bax, Bcl-2, and P62. As shown in Figure 3(a), APS treatment
obviously downregulated the expression levels of Bcl-2
(P < 0:05) and upregulated the levels of Bax and P62 (all P
< 0:05). Furthermore, as shown in Figure 3(b), compared
with the control group, cell apoptosis rate in the APS group
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Figure 4: Effects of APS on inflammatory cytokines expression in PANC-1 cells. (a–e) The expression levels of IL-1α, IL-4, IL-6, IL-8, and
TNF-α were measured by ELISA assay. ∗P < 0:05, ∗∗P < 0:01, and ∗∗∗P < 0:001, compared with the control group.
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was significantly higher (P < 0:05). Meanwhile, after treating
cells with apoptosis inhibitors, Z-VAD-FMK, we found that
APS could still induce apoptosis, but its induction efficiency
was inhibited (P < 0:05). The above results suggested that
APS could induce PANC-1 cell apoptosis.

3.4. APS Induced Inflammation in PANC-1 Cells. To explore
the roles of APS in the PANC-1 cell inflammatory injury, we
examined the effects of APS on the concentrations of IL-1α,
IL-4, IL-6, IL-8, and TNF-α using ELISA kit in PANC-1 cells.
As shown in Figures 4(a)–4(e), we found that compared to the
control group, APS significantly increased the levels of IL-1α,
IL-6, and IL-8 (all P < 0:05). However, we found an inverse
change of TNF-α (P < 0:05) and did not observe any signifi-
cant change of IL-4 in both groups. These results suggested
that APS could induce PANC-1 cells inflammatory injury.

3.5. APS Suppressed TLR4/NF-κB Signaling Pathway in
PANC-1 Cells. To study the underlying mechanism of APS
on cell motility, we further detected the effects of APS on
TLR4/NF-κB signaling pathway in PANC-1 cells. In
Figures 5(a) and 5(b), we found that APS decreased the pro-
tein levels of TLR4, Myd88, and phosphorylation p65 (all
P < 0:05), which suggested that APS suppressed the activa-
tion of the TLR4/NF-κB pathway. In Figure 5(c), IF experi-
ments showed that the transcription factor P65 could be
activated and enter the nucleus, thus enhancing the expres-
sion of downstream target genes in the presence of TLR4/
NF-κB signaling pathway agonist TNF-α. When both TNF-
α and APS were presented, p65 remained in the cytoplasm
and could not activate the TLR4/NF-κB signaling pathway
(Figure 5(b)). Besides, we also found that APS downregu-
lated the levels of TNF-α, which could further inhibit the
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Figure 5: APS suppressed the activation of TLR4/NF-κB signaling pathway in PANC-1 cells. (a and b) The protein expression of TLR4,
Myd88, nuclear phosphorylated p65 (P-p65), and p65 was measured by western blot assay. (c) The distribution of p65 was detected by
IF experiment. ∗∗∗P < 0:001, compared with the control group. Scale bar = 5 μm.
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transportation of p65 and then inhibit the activation of
TLR4/NF-κB signaling pathway. These results suggested that
APS suppressed the activation of TLR4/NF-κB signaling
pathway in PANC-1 cells.

4. Discussion

Characteristics of tumor cells promote proliferation and
suppress apoptosis in the occurrence and development of
cancer [12–14]. In this study, the decrease in EdU-
positive portion in APS-treated group suggested that APS
could inhibit PANC-1 cell proliferation. CyclinD1 and
P21 are the key cell cycle proteins that promote mitosis
[15, 16]. We found that APS treatment could downregu-
late the protein levels of CyclinD1 and P21. Furthermore,
the results of flow cytometry and ELISA assay suggested
the proapoptotic and proinflammatory roles of APS. After
using antiapoptotic agent Z-VAD-FMK (anticaspase), we
found that APS could still induce apoptosis, but its induc-
tion efficiency was inhibited. The above results suggested
that APS could induce apoptosis via caspase-dependent
pathways.

