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In the present work, the natural transform iterative method (NTIM) is implemented to solve the biological population model
(BPM) of fractional order. The method is tested for three nonlinear examples. The NTIM is a combination of a new iterative
method and natural transform. We see that the solution pattern converges to the exact solution in a few iterations. The
method handles an extensive range of differential equations of both fractional and integer order. The fractional order derivative
is considered in Caputo’s sense. For mathematical computation, Mathematica 10 is used.

1. Introduction

The globe and our everyday lives have been revolutionized by
modern technologies. Technology is being used in a wide
range of engineering applications, including aerodynamics,
fluid dynamics, medical sciences, and finance. The essence of
technology is influenced and designed by mathematical
modeling. The modeling might take the form of mathematical
models that can be described using differential equations.
These differential equations may have been used to represent
the transmission of electromagnetic waves, which is at the root
of many present technologies. A variety of applications rang-
ing from wireless communications to radar, medical imaging,
and remote sensing have played a great role in our life [1, 2].
Mathematics and biosciences have also numerous practical
applications related to real life [3, 4]. Several diseases can be
modeled through mathematical calculations and can be con-
trolled by collecting data and making precise analysis [5].
There is a strong and interesting relationship between biology
and mathematics utilizing differential equations. The noninte-
ger order differential equations are termed as fractional order

differential equations (FDEs) [32–35]. The branch of mathe-
matics dealing with FDEs is known as fractional calculus [6].
Depending on the nature of the problem, differential equa-
tions can be linear or nonlinear. Simple analytical methods
may be used to analyze linear differential equations, but inves-
tigators have developed several ways for solving nonlinear
differential equations as their exact solutions are not always
feasible. The importance of the FDEs can be discussed inmany
fields of sciences [7, 23–27]. Many operators for fractional
derivatives have been given by several researchers. The most
famous is Caputo’s fractional derivative operator [8]. Li et al.
introduced the fractional order integral operator for handling
differential equations [9]. Recently, many transformations
have been used to solve fractional order differential equations.
Some of them are the Laplace transform, Sumudu transform,
Elzaki transform, etc. [10–12, 28–31]. In this work, we will
deal with the natural transform iterative method (NTIM), a
combination of the natural transform and the new iterative
method (NIM). The proposed techniques have been recently
applied by Nawaz et al. for solving noninteger order differen-
tial equations [13]. Many other researchers have applied NIM
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and natural transform for handling the FDEs [14–17]. In this
article, we will consider fractional biological population model
(FBPM) as [18]

Dβ
t ϕ = ϕ2

� �
xx
+ ϕ2
� �

yy
+ f ϕð Þ = 0, 0 < β ≤ 1, t > 0, x, yð Þ ∈ R2,

f ϕð Þ = hϕa 1 − rhb
� �

, ϕ x, y, 0ð Þ = g x, yð Þ:

8><
>:

ð1Þ

In Equation (1), ϕ = ϕðx, y, tÞ is the population density
and f is the supply of population due to births and deaths.
The h, a, b, and r are the real numbers and gðx, yÞ is the initial
condition. The detailed solution of Equation (1) can be found
in [19, 20]. FBPM is a mathematical model of biology which
will be thoroughly investigated in this paper. FBPM aids in
the understanding of the dynamical procedure of population
changes in biological population models, as well as providing
useful predictions.

The remaining paper is structured as follows: Prelimi-
nary definitions from fractional calculus are contained in
Section 2. The notion of NTIM is introduced in Section 3.
The NTIM is used to solve three FBPM in Section 4. In Sec-
tion 5, some results have been discussed. Lastly, a concrete
conclusion is given.

2. Preliminaries

Definition 1. Riemann-Liouville (R-L) fractional integral is
defined as

Jβt f tð Þ = 1
Γ βð Þ

ðt
0
t − τð Þβ−1 f τð Þdτ, β > 0, t > 0ð Þ,

J0t f tð Þ = f tð Þ,
ð2Þ

where Γð:Þ is the gamma function.

