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The goal of the current research is to evaluate a 3D stagnation point flow of Darcy Forchheimer’s hybrid nanofluid (NF) through a
heated wavy flexible cylinder under the influence of slip conditions and varying thickness. A numerical model is developed for the
purpose to magnify the energy and mass transmission rate and maximize the efficiency and performance of thermal energy
conduction for a variety of commercial and biological purposes through methanol-based hybrid NF flow consisting of cobalt
ferrite and copper nanoparticles. Due to their inclusive range of applications, copper and cobalt iron oxide nanoparticles are
gaining a lot of attention in medical and technical research. The model has been articulated in the form of a set of PDEs,
which are reduced by the resemblance substitutions to the system of ODEs. The obtained 1st-order differential equations are
further processed by the computational strategy PCM. For the sake of accuracy and credibility, the values are verified with the
bvp4c package. The findings are physically exhibited and analyzed. It has been observed that the induced magnetic field lessens
with the upshot of the magnetic term and enhances under the action of magnetic Prandtl number M. The energy profile
declines due to the variation of thermal jump constraint and boosts with the absorption and generation term.

1. Introduction

The flow around convex and concave bodies have been stud-
ied extensively in order to ensure the safety of the buildings
by minimizing vortex-flaking, which causes a substantial
amount of drag, noise, and vibration. Shape alteration is
used as a flow control strategy as geometric interruptions
[1]. Flow within a circular cylinder is used in many engineer-
ing mechanisms, but far less study has been conducted on

flow over a cylinder in a constrained domain, such as flow
in a horizontal channel or pipe flow. Many circumstances,
such as blood flow via surgical supplies in veins and flow
through cylindrical items near walls, necessitate consider-
ation of wall effects while scaling a problem. Furthermore,
whereas unstructured and random forms of external rough-
ness, such as those seen in nature, have been studied, other
types of organized roughness have not. A 3D printed solid
with regular sinusoidal ridges may take curliness on its
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exterior [2]. When heat generation is created, Salahuddin
et al. [3] investigated the differently designed nanomaterials
that influenced the thermodynamic effectiveness and flow
performance of nanoliquid flow owing to rigid and sinusoi-
dal barriers. To assess the aerodynamic workloads of a 5 : 1
rectangular sinusoidal radius cylinder, Wu et al. [4] used a
wind tunnel with numerous active mechanisms. Changing
the amplitude and frequency results in a streamwise
sequence that is completely coherent, Bilal et al. [5] investi-
gated a nonuniform Maxwell nanoliquid flow across a
stretched cylinder accompanied by a nonfluctuating suc-
tion/injection. It has been shown that the angular momen-
tum of mass propagation grows considerably when the
thermophoresis ratio is increased, but radial and angular
velocity declines as the viscosity element is improved. Seo
et al. [6] demonstrated a numerical estimation of a 3D flow
through a rectangular enclosure. In comparison to a circular
cylinder, the sinusoidal cylinder was tested to see if it might
enhance total heat conduction efficiency. The influence of
the cylinder shape on heat transition was noticeable, with
performance improving by up to 27%. Bilal et al. [7] use
up an angled extendable tube to explore the iron oxide
Fe3O4 and carbon nanotube (CNT) hybrid nanofluid
(HNF). The conclusions reveal that hybrid NF is the best
heat enhancer and may be used for both heat transmission
and cooling purposes. Some further applications, uses, and
flow models can be found in [8–10].

