Research Article

Hakeem Ullah,1 Mehreen Fiza,1 Kamal Khan,1 Shamaila Batool,2 S. M. Ghufran,1 and Seham M. Al-Mekhlafi3

1Department of Mathematics, Abdul Wali Khan University, Mardan, Khyber Pakhtunkhwa, Pakistan 23200
2Institute of Numerical Sciences, Kohat University of Science and Technology, Kohat, Pakistan
3Department of Mathematics, Sana’a University, Yemen

Correspondence should be addressed to Seham M. Al-Mekhlafi; smdk100@gmail.com

Received 11 January 2022; Revised 21 August 2022; Accepted 7 September 2022; Published 3 October 2022

Academic Editor: Taza Gul

Copyright © 2022 Hakeem Ullah et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In this study, an incompressible two-dimensional Oldroyd-B nanofluid steady flow past a stretching sheet considering the outcomes of magneto-hydrodynamics (MHD) and porous medium with magnetic, electrical, and thermal radiation effects is investigated. Using a similarity transformation, the governing equations in the form of partial differential equations (PDEs) are converted into a nonlinear ordinary differential equations (ODEs) system. The acquired system is numerically solved by the finite element method (FEM). The effects of physical parameters like Deborah numbers \(\beta_1\) and \(\beta_2\), Brownian motion \(N_b\), thermophoresis parameter \(N_t\), Prandtl parameter \(Pr\), Lewis number \(Le\), thermal conductivity \(k\), dynamic viscosity \(\mu\), magnetic and electric effects as \(M\) and \(E_1\), and thermal radiation effect \(Rd\) on the flow are studied in detail. For higher \(N_b\) values, regional Nusselt numbers are increasing in magnitude. The local Sherwood number’s size rises for high \(N_t\) numbers.

1. Introduction

The fluid which obeys the Newton’s law of viscosity is known as the Newtonian fluid, whereas the non-Newtonian fluid is recognized as to be the satisfaction of the Newton’s law of viscosity [1, 2]. The non-Newtonian fluid dragged the attraction of the researchers due to its significant applications in industrial and engineering such as mud drilling, plastic polymers, optical fiber, metal cooling and wire of polymer plates, damping agent in braking devices, and protective devices [3–5]. Sakiadis introduced the concept of flow due to a stretching sheet [6]. Scientists used this concept to develop the new results to various fluids [7–19]. Magyar and Keller extended this concept by using it as the exponential stretching sheet [20]. The boundary layer flow (BLF) of an incompressible fluid over a stretching sheet and the viscoelastic fluids is used commonly in engineering and industrial developments. The field has attracted researchers in the last few decades. In industries, BLF is used like wrapping thermal, cooling plates, condensation of thin film, fiber glass, heat exchangers, plastic processing, cosmetics, geology composites, paint flow, adhesives, tower generators, accelerators, electrostatic filters, and droplet filters [3, 4, 5]. By immersing them in quiescent liquids, many metal processes need to cool continuously such as fibers. The BLF is used by many scientists. The BLF based on the exponential stretching is studied by Bidin and Nazar who study the BLF due to exponential stretching sheet with thermal radiations [21]. This experiment is further extended with the partial slip effect by Mukhopadhyay and Gorla [22]. Singh and Agarwal [23] study the thermal radiation effect of the boundary layer flow with exponential stretching. The BLF and heat transfer HT over a moving surface are studied by Tsou et al. and Elbashbeshy [24, 25]. Choi proposed the concept of nanofluid in 1995 [26]. The nanofluid has many industrial and engineering applications like heat
exchangers, engine radiators, and cooling processes [27, 28]. Khan et al. [29, 30] investigated the BLF of a nanofluid in a porous medium. The thermal effect of the nanofluid flow of the boundary layer on the moving surface in various conditions was presented by Olanrewaju et al. [31], Crane [7], Koo and Kleinstreuer [32], and Khan et al. [29, 33]. The porous material containing the pores and the skeletal portion of the material is known as a matrix. The pores are filled by a fluid under consideration. Fiza et al. studied the nanofluid flows in a porous medium with viscoelastic properties [34]. The recent development in the study of nanofluid by considering various physical effects can be seen in [29, 33–59]. From the literature survey, it is clear that the effect of Joule heating and thermal radiation of MHD boundary layer Oldroyd-B nanofluid flow with heat transfer over a porous stretching sheet is not studied. This article is aimed at studying the effect of Joule heating and thermal radiation of MHD boundary layer Oldroyd-B nanofluid flow with heat transfer over a porous stretching sheet by a numerical computation method known as finite element method (FEM). The basic fundamental equations Navier-Stokes equations and continuity are used for the mathematical formulations. After using the similarity transformation, the formulation in the form of PDEs is converted into ODEs. The physical parameters are discussed with the help of graphs and tables. Organisation of the paper is as follows: Section 1 is dedicated to introduction, Section 2 to problem formulation, Section 3 to solution techniques, Section 4 to results and discussions, and Section 5 to conclusions.