Definition 2. Caputo’s time-fractional derivative operator of
order β > 0is defined as

Dβ
t ϕ ℘,tð Þ = ∂βϕ ℘,tð Þ

∂tβ
=

1
Γ n − βð Þ

ðt
0
t − τð Þn−β−1 ∂

nϕ ℘,τð Þ
∂τn

, if n − 1 < β < n,

∂nϕ ℘,tð Þ
∂tn

, if β = n ∈N:

8>>><
>>>:

ð3Þ

Definition 3. Natural transform of ϕðtÞ is defined as [21]

ℕ+ θ tð Þð Þ = R s, vð Þ = 1
v

ð∞
0
e
−st
v ϕ tð Þð Þdt ; s, v > 0, ð4Þ

where s and v are the transform variables.

Definition 4. The inverse of natural transform of Rðs, vÞ is
defined as

ℕ− R s, vð Þð Þ = ϕ tð Þ = 1
2π i

ðc+i∞
c−i∞

e
st
v R s, vð Þð Þds, ð5Þ

where c ∈ R and the integral are taken in the complex plane
s = a + bi along s = c.

Definition 5. If the nth derivative of ϕðtÞ is ϕnðtÞ, then its
natural transform is given as

ℕ+ ϕn tð Þð Þ = Rn s, vð Þ = sn

vn
R s, vð Þ − 〠

n−1

k=0

sn− k+1ð Þ

vn−k
ϕn 0ð Þð Þ, n ≥ 1:

ð6Þ

Theorem 6. If the natural transform of hðtÞ and kðtÞ are h
ðs, vÞ and kðs, vÞ respectively, defined on set A, then

ℕ h ∗ k½ � = vH s, vð ÞK s, vð Þ, ð7Þ

where ℕ½h ∗ k� is convolution the functions h and k.

3. Natural Transform Iterative Method
(NTIM) [13]

Consider FDE of the form

Dβ
t ϕ ℘,tð Þð Þ = f ℘,tð Þ+Lϕ ℘,tð Þ+ℵϕ ℘,tð Þ, 0℘,t > 0,m − 1 < α <m,

ð8Þ

where ℘ = x1, x2,⋯, xn andm ∈N: The linear operator, non-
linear operator, and the source term are L, ℵ, and f , respec-
tively. The initial condition is given as

ϕ ℘,0ð Þ = g ℘ð Þ: ð9Þ

By applying the natural transform to Equation (8), we have

ℕ+ Dβ
t ϕ ℘,tð Þð Þ

h i
=ℕ+ f ℘,tð Þ½ �+ℕ+ L ϕ ℘,tð Þð Þ+ℵ ϕ ℘,tð Þð Þ½ �:

ð10Þ

Using the natural transform differentiation property, Equa-
tion (10) can be written as

sβ

vβ
ℕ+ ϕ ℘,tð Þ½ � − sβ−1

vβ
ϕ ℘,0ð Þ =ℕ+ f ℘,tð Þ½ �+ℕ+ Lϕ ℘,tð Þ +ℵϕ ℘, t

� �h i
:

ð11Þ

By rearranging Equation (11), we have

ℕ+ ϕ ℘,tð Þ½ � = g ℘ð Þ
s

+ vβ

sβ
ℕ+ f ℘,tð Þ½ �ð Þ+ v

β

sβ
ℕ+ L ϕ ℘,tð Þð Þ+ℵ ϕ ℘,tð Þð Þ½ �ð Þ:

ð12Þ

For the NTIM solution, ϕð℘,tÞ is expanded as

u ℘,tð Þ = 〠
∞

i=0
ϕi ℘,tð Þ, ð13Þ
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and ℵðϕð℘,tÞÞ, the nonlinear term, is defined as

ℵ 〠
∞

m=0
ϕm ℘,tð Þ

 !
=ℵ ϕ0 ℘,tð Þð Þ + 〠

∞

m=1
ℵ 〠

i

j=0
ϕj ℘,tð Þ

 !
−ℵ 〠

m−1

j=0
ϕj ℘,tð Þ

 !( )
:

ð14Þ

Using Equation (13) and Equation (14) in Equation (12), we
obtain

ℕ+ 〠
∞

i=1
ϕi

" #
= g ℘ð Þ

s
+ v

β

sβ
ℕ+ f ℘,tð Þ½ �ð Þ

+ vβ

sβ
ℕ+ 〠

∞

m=0
L ϕmð Þ +ℵ ϕ0ð Þ + 〠

∞

m=1
ℵ 〠

m

j=0
ϕj

 !
−ℵ 〠

m−1

j=0
ϕj

 !( )" #" #
:

ð15Þ

Using the recursive relation,

ℕ+ ϕ0 ℘,tð Þ½ � = g ℘ð Þ
s

+ v
β

sβ
ℕ+ f ℘,tð Þ½ �,

ℕ+ ϕ1 ℘,tð Þ½ � = vβ

sβ
ℕ+ L ϕ0ð Þ +ℵ ϕ0ð Þ½ �,

ℕ+ ϕ2 ℘,tð Þ½ � = vβ

sβ
ℕ+ L ϕ1 x, tð Þð Þ +ℵ ϕ0 + ϕ1ð Þ −ℵ ϕ0ð Þ½ �

⋮

ℕ+ ϕi+1 ℘,tð Þ½ � = vβ

sβ
ℕ+ L ϕið Þ +ℵ ϕ0 + ϕ1+⋯+ϕið Þ −ℵ ϕ0 + ϕ1+⋯+ϕi−1ð Þ½ �:i ≥ 0:

ð16Þ

Now by taking the inverse natural transform of Equation
(16), we have

ϕ0 ℘,tð Þ =ℕ− g ℘ð Þ
s

+ vβ

sβ
ℕ+ f½ �

� �
,

ϕ1 ℘,tð Þ =ℕ− vβ

sβ
ℕ+ L ϕ0ð Þ +ℵ ϕ0ð Þ½ �

� �
,

ϕ2 ℘,tð Þ =ℕ− vβ

sβ
ℕ+ L ϕ1ð Þ +ℵ ϕ0 + ϕ1ð Þ −ℵ ϕ0ð Þ½ �

� �
,

⋮

ϕi+1 ℘,tð Þ =ℕ− vβ

sβ
ℕ+ L ϕið Þ +ℵ ϕ0 + ϕ1+⋯+ϕið Þ −ℵ ϕ0 + ϕ1+⋯+ϕi−1ð Þ½ �

� �
, i ≥ 0:

ð17Þ

Then by adding the components, the approximate solu-
tion of Equations (8) and (9) by NITM is given as

ϕ ℘,tð Þ = ϕ0 ℘,tð Þ+ϕ1 ℘,tð Þ+⋯+ϕm−1 ℘,tð Þ,m ∈N: ð18Þ

Convergence of NTIM is as a convergence of NIM and is
proved by Bhalekar and Daftardar-Gejji [22].

4. Applications of NTIM

In this section, we apply the natural transform iterative method
NTIM for handling the three nonlinear cases of FBPM. The
method is applied directly to the problems without any discre-
tization by using the given initial conditions. Then, the com-
parison is made with the help of plots and numerical tables

with the existing methods which shows the effectiveness of
the proposed method [18].

Problem 7. Consider the population model as [18]

Dβ
t ϕ = ϕ2

� �
xx
+ ϕ2
� �

yy
+ hϕ, t > 0, 0 < β ≤ 1, ð19Þ

where ϕ = ϕðx, y, tÞ together with initial conditions

ϕ x, y, 0ð Þ = ffiffiffiffiffi
xy

p , ð20Þ

and the exact solution is

ϕ x, y, z, tð Þ = ffiffiffiffiffi
xy

p
eht : ð21Þ

Taking natural transformation of Equation (19), we have

ℕ+ Dβ
t ϕ

h i
=ℕ+ ϕ2

� �
xx
+ ϕ2
� �

yy
+ hϕ

h i
: ð22Þ

Applying the natural transform differentiation property to
Equation (22), we get

sβ

vβ
ϕ x, y, tð Þ − vβ−1

sβ
ϕ x, y, 0ð Þ =ℕ+ ϕ2

� �
xx
+ ϕ2
� �

yy
+ hϕ

h i
:

ð23Þ

Taking the inverse natural transform of Equation (23), we
have

ϕ x, y, tð Þ = ϕ x, y, 0ð Þ
s

+ℕ− vβ

sβ
ℕ+ ϕ2

� �
xx
+ ϕ2
� �

yy
+ hϕ

h i� �
:

ð24Þ

Using the idea of NTIM and the recursive relation of Equa-
tion (16), we obtained the solution components as