In comparison to common fluids like gasoline, freshwa-
ter, solo nanoparticle nanofluids, and acetylene, HNF is a
revolutionary type of fluid that excels at energy conversions.
HNFs can be used for a variety of thermal applications, as
well as freezing in high-heat environments [11]. Hybrid
NFs are used in solar energy, heat pumps, heat converters,
air conditioners, automobile industry, electrical coolers, gen-
erators, radioactive systems, transmitters, ships, and biosci-
ence. In this work, we are focusing on copper (Cu) and
cobalt ferrite (CoFe2O4) NPs in the universal solvent water.
Copper NPs in plant water extracts may be generated using
a “green” chemical method called electrodeposition. Copper
nanoparticles are being used as carriers for new antitubercu-
lar drugs [12]. Copper acts as an antifungal, antibiotic, and
antimicrobial agent when it is added to freshwater for coat-
ings, polymers, and textiles. Dietary supplements containing
copper have a high absorptivity. Copper alloys and metals
have high tensile strength [13]. Cobalt (Co) and iron (Fe)
are metals. Fe lowers interstitial resistance, allowing for
charge/ion mobility on the surface and a considerable
increase in specific capacitance [14]. The use of imaging
techniques like MRI, PET, and CT scan, among others, has
proved crucial in detecting diseases efficiently. MRI is the
most versatile of them all since it can provide both func-
tional and morphological information while keeping excel-
lent image quality. To make it more functional, bimagnetic
particles are used. Bimagnetic core-shell cobalt ferrite NPs
have emerged as a feasible option for generating new MRI
contrast agents with improved magnetization. Bimagnetic
NPs may also be used for drug transport and photothermal
treatment, making them suitable entrants for the progress
of novel nanotheragnostic drugs. Magnetic hydrotherapy is

used to treat tumors because cancer cells are more sensitive
to tiny temperature variations than healthy tissue. As a
result, a rise in local temperature generated by the accumu-
lation of magnetic NPs can kill cancer cells in the tumor
while having little effect on normal tissues [15].

Several mathematicians and researchers address the
mathematical approach to the abovementioned applications
and challenges. Bilal et al. [16], for example, looked at the
effects of electric and magnetic forces on the flow of water-
based ferrous oxides and carbon nanotubes hybrid NFs over
two revolving surfaces. The electric factor boosts the
momentum boundary layer while lowering the thermal fac-
tor. Ramesh et al. [17] performed the covalent bonding reac-
tion and activation energy characteristics in the flow of HNF
through a stream-wise location using CoFe2O4 and Fe3O4 in
EG+water. Wang et al. [18] employed an MWCNT-Fe3O4
hybrid nanoliquid to model the effects of metallic foam
and nanomaterial on a typical solid heat sink’s thermal effi-
ciency. Ibrahim et al. [19] assessed the effect of turbulators
on enhancing energy efficiency, as well as the hydraulic effi-
ciency of Cu water HNF in a solar accumulator, using
numerical simulations and ANSYS software. The influence
of concave and convex shape on the flow of a radiative
hybrid NF (SiO2-MoS2/water) was investigated by Yaseen
et al. [20]. The thermal efficiency boosts by 15.47 percent
for flow over convex-shaped sheets and 14.28 percent for
flow over beveled edge sheets when the volume percentage
of SiO2 nanocrystals is raised from 1% to 5%. Wang et al.
[21] experimentally and technically assessed the FeZn4Co/
CNF electrocatalyst and discovered these nanomaterials.
References [22–25] contain some relevant literature and
applications of Cu and CoFe2O4 NPs in water for biomedical
and engineering objectives.

Magnetization is among the most essential factors in
manufacturing and engineering, with numerous uses. The
interplay of fluid nanomaterials with magnetic fields affects
the quality of various industrial items such as heat
exchangers, gearboxes, and compressors. The impact of
magnetic fields can regulate and make accessible the rate of
cooling of numerous industrial devices. Magnetic fields are
vital in interplanetary and astronomical magnetosphere
applications, as well as aeronautic technologies and chemical
science. The strength and distribution of the administered
magnetics have a significant impact on the flow properties.
Many academics submitted research articles in fluid
mechanics that described the flow features under the influ-
ence of MHD. Hayat and Noreen [26] explored the role of
thermal expansion and a generated MHD on the oscillatory
transport of a 4th-order fluid across a vertical tunnel. Raju
et al. [27] considered the cumulative implications of heat
exchange and the exponential component on MHD flow
across a semiplate. Some recent literature related to MHD
hybrid nanofluid exists in [28–30].

