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Aluminum alloys are currently used in a wide variety of industries, and strong aluminum alloys are required for the creation of
new components. As a result, multiple scientists are experimenting with various compositions of hybrid aluminum metal
matrix composites. The purpose of this experiment was to generate hybridization on aluminum alloy 7076 using stir-casting
and nano zirconium dioxide and BN reinforcements. Taguchi’s approach was used to optimize the stir-casting process criteria
in this investigation. The parameters employed in this investigation were agitation speed, agitation time, and temperature. The
chosen constraints are the percentage of reinforcement (0–12%), the agitation speed, the agitation time, and the molten state
temperature. We used a wear tester and a Vickers hardness tester to determine the wear and microhardness of the produced
stir casting materials. By optimizing wear parameters, the least wear rate is determined.

1. Introduction

Alloys of aluminum have outstanding mechanical qualities
and machinability characteristics, as well as the ability to
be strengthened by adding the reinforcement elements [1,
2]. The addition of hard ceramic particles improves the alloy
materials strength and mechanical qualities, as well as their
corrosion resistance, using the AZ91 magnesium alloy with
graphite particle accumulation [3–5]. Modern engineering
firms have started innovative technology to maintain and
thrive in quality at low cost. Manufacturing sectors are con-
tinually on the lookout for new materials due to rapid tech-

nological advancements and the need for low-cost materials.
The tribological and mechanical characteristics of aluminum
materials were studied by [6]. Magnesium alloy [7] is infused
with graphite at varying volume fraction levels, with the 60
to 100 percent volume fraction resulting in a lower wear rate,
and the wear forms is like peeling wear [8]. The basic alloy
with 5% graphite may be easily refined and formed into a
homogeneous combination.

Stir-casting [9] was employed by [10] to create alumi-
num hybrid composites using silicon carbide and tungsten
carbide. The composites’ mechanical strength and wear
characteristics are currently being evaluated in-depth in an
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experimental study by the scientists [11, 12]. SiC and WC
materials are uniformly dispersed into an aluminum alloy
for microstructural analysis. Owing to the strong merging
of the strengthening particles with the base materials, greater
hardness values are tested in all measures. The extensive fus-
ing of the tough materials during the stir-casting process
greatly improves the composites’ wear resistance [13, 14].

Tests on the wear resistance of Al 6061 with B4C and
mica particles were conducted by [15]. The abrasive resis-
tance and COF of stir-casted composite samples were deter-
mined by a wear test [16]. Friction stir-casting is used to
incorporate 70m boron carbide and 10m mica particles. In
their research, they employed dry sliding wear test parame-
ters with applying loads of 10, 20, and 30 Newtons. For wear
resistance and COF, the AA6061/B4C/Mica composites
were superior than the AA6061/B4C composites [17, 18].

Aluminum matrix composites, including those contain-
ing SiC and red mud, were examined by [19] using a stir-
casting procedure [20]. Studies rely on Taguchi’s statistical
technique, which favors factors like red mud portion, parti-
cles size and weight usage, sliding distance, and speed of
movement. In their evaluation of wear loss and coefficient
friction, the gliding distance and applied load are the most
critical parameters [21, 22]. Red mud was discovered to
boost wear resistance by increasing the amount of red sludge
and decreasing the load and sliding distance.

By [23], wear on aluminum 2024 alloys with diverse % of
fly ash and SiC was examined. Various reinforcing percent-
ages of fly ash and SiC are combined in equal weight frac-
tions (5 percent, 10 percent, and 15 percent). Researchers
analyzed L27 orthogonal arrays. The composites’ wear resis-
tance rises with rising load and sliding distance [24]. It is
clear that when comparing wear test to another factors like
sliding duration and percentage of reinforcement, applied
load had the greatest impact on all three metrics.

To improve the mechanical characteristics and strength of
various alloy materials for reinforcing hare particles, stir-
casting was heavily utilized. To prepare a composite, stir-
casting method process parameters play a significant role, with
each one having an impact on a different character [25]. Com-
posite characteristics have an impact on the final outcome.
Alloy alloys must be tested for wear resistance by wear analysis.
In most cases, the wear test is performed in a dry environment.
Measurement of the hardness of materials can be done using
microhardness testing methods. Hardness can be measured
more accurately and less destructively with the Vickers test than
with other methods [26]. As a result of careful consideration of
all relevant aspects and a thorough review of relevant literature,
aluminummetal matrix composites were selected for this inves-
tigation. For this experiment, we used aluminum alloy 7076
with nano zirconium dioxide (ZrO2) and micron boron nitride
reinforcement particles as foundation element. The stir-casting
process is used to make hybrid composites, and the process
parameters are optimized using the Taguchi method [27–29].
Investigation of AMMC’s mechanical and tribological proper-
ties will be the key focus of this project. In order to estimate
wear rate and assess the hardness value of stir-cast parts, Pin-
On Disc equipment and Vickers microhardness are used on
the stir-cast composites.