ϕ0 x, y, tð Þ =ℕ− ϕ x, y, 0ð Þ
s

� �
,

ϕ1 x, y, tð Þ =ℕ− vα

sα
ℕ+ ϕ20

� �
xx
+ ϕ20
� �

yy
+ hϕ0

h i� �
,

ϕ2 x, y, tð Þ =ℕ− vα

sα
ℕ+ ϕ0 + ϕ1ð Þ2xx + ϕ0 + ϕ1ð Þ2yy + hϕ1 − ϕ20

� �
xx
+ ϕ20
� �

yy

� �h i� �
,

ϕ3 x, y, tð Þ =ℕ− vα

sα
ℕ+

ϕ0 + ϕ1 + ϕ2ð Þ2xx + ϕ0 + ϕ1 + ϕ2ð Þ2yy + hϕ2

− ϕ0 + ϕ1ð Þ2xx + ϕ0 + ϕ1ð Þ2yy

2
4

3
5

2
4

3
5,

⋮

8>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>;

ð25Þ

By using the software package, the solution components are
obtained as
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ϕ0 x, y, tð Þ = ffiffiffiffiffiffi
x y

p , ϕ1 x, y, tð Þ = htβ
ffiffiffiffiffiffi
x y

p
Γ β + 1ð Þ ,

ϕ2 x, y, tð Þ = h2t2β
ffiffiffiffiffiffi
x y

p
Γ 2β + 1ð Þ , ϕ3 x, y, tð Þ = h3t3β

ffiffiffiffiffiffi
x y

p
Γ 3β + 1ð Þ ,

ϕ4 x, y, tð Þ = h4t4β
ffiffiffiffiffiffi
x y

p
Γ 4β + 1ð Þ ,

⋮

8>>>>>>>>>>>><
>>>>>>>>>>>>:

9>>>>>>>>>>>>=
>>>>>>>>>>>>;

ð26Þ

Combining the components, the 4th order approximate
solution is given as

ϕ x, y, tð Þ = ϕ0 + ϕ1 + ϕ2 + ϕ3 + ϕ4+

=⋯
ffiffiffiffiffi
xy

p + htβ
ffiffiffiffiffi
xy

p
Γ β + 1ð Þ + h2t2β

ffiffiffiffiffi
xy

p
Γ 2β + 1ð Þ + h3t3β

ffiffiffiffiffi
xy

p
Γ 3β + 1ð Þ +

h4t4β
ffiffiffiffiffi
xy

p
Γ 4β + 1ð Þ+⋯

( )
:

ð27Þ

Equation (27) can be simplified as

ϕ x, y, tð Þ = ffiffiffiffiffi
xy

p htβ

Γ β + 1ð Þ + h2t2β

Γ 2β + 1ð Þ + h3t3β

Γ 3β + 1ð Þ +
h4t4β

Γ 4β + 1ð Þ+⋯
 !

:

ð28Þ

15

Approx. solution

φ
 (x

,y) 10

5

0
0

1

2
x

3

4 0

1

2 y

3

4

Figure 1: NTIM solution of problem 1 at h = 1, t = 1:5, and β = 1.

15

Exact solution

10

5

0
0

1

2
x

3

4 0

1

2 y

3

4

φ
 (x

,y)

Figure 2: Exact solution of problem 1 at h = 1, t = 1:5, and β = 1.
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For β = 1, Equation (28) converges as

ϕ x, y, tð Þ = ffiffiffiffiffi
xy

p 1 + ht + h tð Þ2
2! + h tð Þ3

3! + h tð Þ4
4! +⋯

 !
, ð29Þ

which converges to the exact solution given by Equation
(21).

Problem 8. Consider the biological population model as [18]

Dβ
t ϕ = ϕ2

� �
xx
+ ϕ2
� �

yy
+ ϕ, t > 0, 0 < β ≤ 1, ð30Þ

where ϕ = ϕðx, y, tÞ together with initial conditions

ϕ x, y, 0ð Þ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin xð Þ cosh yð Þ

p
, ð31Þ

and the exact solution is

ϕ x, y, tð Þ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin xð Þ cosh yð Þ

p
et: ð32Þ

Taking natural transform of Equation (30), we have

ℕ+ Dβ
t ϕ

h i
=ℕ+ ϕ2

� �
xx
+ ϕ2
� �

yy
+ ϕ

h i
: ð33Þ

0

0

5

10

15

1

β = 0.5
β = 0.7
β = 0.9

β = 1.0
Exact

2

x

3 4

φ
 (x

)