The metastatic potential and metastasis of PC usually
cause adverse outcomes [17, 18]. However, APS on invasion
and migration of PANC-1 cells was unexplored [19]. It is
known that extracellular matrix (ECM) contributes to
EMT since cancer cells begin to invade and migrate [20,
21] by first degrading ECM. MMP-2 and MMP-9 can dam-
age ECM and basement membrane [22]. In this study, APS
inhibited the migration and invasion of PANC-1 cells and
reduced MMP-2 expression in PANC-1 cells. Besides, APS
also downregulated the migration- and invasion-related pro-
teins including vimentin and N-cadherin protein levels,
which was consistent with the results of MMPs.

TLR is a key receptor to initiate inflammation process.
Some studies have found that TLR4 can activate SIRS. TLR4
plays a vital role in the pathophysiology and severity of acute
biliary pancreatitis [23]. However, whether TLR4 is related
to human PC and the role it plays in PC is not clear. TLR is
a specific product of innate immune system that recognizes

invading pathogenic microorganisms and destroys tissue or
cell degradation products and reacts to them. TLR4 is a mem-
ber of the TLR family [24, 25]. In addition to the identification
of specific product bacteria/viral pathogen-associated molecu-
lar patterns (PAMP), TLR4 also can identify the damage tissue
or cell matrix after degradation product of small molecules,
such as heat shock protein 60, 70, Gp96, polysaccharide hyal-
uronic acid lowmolecular fragments, fibrinogen, and HMGB1
[26]. Activation of TLR4 signaling pathways will activate an
important regulatory factor, NF-κB, to activate inflammatory
response genes and ultimately lead to the synthesis and secre-
tion of IL-6 and IL-8 in inflammatory cells [27–29]. Further-
more, TLR4 had a suppressive effect in the regulatory T cells
via activating the NF-κB pathway [30]. This study showed that
APS treatment could upregulate the levels of IL-1α, IL-6, and
IL-8, which suggested that APS might induce inflammation
in PC cells. However, we did not observe significant change
of IL-4, and the levels of TNF-α were even decreased. Based
on bioinformatics analysis, TLR4 may be involved in the
APS downstream signaling, and we found that APS decreased
the expression of TLR4 and nuclear p-p65, suggesting that
APS suppressed the NF-κB signaling pathway. IF experiment
showed that APS treatment inhibited the transportation of
p65 into cell nucleus. The downregulation of TNF-α could
enhance this inhibitory effect as an agonist of the TLR4/NF-
κB signaling pathway. The above results suggested that APS
could regulate the suppressed activation of TLR4/NF-κB path-
way in PANC-1 cells (Figure 6).

There are some limitations in our study. At first, we did
not use multiple cell lines in our experiments. However, we
have verified that APS treatments could significantly induce
cell damage in some PC cell lines including PANC-1,
SW1990, and AsPC-1 and human normal pancreatic cell
line HPC-Y5. Among those cells, PANC-1 cells were the
most sensitive. Thus, we used this cell lines to perform the
following experiments. Besides, although we found that
APS could inhibited cancer cell functions and promote apo-
ptosis and inflammation through TLR4/NF-κB pathway, the
underlying mechanism and related functional consequences
still need further investigation in animal models.

Astragalus
polysaccharides

TLR4

Cell proliferation

CyclinD, P21

Phospho-NF-κB 

MMP2, MMP9,
Vimentin,

N-cadherin

Cell migration,
invasion

Bax, P62

Cell apoptosis

Bcl-2 IL-1𝛼, IL-6, IL-8

Cell inflammation

Figure 6: Schematic diagram of signaling pathway.
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To summarize, we found that APS showed a suppressive
activity in PC cells via decreasing cell viability, proliferation,
invasion, and migration and inducing cell apoptosis and
inflammation in PANC-1 cells. Furthermore, APS could
inhibit the activation of TLR4/NF-κB signaling pathway
through the p65 phosphorylation and transportation into
cell nucleus. This study suggested a cell experiment basis
for developing the clinical application of APS-related ther-
apy for PC patients.
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