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The last two decades of developments in drug formulations and novel drug delivery systems have been seen as the beginning of a
new era leading to increased patient adherence and pharmacological response to the therapeutic regimen. One of the most difficult
tasks is efficiency and target-specific drug delivery or the extent of delivery at any given site of interest. Many currently designed
drug delivery systems are precisely tailored to maximize the delivery of a particular form of drug by reducing the degradation or
loss of the drug. In case of cancer treatment, the targeted drug delivery is of utmost importance as the anticancer agents are not
having the ability to differentiate between healthy and tumor cells resulting in adverse effects and/or systemic toxicity. The
targeted drug delivery is thus designed to focus on preventing side effects and encouraging the accumulation of the drug at the
targeted site; one such promising drug delivery system is magnetosome drug delivery, i.e., drug delivery using magnetosomes
(biological magnetic nanoparticles). In this article, we have summarized the system for design, development, and mode of drug
delivery using magnetosomes along with the recent developments made in this field to facilitate the diagnosis and treatment of
cancer.

1. Introduction

The last two decades have witnessed the developments in
formulations and novel drug delivery systems as the begin-
ning of a new era. The horizons for understanding the prin-
ciples of drug transport and tissue-wide targeting have been
expanded. These efforts have led to increased patient adher-
ence and pharmacological response to the therapeutic regi-
men. One of the most difficult tasks is efficiency and
target-specific drug delivery or the extent of delivery at any
given site of interest [1]. Most of the current drug delivery
systems are precisely tailored to maximize the delivery of a
particular form of drug by reducing degradation or loss of
the drug, to minimize the side effects, elicit the bioavailabil-
ity, and promote and encourage the accumulation of the
pharmaceutical drug at the necessary biozone (site) or other

challenging issues associated with therapeutic delivery tar-
geting or physical stability of the drug [2].

However, it is difficult to create a delivery system with
optimized therapeutic action and reduced toxic adverse
events specifically in vivo. Nanotechnology is fulfilling the
gap amongst physical, chemical, and biological science by
employing nanocarriers in the development of novel drug
delivery systems [3]. Various nanocarriers being used in
the effective drug delivery of pharmaceuticals are listed in
Figure 1.

Conventional or Immediate release pharmaceutical dos-
age forms are unable to regulate the rate at which drugs are
delivered to the target site. As a result, drug distribution in
non-target tissue and body fluids necessitates therapeutic
doses that are often much greater than those needed in tar-
get cells, resulting in significant side effects during the
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treatment [4]. The targeted drug delivery is the key to pro-
vide effective delivery and better therapeutic response.
Nanocarriers are the most promising way of targeted drug
delivery and are the best choice to maintain the drug con-
centrations for a prolonged period of time either via lower-
ing down the rate of degradation of the carrier or making
it responsive to any given stimulus (e.g., pH or temperature,
etc.), especially in cancer, cardiovascular diseases for treat-
ment and to perform magnetic resonance imaging for the
diagnosis of diseases [5].

One of the defining features of cancer is the rapid emer-
gence of aberrant cells that grow beyond their normal
bounds, allowing them to spread to the adjacent tissues
and even to other organs at later stages (metastasis). World
Health Organization has reported that cancer is the major
leading cause of death globally, accounting for 10 million
deaths in 2020. Most of the cases reported are of breast can-
cer (2.6 million), lung cancer (2.1 million), colon and rectum
(1.93 million), prostrate (1.41 million), skin (1.21 million),
and stomach (1.09 million). The total number of cases
reported in India is 132413 with 851678 death cases in
2020 [6]. The prevalent types of cancer in India are repre-
sented in Figure 2:

Cancer develops when normal cells are transformed into
tumor cells in a multistage process that usually evolves from
a precancerous lesion to a malignant tumor as depicted in
Figure 3. These changes are the result of a person’s genetical
factors interacting with external agents such as environmen-
tal pollutants; chemical agents, e.g., heavy metals and ben-
zene; physical agents like ionizing and nonionizing
radiations; and biological agents such as viruses [8].

One of the major factors to shift towards the targeted
drug delivery in case of cancer is that most of the anticancer
agents are not having the ability to differentiate between
healthy and tumor cells resulting in adverse effects and sys-
temic toxicity. Moreover, faster elimination and extensive
distribution of conventional drugs to reach the targeted
organs requires the dose in larger quantities, leading to
undesirable toxicity and economic burden [10]. Nanocarri-
ers are of much interest in cancer therapy with the aim of

administration of drugs into the target tissue. Nanocarriers
mainly follow the three pathways as illustrated in Figure 4,
i.e., active, passive and stimuli-based targeting to show its
biological action.