Figure 3: Comparison of an approximate solution by NTIM for different values of β at h = 1, t = 1:5, and y = 1 for Problem 7.
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φ
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Figure 4: NTIM Solution of problem 1 at t = 1:5 and β = 1.
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Using the natural transform differentiation property, we
obtain

sβ

vβ
ϕ x, y, tð Þ − vβ−1

sβ
ϕ x, y, 0ð Þ =ℕ+ ϕ2

� �
xx
+ ϕ2
� �

yy
+ ϕ

h i
:

ð34Þ

Taking the inverse natural transform, we have

ϕ x, y, tð Þ = ϕ x, y, 0ð Þ
s

+ℕ− vβ

sβ
ℕ+ ϕ2

� �
xx
+ ϕ2
� �

yy
+ ϕ

h i� �
:

ð35Þ

Using the recursive relation, the solution components
can be obtained as

ϕ0 x, y, tð Þ =ℕ− ϕ x, y, 0ð Þ
s

� �
,

ϕ1 x, y, tð Þ =ℕ− vα

sα
ℕ+ ϕ20

� �
xx
+ ϕ20
� �

yy
+ ϕ0

h i� �
,

ϕ2 x, y, tð Þ =ℕ− vα

sα
ℕ+ ϕ0 + ϕ1ð Þ2xx + ϕ0 + ϕ1ð Þ2yy + ϕ1 − ϕ20

� �
xx
+ ϕ20
� �

yy

� �h i� �
,

ϕ3 x, y, tð Þ =ℕ− vα

sα
ℕ+

ϕ0 + ϕ1 + ϕ2ð Þ2xx + ϕ0 + ϕ1 + ϕ2ð Þ2yy + ϕ2

− ϕ0 + ϕ1ð Þ2xx + ϕ0 + ϕ1ð Þ2yy

2
4

3
5

2
4

3
5,

⋮

8>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>;

ð36Þ

20

Exact solution

15
10

5
0
0

1

x 2

3 0

1

2 y

3

4

φ
 (x

,y
)

Figure 5: Exact solution of problem 1 at t = 1:5 and β = 1.

φ
 (x

)

0

0
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β = 0.5
β = 0.7
β = 0.9

β = 1.0
Exact

x

Figure 6: Comparison of the approximate solution by NTIM for different values of β at t = 1:5 and y = 1 for Problem 8.
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By using the software package, the solution components
are obtained as

ϕ0 x, y, tð Þ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin xð Þ cosh yð Þ

p
, ϕ1 x, y, tð Þ = tβ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin xð Þ cosh yð Þp
Γ β + 1ð Þ ,

ϕ2 x, y, tð Þ = t2β
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin xð Þ cosh yð Þp
Γ 2β + 1ð Þ , ϕ3 x, y, tð Þ = t3β

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin xð Þ cosh yð Þp
Γ 3β + 1ð Þ ,

ϕ4 x, y, tð Þ = t4β
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin xð Þ cosh yð Þp
Γ 4β + 1ð Þ ,

⋮

8>>>>>>>>>>>><
>>>>>>>>>>>>:

9>>>>>>>>>>>>=
>>>>>>>>>>>>;

ð37Þ

Combining the components, the 4th order approximate
solution is given as

ϕ x, y, tð Þ = ϕ0 + ϕ1 + ϕ2 + ϕ3 + ϕ4+⋯

=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin xð Þ cosh yð Þ

p
+ tβ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin xð Þ cosh yð Þp
Γ β + 1ð Þ + t2β

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin xð Þ cosh yð Þp
Γ 2β + 1ð Þ

+ t
3β ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sin xð Þ cosh yð Þp
Γ 3β + 1ð Þ + t4β

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin xð Þ cosh yð Þp
Γ 4β + 1ð Þ +⋯,

8>>>><
>>>>:

9>>>>=
>>>>;

ð38Þ

Equation (38) can be simplified as

ϕ x, y, tð Þ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin xð Þ cosh yð Þ

p tβ

Γ β + 1ð Þ + t2β

Γ 2β + 1ð Þ + t3β

Γ 3β + 1ð Þ + t4β

Γ 4β + 1ð Þ+⋯
	 


:

ð39Þ

150

Approx. solution

100

50

0

1

2
x

3

4 0

1

2 y

3

4

φ
 (x

,y
)

Figure 7: NTIM solution of Problem 7 at h = 1, t = 1:5, and β = 1.