2. Materials

XRF was utilized to determine aluminum alloy’s constituent
makeup (AA7076). Because of its great abrasion resistance,
exceptional strength, superior ductility, and outstanding Heat
and electrical characteristics, aluminum alloy 7076 was chosen
for this study. They are originally wrought alloys, and they have
an extremely machinable character. AA7076 alloy is used to
build highly stressed components for machines, mobile gadget,
hydraulic valves, and air wing parts [30]. This study’s reinforced
particles are made from nano zirconium dioxide (30nm) and
micron boron nitride (50μm) as boron nitride is being used
as a lubricant in paints, cosmetics, pencil lead, and dental
cement. Reinforced hybrid particles with high tensile strength
are mixed into the base material to boost its tensile strength.
In materials such as aluminum alloy AA7076, components
included in the basic material are listed in Table 1.

3. Experimental Procedure

A stir-casting technique is used to first create an aluminum
alloy and reinforced particles, which may then be controlled
by varying various process parameters. Further testing will
include a wear test and a microhardness test. Using the
stir-casting procedure, the following variables and their cor-
responding values are shown in Table 2. Four constraints
were employed to cast the AMMC, such as reinforcement
percentage, agitation speed (rpm), agitation duration
(min), and melting temperature. The L16 OA was success-
fully completed. Blending base materials and reinforcement
particles together via liquid state stir-casting are used in this
study. The 5 kilogram crucible is filled with sliced AA7076
plates, and the crucible is then placed into the stir casting
machine. The aluminum alloy is melted by heating the cru-
cible to various temperatures (700 °C, 750 °C, 800 °C, and
850 °C). Nano zirconium dioxide and boron nitride are
cooked in the muffle furnace simultaneously, and their
weight ratios are maintained although their percentage levels
differ. In addition, the stir-casting machine’s stirrer and var-
ied agitation rates effectively combine the base material with
reinforced particles (450, 500, 550, and 600 rev/min). A vari-
ety of agitation time periods (15, 20, 25, and 30 minutes)
were used to ensure that the composites were thoroughly
mixed. Finally, the crucible’s molten contents were poured
into the dies to produce the desired forms.

3.1. Wear Test. As a result of this process, the wear test sam-
ples are cast using parameters like 8 percent reinforcement,
600 RPM, and a molten temperature of around 850 °C.
Amount of reinforcement, applying load (Newtons), disc
speed (meter/sec), and sliding distance are a few of the fea-
tures stated in Table 3. A wide range of values can be
assigned to each of the parameters. The DUCOM model
was put through a rigorous wear test using a Pin-On-Disc
system, which measures the wear on the specimens by slid-
ing them across a dry surface. The specimens were 40mm
long and 12mm diameter, and they were all put through a
wear test in accordance with ASTM G99’s standard protocol.
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On behalf of the L16 orthogonal array configuration, each
specimen was examined using a different set of parameters.

3.2. Vickers Microhardness Test. One of the optical measure-
ment setups is Vickers microhardness testing, which uses
specimens produced in accordance with ASTM standards.
Diamond indenter was utilized to make an imprint on the
sample’s surface and apply a small load to determine the
specimen’s hardness value. When performing the Vickers
hardness test, the normal load variation ranges from 10 gm
to 1 kgf; however, in this instance, just a 0.5 kgf weight was
used.

4. Results and Discussion

4.1. Wear Test. 0.238 mm3/m of lowest wear rate was
obtained with a 12 percent reinforcement contribution, 25
Newton applied load, 1.5 meter/sec disc speed, and 1200
meter sliding speed (see Table 4 for an experimental over-
view of the wear test).

It can be seen here that there is a response table for
wear test methods in Table 5 and a response table for
wear test S/N ratios in Table 6. Experiment design is
employed to transform all of the input data into wear test
mean and S/N ratio values. The sliding distance, applied
stress, and disc speed were all strongly influenced by the

percentage of reinforcement in the wear test. It was deter-
mined that 12 percent reinforcement, 25 Newton applied
stress, 1.5 meter/sec disc speed, and 1200mm sliding speed
were the best parameters for the wear test.

Wear test main effects plots for mean and S/N ratios are
shown in Figures 1 and 2. Due to the lack of reinforcement,
the specimen’s wear rate was significantly higher. Increasing
the reinforcing percentage also helped to reduce the wear
rate. Finally, the greater reinforcing percentage (12%) had
the lowest wear rate. Applying a greater applied load

Table 1: Chemical composition of AA7076.

Material Percentage of composition

Copper 1.0

Iron 0.58

Magnesium 2.0

Manganese 0.3

Silicon 0.4

Zinc 7.0

Titanium 0.2

Aluminum Balance

Table 2: specifications and levels for the stir-casting process.