2. Problem Formulation [57]

Consider the nanofluid motion of an incompressible two-dimensional Oldroyd-B across a stretching sheet. Nanoparticles are saturated when the sheet is stretched at $y = 0$, and the flow is originated at $y > 0$. The fluid is electrically conducted in the existence of magnetic field $\vec{B} = (0, B_0, 0)$ and electric field $\vec{E} = (0, 0, -E_y)$ which follow the Ohm’s law $J = \sigma(E + \nabla \times B)$. The sheet is stretched linearly $u(x) = ax$, where “$a > 0$” and the sheet is considered as porous. The sheet velocity is taken parallel to the flow. The inducted magnetic field and Hall current effects are disregarded due to the minute magnetic field. The governing equations are as follows:

$$u_x + v_y = 0,$$

$$a u_x + v v_y + A_1 (\nu u_{xx} + \nu^2 u_{yy} + 2 \nu u_{xy}) = v (u_y + 2 \nu u_{yy} + v u_{xy} - u u_{xy} - u v_{xy}) + \frac{\sigma}{\rho} (E_y B_0 - B_0^2 u) - \nabla \cdot \tau,$$

$$a F_x + v F_y = \nu (F_{xx} + F_{yy}) + \tau \left\{ \frac{D_B}{F_{\infty}} (C_s C_x + C_y) \right\} + \left[\frac{D_B}{F_{\infty}} (F_{xx} + F_{yy}) \right] \frac{\sigma}{\rho} \left(u B_0 - E_y \right)^2 - \frac{\partial q_r}{\partial y},$$

$$u C_x + v C_y = D_B (C_{xx} + C_{yy}) + \left[\frac{D_B}{F_{\infty}} (F_{xx} + F_{yy}) \right] \cdot D_B (C_{xx} + C_{yy}) + \left[\frac{D_B}{F_{\infty}} (F_{xx} + F_{yy}) \right].$$

Here u, v represent the velocity components, fluid density ρ, kinematic viscosity ν, electrical conductivity σ, A_1/A_2 the relaxation/retardation parameters, the thermal diffusivity α, the temperature T, the concentration C, D_B the Brownian diffusions, D_T the thermophoretic diffusion coefficient, and $\tau = (pc)/f'(pc)$ the nanoparticle to fluid heat capacity. ρ_f represents the density of fluid particle, \vec{J} is the Joule current, σ is the electrical conductivity, and V is the velocity field of the fluid. If $y \to \infty$, then the values of F and C are, respectively, F_{∞} and C_{∞} as shown in Figure 1.