Exact solution
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Figure 8: Exact solution of Problem 7 at h = 1, t = 1:5, and β = 1.

7Journal of Nanomaterials



For β = 1, Equation (39) converges as

ϕ x, y, tð Þ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin xð Þ cosh yð Þ

p
1 + t + t2

2! +
t3

3! +
t4

4!+⋯
	 


,

ð40Þ

which yields the exact solution given by Equation (32).

Problem 9. Consider the biological population model as [18]

Dβ
t ϕ = ϕ2

� �
xx
+ ϕ2
� �

yy
+ h ϕ 1 − r ϕð Þ, t > 0, 0 < β ≤ 1, ð41Þ

where ϕ = ϕðx, y, tÞ subject to the initial condition

ϕ x, y, 0ð Þ = e
ffiffiffiffiffiffi
hr/8

pð Þ x+yð Þ, ð42Þ

and the exact solution is

0

80

60

40

20

1 2 3 4

β = 0.5
β = 0.7
β = 0.9

β = 1.0
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Figure 9: Comparison of the approximate solution by NTIM for different values of β at h = 1, t = 1:5, and y = 1 for Problem 9.

Table 1: Comparison of the different values of β and the absolute error of the 6th order NTIM solution with the 6th order MGTFSM solution
for Problem 7.

x, y t β = 0:5 β = 0:7 β = 0:9 β = 1:0 Exact NTIM error Error [18]

0.1

0.1 0.778064 0.6135 0.492898 0.110517 0.110517 2:009212 × 10−12 1:4090 × 10−10

0.3 0.778064 0.6135 0.492898 0.134986 0.134986 4:507600 × 10−9 1:0576 × 10−7

0.5 0.778064 0.6135 0.492898 0.164872 0.164872 1:652645 × 10−7 2:3354 × 10−6

0.7 0.778064 0.6135 0.492898 0.201373 0.201375 1:788941 × 10−6 1:8129 × 10−5

0.9 0.778064 0.6135 0.492898 0.24595 0.24596 1:067487 × 10−5 8:4486 × 10−5

0.3

0.1 2.33419 1.8405 1.47869 0.331551 0.331551 6:027678 × 10−12 4:2269 × 10−10

0.3 2.33419 1.8405 1.47869 0.404958 0.404958 1:352280 × 10−8 3:1727 × 10−7

0.5 2.33419 1.8405 1.47869 0.494616 0.494616 4:957934 × 10−7 7:0062 × 10−6

0.7 2.33419 1.8405 1.47869 0.60412 0.604126 5:366824 × 10−6 5:4387 × 10−5

0.9 2.33419 1.8405 1.47869 0.737849 0.737881 3:202460 × 10−5 2:5346 × 10−4

0.5

0.1 3.89032 3.0675 2.46449 0.552585 0.552585 1:004596 × 10−11 7:0449 × 10−10

0.3 3.89032 3.0675 2.46449 0.674929 0.674929 2:253800 × 10−8 5:2879 × 10−7

0.5 3.89032 3.0675 2.46449 0.82436 0.824361 8:263223 × 10−7 1:1677 × 10−5

0.7 3.89032 3.0675 2.46449 1.00687 1.00688 8:944707 × 10−6 9:0645 × 10−5

0.9 3.89032 3.0675 2.46449 1.22975 1.2298 5:337433 × 10−5 4:2243 × 10−4
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Table 2: Comparison of the different values of β and the absolute error of the 6th order NTIM solution with the 6th order MGTFSM solution
for Problem 8.

x, y t β = 0:5 β = 0:7 β = 0:9 β = 1:0 Exact NTIM error Error [18]