There are several novel carriers that have been developed
and reported to be useful for the managed and targeted
delivery of drugs [11]. Drug carriers such as polymers, mag-
netosomes, erythrocyte ghosts, microspheres, microparticles,
nanoparticles, nanospheres, liposomes, and ethosomes are
playing a significant role in the effective targeted delivery
of pharmaceuticals. Magnetosomes have been observed to
fulfill all necessities required for active drug delivery such
as uniform size and narrow size distribution, morphological
characteristics, and capability of magnetization [12].

This article will focus on magnetosomes as a novel car-
rier in the targeted drug delivery to treat cardiovascular
and other diseases especially cancer.

2. Structure of Magnetosomes

Magnetosomes exist as intracellular structures, obtained
using various strains of magnetotactic bacteria [13]. It is
having the size in nanorange (35–120 nm), surrounded by
crystals of magnetic iron arranged in an individual or cumu-
lative chain arrangement which allows the cell alignment
passively with the external magnetic field, referred to as the
‘magnetotaxis’ phenomenon. Magnetite (Fe3O4) and greigite
(Fe3S4) are among the materials used successfully as magne-
tosome inorganic cores having varied morphological charac-
teristics [14].

In case of the magnetotactic bacteria (MTB), the organic
phase of the magnetosomes is formulated with the emer-
gence of vesicles from the inner membrane. Magnetosomes
organized as a single chain enhance the magnetic dipole
moment of the microbial or bacterial (Magnetotactic bacte-
ria) cells [15]. Depending on the bacterial strain, it is derived
from, these magnetosomes may vary in their morphological
characteristics. Cubooctahedral, bullet-shaped, elongated
prismatic, and rectangular magnetosomes are some of the
morphological dimensions reported till date [14, 15]. The
typical structure of magnetosomes is illustrated in Figure 5.
Research in the last decade has been emphasized two major
compounds magnetite and maghemite due to their good
biocompatibility and relatively high magnetic resistance
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properties. Great efforts have been made in the recent time
to formulate bacterial magnetic nanoparticles for addressing
specific cancer diseases like magnetic hyperthermia, to
achieve targeted delivery and detection of tumor cells.

3. Advantages of Magnetosomes

Magnetosomes reveal number of appealing properties; some
of them as summarized below:

(I) Magnetosomes size and its distribution make it one
of the most effective members in the nanoparticu-
late drug delivery. Its usual size ranges between 45
and 55nm [16, 17], but it may be designed in the
size range of 10-20 nm, if cultivated under opti-
mum conditions of pH, minimal growth media,
and concentration of dissolved oxygen (0.25-
10mbar) [18]

(II) Being single domain, magnetosomes exhibited
thermal magnetic moment and larger values of
coercivity as compared to the nanoparticles synthe-
sized chemically that possess thermally unstable
magnetic moment and act as superparamagnetic
[19, 20]

(III) The magnetosomes are normally organized within
the bacteria in chains. This structure is stable
enough to be retained even after the release of
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magnetosomes by disruption of the bacterial cell
wall. Such type of arrangement prevents aggrega-
tion and results into high rate of internalization
within human cell which are generally aspiring
characteristics in pharmaceuticals and other bio-
medical applications [21, 22]

(IV) Magnetosomes exhibit a biological coating consist-
ing of lipids and small quantities of proteins that
result in the complete dispersion of magnetosomes
in water, specifically the negatively charged magne-
tosomes. On the other hand, this biological coating
is lacking in chemically synthesized nanoparticles
and is thus devoid of stabilizing agents such as dex-
tran or polyethylene glycol [23, 24]

4. Magnetotactic Bacteria and Its Biodiversity

Salvatore Bellini (1963) firstly observed the magnetite baha-
vior in freshwater and reported that the presence of magnet
is responsible for the orientation of bacteria by observing
their persistent north hemispherical swimming. After a
decade, Blakemore (1975) invented numerous bacteria in
the samples of marine sediment regions by observing them
under the transmission electron microscope (TEM), where
the bacteria were found to be swimming alongside the geo-
magnetic field lines. Blakemore referred to those bacteria
as magnetotactic bacteria (MTB), and the magnetic cell
organelles responsible for magnetically influenced move-
ment as magnetosomes [25]. MTB are reported to be located
extensively in aquatic environments like deep sea, areas with
high concentration of salts such as deserts and extreme cold
and hot spring regions [26–28].