Specifications
Levels

1 2 3 4

Percentage of reinforcement (%) 0 4 8 12

Agitation speed (rev/min) 450 500 550 600

Agitation time (min) 15 20 25 30

Temperature at molten stage (°C) 700 750 800 850

Table 3: Wear test process specifications.

S. No Specifications Level 1 Level 2

1. Percentage of reinforcement 0 4

2. Applying load (Newtons) 15 25

3. Disc speed (meter/seconds) 1.0 1.5

4. Sliding distance (mm) 1000 1200

Table 4: Wear test summary.

Reinforcement Applying load
Speed
on disc

Sliding
distance

Rate of
wear

% (Newtons) (meter/sec) (mm) (mm3/m)

0 15 1.0 1000 .568

0 25 1.5 1200 .384

0 35 2.0 1400 .801

0 45 2.5 1600 .835

4 15 1.0 1000 .558

4 25 1.5 1200 .712

4 35 2.0 1400 .426

4 45 2.5 1600 .835

8 15 1.0 1000 .751

8 25 1.5 1200 .504

8 35 2.0 1400 .409

8 45 2.5 1600 .599

12 15 1.0 1000 .686

12 25 1.5 1200 .238

12 35 2.0 1400 .351

12 45 2.5 1600 .296

Table 5: Response table for average.

Level
Percentage of
reinforcement

Applying load
(Newtons)

Speed on disc
(meter/sec)

1 0.6415 0.6325 0.4868

2 0.6195 0.4468 0.4638

3 0.6477 0.4870 0.6423

4 0.3840 0.6265 0.6000

Delta 0.2601 0.1796 0.1826

Rank 1 3 4500

Table 6: S/N ratios response table.

Level
Percentage of
reinforcement

Applying load
(Newton)

Speed on disc
(meter/sec)

1 4.249 4.041 6.749

2 4.428 7.681 6.893

3 5.461 6.739 4.832

4 9.083 4.761 4.748

Delta 4.834 3.640 2.145

Rank 1 3 4.493
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(25N) causes the wear rate to drop rapidly at first, but when
the applied force is increased, the wear rate rises again. The
wear rate increased once again when the applied force was

raised from 25N to 45N. At 1.5 meter/sec disc speed, wear
rate was at its lowest; as disc speed increased, the wear rate
increased as well.
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Figure 1: Average plot effects for wear test.
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4 Journal of Nanomaterials



–0.4 –0.2 0.0 0.2 0.4
20

30

40

50

60

70

80

90

100
Pe

rc
en

t

Residual

Normal probability plot

0.3 0.4 0.5 0.6 0.7 0.8 0.9
–0.3

–0.2

–0.1

0.0

0.1

0.2

0.3

Re
sid

ua
l

Fitted value

Versus fits

–0.2 –0.1 0.0 0.1 0.2
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Fr
eq

ue
nc

y

Residual

Histogram

0 2 4 6 8 10 12 14 16 18

–0.3

–0.2

–0.1

0.0

0.1

0.2

Re
sid

ua
l

Observation order

Versus order

Figure 3: Wear rate residual plots.
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Figure 3 shows the wear rate residual graphs. As shown
in the residual plot, each parameter has a direct impact on
the other three. There are sixteen points on a normal prob-
ability plot, but only some of them are close to line, which
can be seen in wear rate, which was found by directing accu-
rate experimentations. It is possible to accurately measure
the given parameters using the fit plot, as the points are dis-
tributed uniformly. They are all very close to each other in a
histogram display of the data. There was a simultaneous pos-
itive and negative crossing of the mean line plotting the dots
in a specific sequence. As a result of these circumstances, the

experiment was executed flawlessly, and the parameters were
effectively utilized.

Figure 4 depicts the wear test’s experimental runs com-
pared to the wear rate. The experimental and anticipated
values are analyzed from the wear test. There were just a
few values that were closer to or even crossed the projected
levels in the sixteen experiments.

4.2. Vickers Microhardness Test. The Vickers microhardness
test yielded a maximum hardness of 126 VHN, as shown in
Table 7. The highest hardness was impacted by the criteria

Table 7: VHN summary.

Experiment
number

Percentage of
reinforcement

Agitation
speed

Agitation
time

Temperature at molten
state

Vickers hardness
number

(%) (rev/min) (min) (°C) (VHN)

1 0 450 15 700 112

2 0 500 20 750 91

3 0 550 25 800 116

4 0 600 30 850 114

5 4 450 15 800 118

6 4 500 20 850 112

7 4 550 25 700 119

8 4 600 30 750 121

9 8 450 15 850 124

10 8 500 20 800 125

11 8 550 25 750 121

12 8 600 30 700 118

13 12 450 15 750 125

14 12 500 20 700 120

15 12 550 25 800 126

16 12 600 30 850 119

Table 8: Average response table for VHN.