The objective of this study is to build on a concept pro-
posed by Salahuddin et al. [31] by investigating the effects of
methanol-based hybrid NFs consisting of Cu and CoFe2O4
nanoparticles on heat and mass transmission. The fluid flow
has been examined in a heated wavy flexible cylinder under
the upshot of slip condition, variable thickness, Darcy
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Forchheimer, heat absorption/generation, and chemical
reaction. The second intention is to improve thermal energy
conduction productivity and performance for a variety of
commercial and biological applications. The PCM approach
is used to simulate the problem, and the results are com-
pared to those obtained using the Matlab software bvp4c.

2. Mathematical Formulation

We supposed the steady 3D stagnation point flow of HNF
flow over a heated stretchy wavy cylinder. The hybrid NF
is a solution of copper Cu and cobalt ferrite CoFe2O4 nano-
material in methanol fluid. The cylinder is located on xy
-surface where the fluid is considered at z > 0. We suppose
that the cylinder radius is extreme at point A called the nod-
dle point through which fluid flow passes. Along the y-axis
the wavy side of the cylinder is fixed, where the z-axis and
x-axis are normal and upright to the wavy cylinder surface.
Functions ue = ax and ve = bx epitomize the component of
velocity at the stagnation point A. Here a and b are con-
stants, in such a way jbj ≤ jaj, 0 < a (see Figure 1).

Furthermore, we are analyzing the comportment of
hybrid NF flow under the act of persistent magnetic field
partaking uniform strength M0. We suppose that M1, M2,
and M3 are the magnetic field components in the directions
of x, y, and z, respectively. At the cylinder surface, M1 and
M2 approach to MeðxÞ and MeðyÞ, where M3 has vanished.
Here, T1 and Tw are the surface and wall temperatures of
the cylinder. The fundamental calculations that regulate
the fluid flow are defined as follows [31]:
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Here, Kr is chemical reaction rate, R1 and R2 are the slip
terms, Q0 is the heat source term, k∗ is the porosity term,
MeðxÞ = xM0 and MeðyÞ = yM0 show the magnetic strength
in x, y direction, and F = xCb/rk∗1/2 is the nonuniform iner-
tia factor constant.

Here Equation (1) describes the conservation of mass.
Equation (2) shows the magnetic flux. Equations (3) and
(4) are the momentum equations that pronounce the con-
duct of fluid flow. Equations (5) and (6) represent magnetic
induction. Equations (7) and (8) are the energy and mass
equations that describe the energy and mass transference
around and near the wavy surface of the cylinder.

The initial and boundary conditions are as follows:

u = uw + μhnfR1
∂u
∂z

, v = vw + μhnfR1
∂v
∂z

,w = 0,M1 =M2

=M3 = 0, T = Tw + khnfR2
∂T
∂z

, C = C0 at z = 0

u⟶ ue, v⟶ ve,M1 ⟶Me xð Þ,M2 ⟶Me yð Þ,
T ⟶ T∞, C⟶ C∞ at z⟶∞:

ð9Þ

C B A

+ + =

Bo

Cu CoFe2O4 Methanol Hybrid nanofluid

Figure 1: The hybrid nanofluid flows in a wavy heat cylinder.
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The transformation variables are as follows:

u = axf ′ ηð Þ, v = byg′ ηð Þ,w + f ηð Þ + cg ηð Þð Þ ffiffiffiffiffi
av

p
= 0,

M1 = xM0h1 ηð Þ = 0,M2 = yM0h2 ηð Þ = 0,

M3 +
νf

a

� �1/2
h1 + h2ð ÞM0 = 0, η =

ffiffiffiffiffi
a
νf

s
z, T = T∞

+ Tw − T∞ð ÞΘ ηð Þ, C = C∞ + Cw − C∞ð ÞΦ ηð Þ
ð10Þ

By incorporating Equation (10), we get the following:

ℏ1
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ℏ2
h1h″

2
1 + h2h1″ + 1
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2
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ð12Þ
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ℏ4
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ℏ6φ″ ηð Þ + φ′ ηð Þ + cφ′ ηð Þg + Krφ ηð Þ = 0: ð16Þ

The transform conditions are as follows:

f 0ð Þ = 0, f ′ 0ð Þ = δ1 ℏ1 f ″ ηð Þη=0, g 0ð Þ = 0, g′ 0ð Þ = ℏ1 δ1 g″ ηð Þη=0, h1 0ð Þ = 0, h2 0ð Þ = 0