It has been reported that being microaerophilic or anaer-
obic organisms, MTBs may occur at oxic-anoxic transition
zones or interfaces in very high numbers (up to 104 cells/
ml) [29, 30]. In the chemically stratified natural world, mag-
netotaxis, together with aerotaxis and chemotaxis, aids these
species in locating a suitable microoxic state. The concentra-
tion of oxygen is reportedly a very significant ecological fac-
tor that not only affects the culturing of MTB by
biomineralization process but also encourages the develop-
ment of MTBs. Some MTBs are known to require molecular
oxygen for magnetite formation. Iron is an important ele-
ment in the formation of magnetosomes, although the rela-
tionship between the source of iron and the development
of magnetosomes is not clearly known till date. MTBs entail
higher amount of iron as compared to that of nonmagneto-
tactic bacteria, so as to perform biomineralization of magne-
tite to reach a level of about 4 percent of their cell dry
weight [31].

Faivre et al. reported that ferric and ferrous ions are
absorbed by most MTBs and may include siderophores (iron
chelators of low molecular weight which helps in the binding
and solubilization of ferric iron for absorption [32]. An
extended component, i.e., source of nitrogen, is another
important factor in the growth of MTBs and in the biomin-
eralization process. Ammonium ions and nitrates are
reported to be exclusive sources of nitrogen for the growth

of magnetotactic bacterium like Magnetospirillum gryphis-
waldense, a microaerophilic species of it. It has also been
reported that the inclusion of nitrate greatly elevates the for-
mation of magnetite at an appropriate 4mM concentration
[33]. Magnetite formation under the anaerobic conditions
majorly depends on the concentration of nitrate, i.e., rise
in nitrate concentration contributes to a decrease in the for-
mation of magnetite magnetosome; implying that the syn-
thesis of Magnetospirillum Magneticum is blocked with the
conversion of NO3 to N2 by reduction. The components of
the growth medium are also considered to be an important
context of concern, as the growth of bacteria and formation
of magnetosomes tend to be facilitated significantly in the
presence of polypeptone and yeast extract [34].

Magnetotactic bacteria can be grown in mesophilic con-
ditions, i.e., temperature should not be exceeded beyond
40°C [35]. Their morphological diversity includes various
forms like cocci, bacilli, vibrio, ovoid, and spirilla, which
can be visualized microscopically, specifically with electron
microscopy. They have been classified as chemoorganohe-
terotrophs and chemolithoautotrophs in their mode of
nutrition. MTB are classified in distinct classes as shown as
tabulated in Table 1:

Magnetospirillum magntotactitum (MS-I) was the first
laboratory strain isolated by Blakemore in 1975 [36],M. gry-
phiswaldense MSR-1 [37, 38], M. magnetotacticum AMB-I
[39, 40], M. magneticum MG-T1 [41], and Magnetovibrio
MV-1 [42] and MV-2 [43] and other closely related bacterial
strain species were cultured and isolated subsequently. Pre-
pared cultures of all the bacterial strains belonging to the
class of alphaproteobacteria possess mesophilic conditions
and formulate magnetite crystals intracellularly [10, 44–47].

5. Mechanism Involved in the
Designing of Magnetosomes

The mechanism involved in the designing of magnetosomes
is hypothecated as a complex process involving three dis-
crete steps as shown in Figure 6. Step 1 includes the forma-
tion of magnetosome vesicles and step 2 involves iron uptake
by the magnetosome cell extracellularly, and transport of
iron to the vesicle via membrane channels followed by step
3, i.e., the process of biomineralization (formation of magne-
tite particle within the magnetosome cell vesicle).

6. Method of Preparation of Magnetosomes
Using Magnetotactic Bacteria

Various strains of MTB have been studied till date which
comprehensively involves Magnetospirillium gryphiswal-
sense (MSR-I), Magnetospirillium magnetotactitum (MS-I),
Magnetospirillum magneticum (AMB-1), and Magneto-
ovoid (MO-I). Generalized procedure to prepare magneto-
somes is depicted in Figure 7. For the growth of magneto-
somes, minimal growth media comprising of (4-(2-
hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES),
1M sodium nitrate, 0.74M potassium dihydrogen phos-
phate, 0.1M magnesium sulphate.7 hydrate, 10mM ferric
citrate monohydrate, soya bean peptone, yeast extract, and
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Table 1: Magnetotactic bacteria strains and their characteristics.