Level % of reinforcement Agitation speed (rpm) Agitation time (min) Molten temperature (C)

1 108 116 112 113

2 114 112 112 115

3 118 117 117 116

4 119 115 118 115

Delta 12.0 6.2 5.4 3.0

Rank 1 2 3 4

Table 9: S/N ratio response table.

Level
Reinforcement Agitation speed Agitation time Temperature at molten state

(%) (rev/min) (min) (°C)

1 41.2 42.6 41.02 42.8

2 41.11 40.88 41.94 41.32

3 41.42 41.30 41.25 41.0

4 41.47 41.18 0.21 36

Delta 0.89 0.42 41 42

Rank 1 2 3 4
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12 percent reinforcement, 550 rpm agitation speed, 25
minute agitation time, and a molten temperature of 800 °

C. Through DoE, Vickers hardness test results are trans-
formed into mean as in Table 8 and S/N ratios as in
Table 9. Percentage of reinforcement was the most impor-
tant factor in Vickers hardness test after agitation speed, agi-
tation time, and temperature at molten state. 12 percent
reinforcement, 550 rpm agitation speed, 25 minute intervals,
and 800 °C temperature were found to be the appropriate
Vickers hardness test settings.

Figures 5 and 6 show the Vickers hardness test’s main
effects plot for average and S/N ratios. Microhardness value
was raised by increasing the reinforcing percentage. Finally,
the larger proportion of reinforcement (12 percent) resulted
in the greatest microhardness possible. An increase of
500 rpm agitation speed reduced the value of microhardness
rapidly. An increase in microhardness was achieved by
increasing the speed of rotation from 500 to 550 revolutions
per minute. In the agitation time stage, rising the agitation
time steadily raised the microhardness value; 25 minutes

supplied the maximum hardness values. Microhardness
increased as the molten temperature rose, starting at the
lowest level and continuing to rise as the temperature grew.
As a last point, the microhardness values reached their peak
at 800 °C. Vickers hardness residual graphs are shown in
Figure 7. The microhardness level and parameters’ influence
on it can be seen clearly in a single observation in the resid-
ual plot.

All sixteen points on the typical probability plot lie on
the probability line, with only a few closer to the line, and
this may be recreated experimentally by manipulating the
microhardness. There is no variation in points in the fit plot,
which means that under the parameters set, the response
values are perfect. All of the rectangular boxes in the histo-
gram plot are so close to one another that they are touching.
There were no points in the order plot that did not cross the
mean line simultaneously, either favorably or negatively. As
a result of these settings, the testing was passed out in an
outstanding manner, and the criteria used were effective.
Experimental runs versus Vickers microhardness are
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depicted in Figure 8. The experimental and projected results
are compared using the Vickers microhardness test. All six-
teen experimental runs yielded data that was within the pre-
dicted range, although a few were even closer and crossed it.

5. Conclusions

Stir-casting was used to create hybrid composites compris-
ing aluminum alloy 7076 with nano zirconium dioxide and
boron nitride (AMCs). In addition, Pin-On-Disc with Tagu-
chi analysis was used to conduct the wear test. In the end,
the wear worn-out surfaces and Vickers microhardness were
rigorously evaluated for damage. Finally, the experiment’s
conclusion and results were shown as follows:

(i) When it came to a test of how much of a factor rein-
forcement play, it was shown to have a 12% impact,
with the applied load being 25N and disc speed
being 1.5m/s, as well as the sliding speed being
1200m. 12 percent reinforcement, 25N load,
1.5m/s disc speed, and 1200m sliding speed were
found to be the optimal parameters for the wear test

(ii) The lowest level of load applied and the highest level
of strengthening were shown to have the lowest
wear rate in the surface plot study. In addition, the
least amount of disc speed and the least amount of
applied load provided the least amount of wear rate.
For a decreased wear rate, a correlation was found
between the min sliding distance and the max rein-
forcement percentage

(iii) The maximum Vickers microhardness was reported
as 126 VHN during the testing process. The param-
eters of 12 percent reinforcement, agitation speed of

550 rpm, agitation period of 25 minutes, and molten
temperature of 800 °C had the greatest impact on
the highest hardness values produced. The ideal
Vickers hardness test parameters were discovered
to be 12 percent reinforcement, agitation speed of
550 rpm, agitation period of 25 minutes, and molten
temperature of 800 °C

(iv) The higher reinforcement percentage and moderate
agitation speed provided outstanding microhard-
ness, as seen by the contour plot analysis. In addi-
tion, the greatest hardness was found to be
associated with lower agitation speeds and longer
agitation times. Finally, the highest hardness value
was found to be a combination of a long agitation
period and a moderate molten temperature
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