Θ 0ð Þ = δ2 ℏ4,Φ 0ð Þ = 1 at η = 0
f ′ ηð Þ⟶ 0, g′ ηð Þ⟶ 0, h1 ηð Þ⟶ 1, h2 ηð Þ⟶ 1,Θ ηð Þ⟶ 0,Φ ηð Þ⟶ 0 as η =∞

9>>=
>>;:

ð17Þ

Here, ℏ1 = μhnf /μbf , ℏ2 = ρhnf /ρbf , ℏ3 = ðρCpÞhnf /ðρCpÞbf ,
ℏ4 = khnf /kbf , ℏ5 = σhnf /σbf , ℏ6 =Dhnf /Dbf .

Here, h1 and h2 are magnetic field dimensionless terms. δ1
and δ2 are the velocity and thermal slip coefficient, where β is
the magnetic parameters,Kr is the chemical reaction term, λ is
the porosity term, Fr is the Forchheimer number, and Q1 is
the heat absorption and generation term defined as follows:

β = μe
4πρf

M0
a

� �2
,M =

νf

η0
, Kr = Kc 1 − λtð Þ

c
, λ = ν

k∗Ω
, Fr = Cb

k∗1/2
,Q1 =

xQ0
ρCp

:

ð18Þ

Here, μe and η0 are the magnetic absorptivity and
diffusivity.
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Figure 2: The presentation of velocity ð f ðηÞ, gðηÞÞ profile versus (a, b) magnetic parameter β and (c, d) velocity slip parameter δ1.
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The interest physical quantities are as follows:

Cf x
= τwxjz=0

u2wρf
, Cf y

=
τwy
��
z=0

v2wρf
,Nu = qw x

Tw − T∞ð Þkf
, Sh = jw x
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where
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∂u
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� �
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,
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dT
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The dimensionless form of Equation (19) is as follows:

Re1/2Cf x =
cy
xℏ1

f ″ 0ð Þ, Cf y =
cy
xℏ1

g″ 0ð Þ, Re1/2Nux

= −
khnf
kf

Θ′ 0ð Þ, Re−1/2Sh = −Φ′ 0ð Þ:
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3. Numerical Solution

The main phases, while employing the parametric method-
ology, are as follows [34–38]:

Step 1. Simplifying the modeled equations

ϑ1 = f ηð Þ, ϑ2 = f ′ ηð Þ, ϑ3 = g ηð Þ, ϑ4 = g′ ηð Þ, ϑ5 = h1 ηð Þ, ϑ6 = h1′ ηð Þ,
ϑ7 = h2 ηð Þ, ϑ8 = h2′ ηð Þ, ϑ9 ηð Þ =Θ ηð Þ, ϑ10 =Θ′ ηð Þ, ϑ11 =Φ ηð Þ, ϑ12 =Φ′ ηð Þ

)
:

ð22Þ

By putting (22) in (11)–(16) and (17), we get the follow-
ing:
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Figure 3: The performance of velocity f ðηÞ profile versus (a) copper ϕ1 nanoparticles, (b) cobalt ferrite ϕ2 nanoparticles, and (c) Darcy
Forchheimer Fr.
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ϑ6′ + ϑ6ϑ1 − ϑ2′ϑ5 − ϑ2′ϑ7 + cϑ6ϑ3
� �

M = 0, ð25Þ
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ϑ9 0ð Þ = δ2 ℏ4, ϑ11 0ð Þ = 1 at η = 0,
ϑ2 ηð Þ⟶ 0, ϑ4 ηð Þ⟶ 0, ϑ5 ηð Þ⟶ 1, ϑ7 ηð Þ⟶ 1, ϑ9 ηð Þ⟶ 0, ϑ11 ηð Þ⟶ 0 as η =∞
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Step 3. Differentiating by parameter “p”
By differentiating Equations (30)–(34) w. r. t parameter p

, we get the following:

V ′ = AV + R, ð35Þ

dζi
dτ

, ð36Þ

where i = 1, 2,⋯⋯ ⋯ 11.