Phylum Class Bacterial strain Habitat/origin Shape Genomic structure Reference

Proteobacteria Alphaproteobacteria
Magnetospirillum
magnetotacticum

MS-1

Shallow fresh water
and sediments/
woods hole,

Massachusetts,
USA

Spiral, polar
flagella

36 contigs and
4,136 protein-
coding genes

[48]

Proteobacteria Alphaproteobacteria
Magnetospirillum
gryphiswaldense
strain MSR-1

Muddy areas/Ryck
River,

GreifswaldGermany

Spiral, polar
flagella at each

end

4,365,796 base
pairs G+C content

= 63:28%.
Chromosome

possess
approximately
4261 coding

sequences with
average length of
954 base pairs [42]

[49]

Proteobacteria Alphaproteobacteria
Magnetospirillum
magneticum MG-

T1

Stratified water
columns/Tokyo,

Japan
Spiral shaped

Circular
chromosome with
4,967,148 base
pairs and cryptic
plasmid pMGT

[50]

Deltaproteobacteria Deltaproteobacteria
Desulfovibrio

magneticus strain
RS-1

Oxic–anoxic
interfacial region in
medium lacking

sulfate 42

Irregular or
bullet shaped

crystals

Circular
chromosome with
5,248,049 base
pairs and also 2
circular plasmids,
pDMC1 (58704
base pairs) and

pDMC2 (8867 base
pairs)43

[51]

Proteobacteria Gammaproteobacteria Strain SS-5

Freshwater pond
sample/Qingyang,
Gansu Province &
Nanjing, China

Rod-shaped,
forms octahedral

magnetite
crystals

Consists of
3,729,439 bp and G
+C content = 61:6
%. It also comprises
od 3223 coding
DNA and 51

tRNAs.

[52, [52]

Proteobacteria Alphaproteobacteria
Magneto-ovoid
bacterium MO-1

Mediterranean Sea
/Pionte Rouge

Marseille,France,

Ovoid shape,
seven filament

flagella
enveloped in a

sheath

The chromosome
of 5,043,095 base
pairs G+C content

= 55:2%.
44 TRNA genes
covering all
aminoacids

[53]

Nitrospirae Nirospira

Candidatus
Magnetobacterium
bremense’ (MHB-

1)

Worldwide in
aquatic

environments

Bullet shaped
magnetite
crystals

Single circular
chromosome
possessing

4,869,843 bp and G
+C content = 57:49

%.

[54]

Proteobacteria Alphaproteobacteria
Magnetospirillum
magnetotacticum

AMB-1

Freshwater sludges
and pond

sediments/Koganei,
Tokyo, Japan

Spiral, polar
flagella at each
end, cubohedral

magnetite
crystals

4,551,873 base
pairs, G +C

content = 65:63%
and additional
circular plasmid
with 5,222-bp and
G+C content =

60:67%

[55]
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Table 1: Continued.

Phylum Class Bacterial strain Habitat/origin Shape Genomic structure Reference

Proteobacteria Alphaproteobacteria
Magnetovibrio

blakemorei MV-1

Marine water/
Boston,

Massachusetts,
USA

Vibrio shape,
single polar
flagella,
truncated

hexaoctahedrons

91 contigs 3638804
base pair and G+C
content = 54:3% 41

[56]
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Figure 6: Mechanism involved in the designing of magnetosomes.
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50% w/v potassium lactate are required. Different strains of
magnetotactic bacteria are cultured for 7-14 days in micro-
aerophilic conditions using an anaerobic jar and pH is main-
tained using pH-stat feeding techniques [57–59]. The
chemostat culture techniques are used to maintain a con-
stant level of carbon, nitrogen, and iron sources. Nitrogen
is subsequently dispersed in the culture tubes for a time
duration of about 1 hour to provide microaerobic condi-
tions. Moreover, to facilitate the cultivation compared to
the standard culture media, ferric quinate and Wolfe vitamin
solution could be added [60].