0.1

0.1 2.46455 1.94329 1.56127 0.350067 0.350067 6:364298 × 10−12 1:4090 × 10−10

0.3 2.46455 1.94329 1.56127 0.427573 0.427573 1:427800 × 10−8 1:0576 × 10−7

0.5 2.46455 1.94329 1.56127 0.522238 0.522239 5:234815 × 10−7 2:3354 × 10−6

0.7 2.46455 1.94329 1.56127 0.637858 0.637864 5:666541 × 10−6 1:8129 × 10−5

0.9 2.46455 1.94329 1.56127 0.779055 0.779089 3:381305 × 10−5 8:4486 × 10−5

0.3

0.1 4.32451 3.40986 2.73955 0.614259 0.614259 1:116729 × 10−11 4:2268 × 10−10

0.3 4.32451 3.40986 2.73955 0.750258 0.750258 2:505345 × 10−8 3:1726 × 10−7

0.5 4.32451 3.40986 2.73955 0.916366 0.916367 9:185473 × 10−7 7:0059 × 10−6

0.7 4.32451 3.40986 2.73955 1.11924 1.11925 9:943018 × 10−6 5:4385 × 10−5

0.9 4.32451 3.40986 2.73955 1.367 1.36706 5:933139 × 10−5 2:5345 × 10−4

0.5

0.1 5.72082 4.51084 3.6241 0.812592 0.812592 1:477307 × 10−11 7:0425 × 10−10

0.3 5.72082 4.51084 3.6241 0.992502 0.992502 3:314275 × 10−8 5:2860 × 10−7

0.5 5.72082 4.51084 3.6241 1.21224 1.21224 1:21513 × 10−6 1:1673 × 10−5

0.7 5.72082 4.51084 3.6241 1.48063 1.48064 1:315344 × 10−5 9:0614 × 10−5

0.9 5.72082 4.51084 3.6241 1.80838 1.80846 7:848841 × 10−5 4:2228 × 10−4

Table 3: Comparison of the different values of β and the absolute error of the 6th order NTIM solution with the 6th order MGTFSM solution
for Example 1.

x, y t β = 0:5 β = 0:7 β = 0:9 β = 1:0 Exact NTIM error Error [18]

0.1

0.1 8.59894 6.78023 5.44736 1.2214 1.2214 2:220490 × 10−11 1:5572 × 10−9

0.3 8.59894 6.78023 5.44736 1.49182 1.49182 4:981669 × 10−8 1:1688 × 10−6

0.5 8.59894 6.78023 5.44736 1.82212 1.82212 1:826455 × 10−6 2:5810 × 10−5

0.7 8.59894 6.78023 5.44736 2.22552 2.22554 1:977086 × 10−5 2:0036 × 10−4

0.9 8.59894 6.78023 5.44736 2.71816 2.71828 1:179755 × 10−4 9:3372 × 10−4

0.3

0.1 10.5028 8.28139 6.65342 1.49182 1.49182 2:712142 × 10−11 1:9019 × 10−9

0.3 10.5028 8.28139 6.65342 1.82212 1.82212 6:084624 × 10−8 1:4276 × 10−6

0.5 10.5028 8.28139 6.65342 2.22554 2.22554 2:230837 × 10−6 3:1525 × 10−5

0.7 10.5028 8.28139 6.65342 2.71826 2.71828 2:414818 × 10−5 2:4472 × 10−4

0.9 10.5028 8.28139 6.65342 3.31997 3.32012 1:440956 × 10−4 1:1404 × 10−3

0.5

0.1 12.8281 10.1149 8.12651 1.82212 1.82212 3.312617× 10-11 2:3230 × 10−9

0.3 12.8281 10.1149 8.12651 2.22554 2.22554 7:431777 × 10−8 1:7436 × 10−6

0.5 12.8281 10.1149 8.12651 2.71828 2.71828 2:724750 × 10−6 3:8504 × 10−5

0.7 12.8281 10.1149 8.12651 3.32009 3.32012 2:949466 × 10−5 2:9890 × 10−4

0.9 12.8281 10.1149 8.12651 4.05502 4.0552 1:759988 × 10−4 1:3929 × 10−3
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ϕ x, y, z, tð Þ = e
ffiffiffiffiffiffi
hr/8

pð Þ x+yð Þ+ht: ð43Þ

Using the same procedure as for Problems 7 and 8, we
obtain the solution as

ϕ0 x, y, tð Þ = e
ffiffiffi
hr
8

p
x+yð Þ, ϕ1 x, y, tð Þ = htβe

ffiffiffiffi
hr

p
x+yð Þ/2 ffiffi2p

Γ β + 1ð Þ ,

ϕ2 x, y, tð Þ = h2t2βe
ffiffiffiffi
hr

p
x+yð Þ/2 ffiffi2p

Γ 2β + 1ð Þ , ϕ3 x, y, tð Þ = h3t3βe
ffiffiffiffi
hr

p
x+yð Þ/2 ffiffi2p

Γ 3β + 1ð Þ ,

ϕ4 x, y, tð Þ = h4t4βe
ffiffiffiffi
hr

p
x+yð Þ/2 ffiffi2p

Γ 4β + 1ð Þ ,

⋮

8>>>>>>>>>>>><
>>>>>>>>>>>>:

9>>>>>>>>>>>>=
>>>>>>>>>>>>;
ð44Þ

Combining the components, the 3rd order approximate
solution is given as

ϕ x, y, tð Þ = ϕ0 + ϕ1 + ϕ2 + ϕ3 + ϕ4+⋯

= e
ffiffiffi
hr

p
x+yð Þ

2 ffiffi2p + htβe
ffiffiffiffi
hr

p
x+yð Þ/2 ffiffi2p

Γ β + 1ð Þ + h2t2βe
ffiffiffiffi
hr

p
x+yð Þ/2 ffiffi2p

Γ 2β + 1ð Þ + h3t3βe
ffiffiffiffi
hr

p
x+yð Þ/2 ffiffi2p

Γ 3β + 1ð Þ + h4t4βe
ffiffiffiffi
hr

p
x+yð Þ/2 ffiffi2p

Γ 4β + 1ð Þ
⋮

8><
>:

9>=
>;:

ð45Þ

Equation (27) can be simplified as

ϕ x, y, tð Þ = e
ffiffiffi
hr

p
x+yð Þ

2 ffiffi2p htβ

Γ β + 1ð Þ + h2t2β

Γ 2β + 1ð Þ + h3t3β

Γ 3β + 1ð Þ + h4t4β

Γ 4β + 1ð Þ+⋯
 !

:

ð46Þ

For β = 1, Equation (29) converges as

ϕ x, y, tð Þ = e
ffiffiffiffi
hr

p
x+yð Þð Þ/ 2 ffiffi2pð Þ 1 + h t + h tð Þ2

2! + h tð Þ3
3! + h tð Þ4

4! +⋯
 !

,

ð47Þ

which converges to the exact solution given by Equation
(43).

5. Results and Discussions

The biological population model of fractional order has been
investigated in the present work. We observe that the solu-
tion pattern for Examples 1-3 converges very rapidly to the
exact solution in a few iterations. The results have been com-
pared through graphs and tables which confirms the conver-
gence of NTIM. Figure 1 is the NTIM approximate solution,
and Figure 2 is the exact solution for β = 1 of Example 1. The
6th order approximate solution for different fractional values
of β for Example 1 is depicted in Figure 3. Furthermore,
Figures 4 and 5 show the 6th order NTIM solution and the
exact solution, respectively, for Example 2 by mean of 3D
plots. The comparison for different fractional values of β
and exact solution is made in Figure 6 for Example 2. Simi-
larly Figures 7 and 8 show, respectively, the 6th order NTIM
solution and exact solution for Example 3. Figure 9 is the

comparison of fractional values of β and exact solution for
Example 3. In Table 1–3, the approximate solution has been
compared in tabular form for β = 0:5, β = 0:7, β = 0:9, and
β = 1:0, with the exact solution. The value β = 1:0 converts
the FDE to the classical PDE. The absolute error by the pro-
posed NTIM in Tables 1–3 has been compared with the
absolute error obtained by the modified generalized Taylor
fractional series method (MGTFSM) for Examples 1-3. It is
concluded from the results of Examples 1-3 that as the frac-
tional value of β reaches 1, the NTIM approximate solution
meets with the exact solution. We also observe that NTIM
yields an excellent approximate solution.

6. Conclusion

Three nonlinear problems of fractional order biological pop-
ulation model have been investigated by the natural trans-
form iterative method in the current study. The method is
applied to nonlinear problems without any discretization.
We found that NTIM converges very rapidly to the exact
solution. The advantage of the method is that it is free of
any large or small parameter assumptions or to find any
constant at the end of the solution. The obtained results of
the FBPM have been compared through 3D and 2D plots,
and also, the numerical values have been compared in tabu-
lar form for different values of β. The comparison between
absolute errors of the NTIM approximate solution and mod-
ified generalized Taylor fractional series method solution is
done with the help of tables. In each case, NTIM reveals
an efficient approximate solution as compared with other
methods in the literature.
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