Step 4. Applying the superposition principle

V = aU +W: ð37Þ

For each element, resolve the two Cauchy problems
listed below.
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Figure 4: The performance of induced magnetic field ðh1′ðηÞ, h2′ðηÞÞ profile versus (a, b) magnetic parameter β and (c, d) magnetic Prandtl
number M.
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U = aU , ð38Þ

W ′ = AW + R: ð39Þ
By putting Equation (39) in Equation (37), we get

aU +Wð Þ′ = A aU +Wð Þ + R: ð40Þ

Step 5. Solving the Cauchy problems
By utilizing implicit scheme,

Ui+1 −Ui

Δη
= AUi+1, W

i+1 −Wi

Δη
= AWi+1: ð41Þ

The final iterative form is as follows:

Ui+1 = Ui

I − ΔηAð Þ ,W
i+1 = Wi + ΔηR

� 	
I − ΔηAð Þ : ð42Þ

4. Result and Discussion

The preceding is some of the findings that have been
noticed:

Velocity profile ð f ðηÞ, gðηÞÞ

Figures 2(a)–2(d) particularize the presentation of
velocity ð f ðηÞ, gðηÞÞ profile against the variation of mag-
netic parameter β and velocity slip term δ1, respectively.
Figures 2(a) and 2(b) reveal that the fluid velocity profile
reduces under the upshot of the magnetic term β. Phys-
ically, it is clear that the magnetic field creates resistive
force around its self, which provides hurdles (Lorentz
force) to the flow field, and as a result, fluid flow
declines. Figures 2(c) and 2(d) show that the fluid veloc-
ity diminishes with the varying effect of velocity slip term
δ1.

Figures 3(a)–3(c) illustrate the performance of velocity
f ðηÞ profile against the variation of copper ϕ1 nanoparticles,
cobalt ferrite ϕ2 nanoparticles, and Darcy Forchheimer Fr,
respectively. Figures 3(a) and 3(b) expose that the velocity
field substantially boosts with the action of copper ϕ1 and
cobalt ferrite ϕ2 nanoparticles. The specific heat capacity of
methanol is remarkably greater, while the thermal conduc-
tivity is less than the copper and cobalt ferrite nanomaterials,
that is why the inclusion of hybrid nanoparticles, especially
copper, reduces its average heat-absorbing efficiency, which
results in the enhancement of velocity field. The upshot of
Darcy Forchheimer’s number degenerates the velocity distri-
bution as shown in Figure 3(c).

Induced magnetic field ðh1′ðηÞ, h2′ðηÞÞ
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Figure 5: The performance of energy ΘðηÞ profile versus (a) copper ϕ1 nanoparticles, (b) cobalt ferrite ϕ2 nanoparticles, (c) thermal jump
parameter δ2, (d) heat source term Q1.
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Figures 4(a)–4(d) highlight the presentation of ðh1′ðηÞ,
h2′ðηÞÞ profiles versus β (magnetic constraint) and M.
Figures 4(a) and 4(b) show that the induced magnetic field
profile decreases with the effect of the magnetic parameter
β. Actually, the improving values of magnetic term sup-
pressed the induced magnetic field which indicates deterio-
rating conduct of the induced magnetic field. Figures 4(c)
and 4(d) report that the positive influence of M encourages
the ðh1′ðηÞ, h2′ðηÞÞ profiles. The fundamental reason for this
is that multiplying the ratios of M corresponds to a reduced
magnetic diffusive, resulting in a loss of magnetic field
strength. It improves the curve. Hence, the rising credit of
M improves the induced magnetic field profile.