Grünberg et al. [61] reported that during isolation of
magnetosomes from the body of bacterial strain the cell cul-
ture is suspended in 100ml of 20mM HEPES and 4mM
EDTA followed by sonication to disrupt bacterial cell wall.
The intact cells and cell debris can be extracted by centrifu-
gation of the sample, and then, magnet is to be introduced in
the cell extract. The black magnetosomes will sediment at
the bottom of the tube, and the residue of cellular material
will be retained at the upper portion of the tube, which is
then decanted-off. The rinsing of magnetic particles is per-
formed with 10mM HEPES and sodium chloride solution
by maintaining the pH of 7.4, followed by centrifugation at
15000 rpm for a period of 30 minutes to separate out the
magnetosomes [62, 63].

7. Applications of Magnetosomes

Magnetosomes have played a momentous role in biomedi-
cal, biotechnological, and industrial applications due to their
excellent biocompatibility, low toxicity, ease of surface alter-
ation, and most importantly exhibiting good magnetic prop-
erties [64–67]. Magnetosomes are being studied as next-
generation drug carriers due to their unusual physicochem-
ical properties [68, 69]. With a broad range of applications
in the identification, evaluation, and treatment of life-
threatening illnesses such as cancer [70], cardiovascular dis-
order [71], and neurological disease [72], it has a wide range
of applications in the detection, diagnosis, and treatment of
life-threatening ailments. As a result, it is reasonable to
believe that magnetosomes can play a major role in meeting
future healthcare needs [73].

7.1. In the Treatment of Diseases. Magnetosomes are found
to be the effective carrier to deliver the drug due to its mag-
netic possessions [74–76]. In addition, the efficacy of the
drug can be improved by decreasing the size of drug by using
nanotechnology and eventually augment the loading dose
which may offer the release of biomolecules at a constant

rate to the patient and facilitate the repair of cardiac tis-
sues [77].

Magnetosomes have been successfully tested to target
macrophages and blood vessels of an infarcted heart via
the intravenous route in the systemic circulation directly to
the site of the target organ [78].

Another technique employing magnetosomes and used
extensively is magnetic hyperthermia, which is utilized to
promote cell necrosis [79, 80]. This emerging technology
has been reported in the treatment of tumors in mouse to
halt cancer cells through the process of magnetic hyperther-
mia [81–83]. The magnetosomes have stronger heating
properties due to their size, ferromagnetic activity at euther-
mic temperature, crystal size distribution, and aspect ratio.
Temperature attained by ferrimagnetic nanoparticles with
the help of alternate magnetic fields is directly proportional
to the area under the hysteresis loop that may increase with
an increase in the size of nanoparticles. Magnetosomes are
administered into the site of tumor and heated by an exter-
nal alternating magnetic field resulting in elevation in the
temperature around 4-6 degrees which emits highly dissi-
pated energy finally leading to apoptosis of tumor cells with-
out affecting healthy ones [84, 85].

The amount of heat released by magnetosomes is
responsible for killing the tumor cell that can be calculated
by measuring loss of magnetosomes with each heating cycle;
expressed as ratio of specific absorption rate to oscillatory
frequency of alternating magnetic field applied on the mag-
netosomes. It was observed that magnetosome loss per cycle
is increased with increase in the strength of the magnetic
field as tabulated in Table 2.

7.2. Immunoassays. In immunoassays, magnetosomes have
also been used to detect minute particles of toxic chemicals
such as detergents and hormonal substances. Such minute
entities or molecules bind to the surface of magnetosomes
with the help of antibodies which are directly bound to
them. Magnetosomes have now been used to remove DNA
using the layers of aminosilanes as a carrier, so as to bind
magnetosomes and DNA complex followed by their elution
with phosphate buffer [91].

7.3. Role of Magnetosome in Targeted Drug Delivery. The
potential use of magnetic nanoparticles in biomedical appli-
cations is due to their low/no toxicity and better biocompat-
ibility that have attracted the scientific community. In case
of conventional dosage forms of chemotherapeutic agents
were transported or circulated throughout the body in an
indiscriminate manner, affecting both normal healthy cells
and rapidly proliferating cancer cells. On the other hand,
there is a requirement of a high dose to guarantee that a sub-
stantial number of drugs have reached the affected area
which is very likely to produce side effects. Due to these
drawbacks and lack in target specificity, Magnetosomes offer
an attractive alternative as drug carriers. The number of
recent studies reported have proved magnetosomes in tar-
geted drug delivery with reduced side effects and controlled
drug release to the specific organs or tissues of the body
and in multi-modal imaging [92].