q_r represents the radioactive heat fluctuation that is proposed by Rosseland approximation like as follows:

$$q_r = \frac{16 \varphi \partial T^4}{3K \partial y},$$

where K represents the mean absorption coefficient and φ denotes the Stefan Boltzmann constant. By Taylor series equation, we obtain the following:

$$T^4 = T_0^4 + 4 T_0^3 (T - T_0)^2 + \cdots$$

On ignoring higher-order terms, we have the following:

$$T^4 = 4 T T_0^3 - 3 T_0^4.$$

Inserting Equation (10) in Equation (8), it reduced to the form of the following:

$$\frac{\partial q_r}{\partial y} = \frac{16 \varphi T_0^3 \varphi \partial^2 T}{3K \partial y^2}.$$

The boundary conditions are as follows:

$$u(x) = ax, v = 0, C = C_\infty, F = F_\infty, y \to 0,$$

$$u(\infty) = 0, v(\infty) = 0, C = C_\infty, F = F_\infty, y \to \infty.$$

Using the similarity transformation,

$$\psi = (av)^{1/2} x F(\eta),$$

$$\theta(\eta) = \frac{F - F_\infty}{F_w - F_\infty},$$

$$\phi(\eta) = \frac{C - C_\infty}{C_w - C_\infty},$$

$$\eta = \frac{a}{\sqrt{\nu}} y.$$

Using the stream function as $u = \partial \psi/\partial y$ and $v = -\partial \psi/\partial x$, we get the following:
where \(\text{Re}_x = \frac{u_w(x)x}{\nu} \) is the Reynolds local, \(\kappa = \nu/k \) is the porosity parameter, \(M^2 = \sigma B_0^2/\rho a \) is the magnetic variable, and the electric parameter is \(E_1 = E_0/B_0 ax \).

3. Finite Element Method

The FEM is a powerful method to evaluate the nonlinear differential equations and can be used to engineering problems such as fluid mechanics, biomathematics, physics, and channel process [49–51].

The important steps of FEM are as follows:

1. Discretization into finite elements of the infinite domain
2. Generation of component equations
3. Gathering component equations
4. Imposing boundary conditions
5. Evaluation of gathered equations

Iterative approach can be applied in the last step.

A grid sophistication experiment is performed via dividing the domain in consecutive grids sized \(81 \times 81, 101 \times 101 \), and \(121 \times 121 \) in \(z \) direction. Four functions are to be assessed at each node, and assembly of element equations, we get 404 nonlinear equations. An iterative scheme is acquired for solving the system introduced by BCs. If the relative difference among the sequential iteration is fewer than \(10^{-6} \), so the solution is considered as convergent. The code is run for various grid sizes and observed that the solution is free of the grid. The effect of the step size for step \(h = 0.01 \) is verified by achieving an excellent agreement for different profiles.