Temperature profile ΘðηÞ
Figures 5(a)–5(d) illustrate the performance of energy

ΘðηÞ profile against the variation of copper ϕ1 nanoparticles,
cobalt ferrite ϕ2 nanoparticles, thermal jump parameter δ2,
and heat source term Q1. Figures 5(a) and 5(b) explain that
the energy ΘðηÞ profile boosts with the positive variation of
copper ϕ1 and cobalt ferrite ϕ2 nanoparticles. We have dis-
cussed before that the thermal conductivity of fluid
enhances, while specific heat capacity is condensed under
the action of copper ϕ1 and cobalt ferrite ϕ2 nanoparticles.
That is why such a situation has been noticed in Figures 5
(a) and 5(b). Figures 5(c) and 5(d) show an opposite behav-
ior of energy profile versus thermal jump parameter δ2 and
heat source term Q1. The energy profile declines due to the
variation of thermal jump constraint. To put it another
way, the energy field is a diminishing function δ2. Logically,
increasing δ2 enables the wavy cylinder to expand. As a
result of this, the thickness of the cylinder rises, reducing
the energy field curvature. Heat is emitted as energy by
nanosized particles in practice. The more the input of micro-
particles, the greater the heat production as energy. The heat
absorption and generation term Q1 boost the temperature
field because its effect generates heat, which causes the rises
in energy profile as shown in Figure 5(d).
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Figure 6: The performance of concentration ΦðηÞ profile versus (a) copper ϕ1 nanoparticles, (b) cobalt ferrite ϕ2 nanoparticles, and (c)
chemical reaction term Kr.

Table 1: The statistical properties of copper, cobalt iron oxide, and
methanol [32, 33].

ρ (kg/m3) Cp (j/kgK) k (W/mK) σ (S/m)

Methanol 792 2545 0.2035 0:5 × 10−6

Copper (Cu) 8933 385 401 5:96 × 107

CoFe2O4 4907 700 3.7 5:51 × 109
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Concentration profile ΦðηÞ
Figures 6(a)–6(c) report the performance of concentration

ΦðηÞ profile versus copper ϕ1 nanoparticles, cobalt ferrite ϕ2
nanoparticles, and chemical reaction term Kr, respectively.
Figures 6(a) and 6(b) describe that the mass transferΦðηÞ pro-
file improves with the positive deviation of copper ϕ1 and
cobalt ferrite ϕ2 nanoparticulate. We have reviewed earlier
that the thermal conductivity of fluid enhances, while specific

heat capacity is condensed under the action of copper ϕ1 and
cobalt ferrite ϕ2 nanoparticles. That is why such a situation has
been noticed in Figures 6(a) and 6(b). The chemical reaction
coefficient positively affects the mass transfer, because it also
encourages fluid particles to move fast, which results in the
positive variation as elaborated in Figure 6(c).

Tables 1 and 2 exemplify the thermochemical posses-
sions and model of base fluid, copper, and cobalt iron oxide

Table 2: The thermal properties of the hybrid nanofluid ðϕ1 = ϕCu, ϕ2 = ϕCoFe2O4
Þ [32, 33].

Properties

Viscosity μhnf /μbf = 1/ð 1 − ϕCu − ϕCoFe 2O4Þ2

Density ρhnf /ρ bf = ϕCu ρð Cu/ρbf Þ + ϕCoFe2O4
ρCoFe2O4

/
�

ρbf Þ + 1 − ϕCu − ϕð CoFe2O4
Þ

Thermal capacity ρCp

� 	
hnf / ρCp

� 	
bf
= ϕCu ρCðð pÞCu/ ρCp

� 	
bf
Þ + ϕCoFe2O4

ρCp

� 	
CoFe2

�
O4/ ρCp

� 	
bf Þ + 1 − ϕCu − ϕCoFeð 2O4Þ

Thermal
conductivity

khnf /kbf = ϕCukCu + ϕð½ CoFe2O4
kCoFe2 O4/ϕCu + ϕCoFe2 O4Þ + 2kbf + 2 ϕCuð kCu + ϕCoFe2O4

kCoFe2O4
Þ − 2 ϕCu +ð ϕCoFe2O4

Þ
kbf / ϕCukCu + ϕCoFe2O4

�
kCoFe2O4

/ϕCu + ϕCoFe2O4
Þ + 2 kbf − 2 kCuϕCu + kð CoFe2O4

ϕCoFe2 O4Þ + ϕCu + ϕð CoFe2O4
Þ2kbf �

Electrical
conductivity

σhnf /σbf = ϕCuσð½ Cu + σCoFe2O4
ϕCoFe2O4

/ϕCoFe2 O4 + ϕCuÞ + 2σbf + 2 ϕCuσCu + ϕCoFeð 2O4σCoFe2O 4Þ − 2 ϕCu + ϕCoFe2

�
O4Þσbf / ϕCuσCu + ϕCoFe2

�
O4σCoFe2O4

/ϕCu + ϕCoFe2O4
Þ + 2σbf − ϕCuσCuð + ϕCoFe2O4

σCoFe 2O4Þ + ϕCu + ϕð CoFe2O4
Þσbf �

Table 3: Statistical results for Nusselt number.