Table 2: Effect of magnetic field strength on magnetosomes (loss
per cycle).

Sr.
no.

Magnetosome loss per
cycle

Magnetic field
strength

References

1 0.1 to 0.2 J/kg 6mT [86, 87]

2 0.5-1 J/kg 12mT [88–90]
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The wide applications of magnetosomes in targeted drug
delivery are based on their unique properties, magnetism,
and ease of being manipulated using an external magnetic
field (EMF) that guides drug-carrying to the specific area
directly [93]. Magnetosomes are being used extensively as
investigated drug carriers. For example, chemotherapeutic
agents are conjugated with biological MNPs through various
interactions and the compounds can be specifically targeted
to localized diseased areas under the force of an EMF. The
EMF-guided system helps drugs to enhance localized thera-
peutic efficacy and decrease toxicity [94].

7.4. Magnetosomes in Enzyme Immobilization. Magneto-
somes have recently been reported as a prevalent approach
for the immobilization of enzymes, owing to the ease with
which they may be recovered via magnetic separation [95].
Magnetosomes’ protein display method can be used to
express catalytic units, making them excellent candidates
for supporting immobilised enzymes. Ginet and colleagues
reported production of an organophosphohydrolase (immo-
bilized protein) from opd gene of Flavobacterium sp. fused
to mamC for the breakdown of paraoxon, observed as a
deadly but widely used insecticide [96]. The paraoxon degra-
dation activity rate of this protein complex was found to be
similar to that of pure organophosphohydrolase. Some of the
IPRs emphasizing upon the applications of magnetosomes
are illustrated in the Table 3.

8. Future Prospects

Although magnetosomes exhibit several advantages such as
magnetotaxis, optimum growth in the lower concentration
of oxygen and flagella provide motility [100] and it has
resulted into a promising technology as a nanocarrier in
the field of medicines and disgnostics. Still, mass cultivation
of magnetotactic bacteria in the laboratories is challenging
due to time-consuming culturing techniques and low yield.
The results on magnetosome functionalization are intrigu-
ing, but the majority of the investigations are still in the
proof-of-concept stage. The enormous potential for preclin-
ical and clinical applications of developing multifunctional
magnetosomes by changing the biochemical content of the
magnetosome membrane is established. Nutritional needs
and culture conditions related to magnetosome formation

are still being researched. More research should be focused
on the physiological properties of the MTB strain and
methods to improve the synthesis of magnetosomes. There
is limited number of scientific studies in favor of this partic-
ular area mainly because of the fastidious nature of magne-
totactic bacteria [101, 102]. There is an urgent need of
coordinated efforts to do the research in a systematic man-
ner for the various gene expressions involved in the formu-
lation of magnetosomes. Methods to obtain high yield with
existing bacterial strains and discovery of novel magnetotac-
tic strains to get maximum outcome are yet the most impor-
tant goal to be accomplished.

9. Conclusions

This review discussed the biodiversity and applications of
magnetosomes to attain effective targeted drug delivery. It
can be concluded that magnetosomes have number of advan-
tages over conventional and other advanced drug delivery
systems and offer a great potential for diagnosis, drug-
targeting more specifically in cancer, and the ailments
encountering multidrug resistance. Though, to overcome
the challenges, a significant goal would be to develop for cre-
ating high-yield magnetosomes from current strains or to
isolate novel large-scale production of magnetosomes using
MTB. Therefore, these magnetosomes and magnetosome
drug delivery systems may be explored in the future with
scope for commercialization.
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Table 3: Magnetosomes patent applications.

Sr.
no.

Applicant Inventor
Country
name

Title Reference

1
Natura Bisse

international, S.A.
08290 Cerdanyola (ES)

Fisas Verges, Patricia
M.08290 Cerdanyola del

Valles (ES)
Spain

Cosmetic compositions comprising magnetosomes and
uses thereof

[97]

2 Nanobacterie
Edouard Alphandery, S
tephanie Faure, Imene

Chebbi
France

Treatment of cancer or tumors induced by the release of
heat generated by various chains of magnetosomes

extracted from magnetotactic bacteria and submitted to an
alternating magnetic field

[98]

3 Nanobacterie
Edouard Alphandery,
Mickael Durand-Dubief

France
Non-pyrogenic preparation comprising nanoparticles
synthesized by magnetotactic bacteria for medical or

cosmetic applications
[99]
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