4. Results and Discussion

4.1. Figures Discussions

The nonlinear system of ODEs (Equations (8)–(13)) constrained by boundary conditions (Equations (11)–(13)) is assessed numerically by FEM. Figures 2–22 describe the actions of emerging parameters like Prandtl parameter \(\text{Pr} \), relaxation time constant \(\beta_1 \), retardation time constant \(\beta_2 \), Brownian parameter \(N_b \), Lewis number \(L_w \), thermophoresis parameter \(N_t \), and porosity parameter \(\kappa \) on velocity profile \(f'(\eta) \), mass fraction function \(\phi(\eta) \), and temperature profile \(\theta(\eta) \). Figures 2–4 represent the effect of \(\beta_1 \) on \(f'(\eta), \theta(\eta), \) and \(\phi(\eta) \). \(\beta_1 \) which is a function of relaxation time \(a_i \) assists the flow due to the viscoelastic characteristics of fluids. The BL thickness and the velocity profile \(f'(\eta) \) increased by increasing the values of \(\beta_1 \). Also by the increase of \(\beta_1 \), both \(\theta(\eta) \) and \(\phi(\eta) \) of the mass fraction increase. The effects of \(\beta_2 \) on \(f'(\eta), \theta(\eta), \) and \(\phi(\eta) \) are given in Figures 5–7. Since the retardation time of the fluid increases the fluid movement, so as a result, \(f'(\eta), \theta(\eta), \) and \(\phi(\eta) \) increases by increasing \(\beta_2 \). The effect of the porosity number for the velocity profile is given in Figure 8. It is noticed that by increasing the porosity parameter, the velocity profile decreases. Since in the porous medium, there exist
the porous holes and these holes reduce the velocity profile. The Lewis numbers are plotted for the temperature and concentrations profiles in Figures 9 and 10. An increase in the Lewis value caused to increase $\theta(\eta)$ and $\phi(\eta)$. The impacts on mass fraction function $\phi(\eta)$ of Brownian motion and temperature profile $\theta(\eta)$ and thermophoresis parameters are displayed in Figures 11, 12, 13, and 14, respectively. By increasing the values of N_p, the temperature profile increases while the concentration profile first decreases near the boundary and then increases as can be seen in Figures 11.
and 12; for the effect of N_t, it is noticed that by uplifting N_t, the temperature profile increases while the concentration profiles decrease can be seen in Figures 13 and 14. The effects of the Prandtl number on the temperature and concentration profiles are presented in Figures 15 and 16. Higher values of Prandtl numbers caused to decrease the temperature and concentration profiles. It is due to the fact that the Pr has an inverse relation with α, increasing Pr is basically to reduce the value of α which turn to reduce the elastic collision of the nanoparticles caused to reduce the
profiles of concentration and temperature. The effects of the electric field E_1 on the velocity and temperature profiles are given in Figures 17 and 18, respectively. Increase in E_1 causes to increase the profiles of temperature and velocity. Also, the effects of the magnetic field on velocity and temperature profiles are given in Figures 19 and 20. Increase in magnetic field causes to decrease the velocity profile, whereas by increasing the magnetic field decreases the temperature profile. The magnetic field is put in perpendicular to the flow and it resisted the flow; thus, the velocity profile
reduced. The effect of the thermal radiations on the velocity and temperature field is given in Figures 21 and 22. Increase in thermal radiation caused to increase/decrease the velocity and temperature profiles. Results on the Sherwood number of the Brownian parameter, the Nusselt number, and thermophoresis parameter are given in Figures 23–26. It is noticed that the Nusselt number falls by rising N_t, whereas
the Nusselt number rises by rising N_b, as given in Figures 23 and 24. The effects of N_t and N_b on the Sherwood number are given in Figures 25 and 26.

4.2. Tables Discussions. In Tables 1–4, an increase in N_t caused to reduce the Sherwood numbers and an increase in Nb caused to rise the Sherwood number. The Nusselt number decreases whenever the Pr is less than Le and increases when the Pr is greater than Le for Nb and N_t. However, the Sherwood number decreases with the rise of Nb and N_t for both the cases when the Pr is greater or less than Le. Lastly, low thermal conductivity is caused by a high Prandtl fluid which decreases conductivity, resulting in an increase in sheet surface heat transfer. In the absence of non-Newtonian parameters β_1 and β_2, it is observed that the effect of both temperature and concentration profiles of nanoparticles brings the falling action. Consequently, as Pr grows, the thickness of the boundary layer shrinks. Table 5 shows a comparison of our results to the results presented by Jawad and Saeed [58]. In the absence of the nanoparticles and non-Newtonian parameters, our results are identical to the Jawad and Saeed results. This comparison shows the accuracy and validity of our method.

5. Conclusion

The Oldroyd-B nanofluid model was presented across a stretched sheet for this investigation. The quantitative analysis of the impacts of thermophoresis parameter, elastic parameter, and Brownian motion on heat and flow transfer is studied here. Below are the key features of the study.