PCM bvp4c PCM bvp4c
δ2 Q1 ϕ1, ϕ2 knf /kf

� 	
Θ′ 0ð Þ knf /kf

� 	
Θ′ 0ð Þ khnf /kf

� 	
Θ′ 0ð Þ khnf /kf

� ÞΘ′ 0ð Þ
0.2 0.0475535 0.0474435 0.0484531 0.0484431

0.4 0.0355123 0.0354042 0.0366122 0.0366023

0.6 0.0365852 0.0364743 0.0369853 0.0369752

0.8 0.0292107 0.0291003 0.0271407 0.0271323

0.0 0.0565588 0.0564476 0.0554555 0.0554456

0.4 0.0575760 0.0574652 0.0575961 0.0575854

0.8 0.0579962 0.0578861 0.0589965 0.0589846

1.2 0.01 0.0674420 0.06734310 0.0683460 0.0683350

0.02 0.0684241 0.0683220 0.0693271 0.0693160

0.03 0.0691324 0.0690313 0.0713142 0.0713041

0.04 0.0722419 0.0723407 0.0743319 0.0743217

Table 4: Numerical outcomes for Sherwood number.

PCM bvp4c PCM bvp4c
Kr ϕ1, ϕ2 Dnf /Dð f ÞΦ′ 0ð Þ Dnf /Dð f ÞΦ′ 0ð Þ Dhnf /Df

� 	
Φ′ 0ð Þ Dhnf /Df

� 	
Φ′ 0ð Þ

0.2 0.0632428 0.0632228 0.0642421 0.0642220

0.4 0.0629422 0.0629210 0.0639437 0.0639234

0.6 0.0615944 0.0615742 0.0614946 0.0614743

0.8 0.5930362 0.5930160 0.5910341 0.5910141

0.01 0.0627713 0.0627511 0.0677736 0.0677634

0.02 0.0638833 0.0638631 0.0728855 0.0728651

0.03 0.6687551 0.6687340 0.7774605 0.7774402

0.04 0.7026619 0.7026617 0.7906815 0.7906613
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individually. Tables 3 and 4 report the statistical assessment
of PCM and bvp4c techniques, to confirm the legality of the
current report. The energy field and mass transition profile
are associated with the determination. Tables 3 and 4 also
reveal the comparative assessments between simple and
hybrid NF. It has been clearly perceived that the mass and
heat transfer ratio of hybrid NF as compared to simple NF
or ordinary fluid is greater.

5. Conclusion

The objective of this research is to build a computational
model to investigate the effects of methanol-based hybrid
NFs consisting of Cu and CoFe2O4 nanoparticles on heat
and mass communication. The fluid flow has been examined
in a heated wavy flexible cylinder under the impact of slip
condition, variable thickness, Darcy Forchheimer, heat
absorption/generation, and chemical reaction. The PCM
approach is used to simulate the problem, and the results
are compared to those obtained using the Matlab software
bvp4c. The key observations are as follows:

(i) The velocity profile reduces with the effect of the
magnetic parameter β, velocity slip constant δ1,
and Darcy Forchheimer’s number Fr

(ii) The velocity and energy field significantly boosts
with the inclusion of copper ϕ1 and cobalt ferrite
ϕ2 nanoparticulates in the base fluid methanol

(iii) The ðh1′ðηÞ, h2′ðηÞÞ profile decreases with the effect
of the β, while enhances under the action of param-
eter M

(iv) The energy profile declines due to the variation of
thermal jump constraint and boosts with the
absorption and generation term Q1

(v) The mass propagation rate can be significantly
enhancing with the effect of chemical reaction
parameter Kr

(vi) The hybrid NF has greater tendency to enhance the
energy and velocity of base fluid as compared to the
ordinary NF
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