(1) For the mass fraction, temperature, and speed functions, β_1 and β_2 impacts have the opposite behavior. Such anomalies arise only because of the influence of β_1 and β_2 viscoelastic parameters

(2) Prandtl’s actions are the same for both the temperature and mass fraction functions. As Pr is the link
among visual and dynamic viscosity, at greater Pr levels, the temperature profile remains under control

(3) Similar effects of N_b and N_t are seen on the temperature profile as both N_b and N_t increase the temperature

(4) For higher N_b values, regional Nusselt numbers are increasing in magnitude

(5) The local Sherwood number's size rises for high N_b numbers

(6) The electric field increasement increases the velocity and temperature profile, whereas the thermal radiation has reverse results

(7) The increases in magnetic field resist the flow, and so the velocity profile get decreases while it assists the temperature profile

(8) On increasing β and porosity parameters, the velocity distribution decreases

(9) Increase in the Pr thermal boundary-layer thickness and contraction profiles is noticed to decrease

(10) Increase in the Lewis number causes to decrease the profiles of velocity, temperature, and concentration

Abbreviations

Nomenclature

- B: Magnetic field (Nm$^{-1}$)
- C: Fluid concentration
- c_p: Specific heat (J/kgK)
- β: Non-Newtonian parameter
- E: Electric field intensity (NC$^{-1}$)
- J_w: Mass flux
- $\alpha_1, \alpha_2, \beta_1, \beta_2, \beta_3$: Material constants
- A_1, A_2, A_3: Kinematic tensors
- k: Thermal conductivity (Wm$^{-1}$K$^{-1}$)
- M: Magnetic parameter
- n_e: Number density of electron
- O: Origin
- P: Fluid pressure (Pa)
- Pr: Prandtl number
- Q_w: Heat flux (Wm$^{-2}$)
- q_r: Radioactive heat flux (J)
- Re: Viscosity parameter
- S: Cauchy stress tensor
- t_r: Flow time (s)
- T: Fluid temperature (K)
- u, v, w: Velocity components (ms$^{-1}$)
- x, y, z: Coordinates
- t: Time.

Greek Letters

- α: Thermal diffusivity (m2s$^{-1}$)
- $\bar{\alpha}$: Vertex viscosity (mPa)
- μ: Dynamic viscosity (mPa)
- ν: Kinematic coefficient of viscosity
- ρ_f: Base fluid density (kgm$^{-3}$)
- ρ_p: Density of the particles (kgm$^{-3}$).

Data Availability

The data is available in the paper.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

References

H. Ullah, M. Arif, M. Fiza, M. Ayaz, K. Ullah, and S. Makhla

M. Jawad, A. Saeed, and T. Gul,

M. Bilal, A. Saeed, T. Gul, I. Ali, W. Kumam, and P. Kumam,

H. Ullah, M. Shoaib, R. A. Khan, M. A. Z. Raja, and S. Nisar,

H. Bilal, H. Ullah, S. Islam et al.,

A. Tassaddiq, S. Khan, M. Bilal et al.,

H. Ullah, M. Shoaib, R. A. Khan, M. A. Z. Raja, and S. Nisar,

H. Ullah, M. Shoai, R. A. Khan, M. A. Z. Raja, and S. Nisar,

H. Ullah, R. A. Khan, M. Fiza, S. Islam, and S. M. Al-Mekhla,

"Comparative evaluation of the optimal auxiliary function method and numerical method to explore the heat transfer between two parallel porous plates of steady nanofluids with Brownian and thermophoretic influences," *Mathematical Problems in Engineering*, vol. 2022, Article ID 7975101, 16 pages, 2022.

H. Ullah, H. Khan, M. Fiza, K. Ullah, S. Islam, and S. M. Al-Mekhla,

H. Ullah, M. Arif, M. Fiza, M. Ayaz, K. Ullah, and S. Makhla,

W. Khan, M. Idress, T. Gul, M. A. Khan, and E. Bonyah,

T. Gul, S. Islam, R. A. Shah, A. Khalid, I. Khan, and S. Shafie,

M. Bilal, A. Saeed, T. Gul, I. Ali, W. Kumam, and P. Kumam,

M. Jawad, A. Saeed, and T. Gul,

[53] S. Nadeem, R. Haq, N. S. Akbar, C. Lee, and Z. H. Khan,

