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Additive manufacturing techniques (AMTs) evolved quickly from simple prototype options to promising additive manufacturing
techniques. The additive technologies, which include point-by-point material merging, full melting, and solidification of powder
particles, provide potential unique braves and advantages with nanometal powders. In the fabrication of A356 aluminium
alloy-based hybrid metal matrix nanocomposites, graphite (Gr), iron oxide (Fe3O4), and boron carbide (B4C) are used as
nanoreinforcement. Famous AMTs like selective laser melting have created A356 hybrid nanocomposites (SLM). The ingot
was made out of a cylindrical slot measuring 14 × 100mm. The percentages 2%, 4%, and 6% are added to the reinforcements
Gr, Fe3O4, and B4C. Microtensile and microhardness tests were used to determine the outcome of the reinforcement.
Microtensile and microhardness parameters are assessed using microtensile test equipment and a Vickers hardness tester, with
the specimen prepared in accordance with ASTM standards. A356 with 2, 4, and 6% reinforcing has a Vickers Hardness
Number (VHN) of 144, 163, and 188, respectively. As the boron carbide reinforcement is increased, the load value of graphite
and iron oxide (2, 4, and 6%) rises. The greatest ultimate tensile strengths are 260.10, 290.06, and 325.43N/mm2, respectively.
The bonding structure of nanocomposites is assessed using an OM, and then, microtensile specimens are assessed using a SEM.
As a result of the superior effect of the diverse reinforcements Gr, Fe3O4, and B4C, more increased tensile and hardness qualities
have been attained.

1. Introduction

Nowaday’s rapid developments in engineering and technol-
ogy have a huge demand for lightweight and high-strength
materials with good tensile, wear, and hardness properties
for particular use in aeronautical, automobile, medical,
marine, and defence departments. Aluminium and their
alloys are espoused in enormous applications, in particular
aeronautical, automobile, medical, sports, defence, petro-
chemical engineering, and marine, outstanding to their
superb properties like high strength, good thermal conduc-
tivity, high wear, and corrosion resistance [1–3]. Most of
the researchers used casting [4, 5], powder metallurgy

[6–8], and heat treatment techniques [9–11] to improve
the mechanical properties of aluminium alloys. These tradi-
tional techniques are inadequate to meet technological
demand. The application of modern advancement to the
manufacturing of products and parts with high mechanical
properties is the major intention of material processing.

Metal matrix composites (MMCs) are an essential role
in lightweight and high-strength materials that venture to
coalesce the high solidness, stiffness, and sturdiness pro-
vided by a metal matrix [12–14]. Research shows that
the formation of metal matrix composites with the addi-
tion of the different reinforcements into the matrix can
improve the mechanical properties appreciably. Generally
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used reinforcements include particle, whisker, and fiber.
When comparing whisker and fiber, particle reinforcement
has more benefits produced in the matrix such as processing,
uniform microstructure, and cost [15]. Consequently, parti-
cle reinforcement MMCs have been used in aeronautical
industries, automotive industries, and medical and defence
departments. Nanoparticles by adding a metal matrix
improve the strength of MMCs extensively due to disarticu-
lation and dispersal strengthening. Nanoparticles assist to
enhance mechanical properties such as strength, wear resis-
tance, and hardness of MMCs [16].

When high strength is required, A356 aluminium
casting alloys are employed in the manufacture of aviation
components. The need for lightweight, high-strength com-
ponents is expanding all the time. Aluminium matrix com-
posites are being touted as a new generation of possible
materials for a wide range of technical applications. For
Aluminium Metal Matrix Composites (AMMCs), generally
used nanoparticle reinforcement contains B4C, SiC, Gr,
TiB2, Al2O3, and TiC [17–19].

B4C is an elegant reinforcement material because of its
superb strength, microhardness, wear resistance, high spe-
cific stiffness, good damping capacity, excellent thermal con-
ductivity, chemical and thermal stability, high melting point,
high wettability, low density, and good interfacial bonding
property with aluminium comparable to Al2O3, TiB2, TiC,
and SiC [20–22].

Dirisenapu et al. [23] reported that the tensile strength of
the nanocomposites increased with an increase in B4C nano-
particles and percentage of elongation; density is decreased.

Chandrasekaran et al. [24] investigated Al-B4C cermet
fabricated by additive manufacturing; the hardness of the
composite reached as high as 80Ra with an increase of
59.3Vol% b4c particle.

Poovazhagan et al. [25] studied the added Nanob4c in
AMCs and enhanced its hardness, tensile strength, wear
resistance, and good ductility, and impact resistance of the
Al alloy was retained.

Graphite is another important secondary reinforcement
material because of its constructive dry sliding wear condi-
tion for AMCs. In the current research, graphite favoured
in AMCs improved both wear resistance and machinability.
The incorporation of graphite diminishes the surface poros-
ity and enhances mechanical and tribological properties
continuously [26–28].

Saini et al. [29] observed that hardness of the hybrid com-
posite had increased significantly to added nanosilica particles
and graphite flake as reinforcements. These new hybrid com-
posites can be used for various applications including engine
piston, automobile components, and microelectronic devices.

Zhang et al. [30] prepared two variety composites Al-
Sic-graphite and Al-Sic-graphene and observed reinforce-
ment and microstructure by using SEM, TEM, XRD, and
Raman spectroscopy. The added graphite flake reinforce-
ment is partly desquamated into thinner ones, and the clus-
ters of graphite with a size as large as 10μm can still be
observed in the Al-graphite sample.

Alaneme et al. [31] developed Al-Mg-Si alloy with steel
and graphite particle composites prepared by stir casting.

All the mechanical properties are reduced slightly with an
augment in graphite content and trailed the composite rein-
forced with 8wt.% steel.

Fe3O4 is a third reinforcement, and it plays an important
role in the aerospace industry. The addition of Fe3O4 nano-
particle reinforcements in the AMCs enhanced the magnetic
permeability of composites and thermal properties lacking
mechanical degradation [32]. Fereiduni et al. [33] used
Fe3O4 nanoparticles in the welding process to Al-Fe inter-
metallics due to their small size and heat generated.

AMCs produced with selective laser melting (SLM) have
attracted all embracing attention in the lightweight applica-
tion fields [34]. AMCs manufactured by SLM efficiently
can accomplish greater mechanical properties compared to
conventional manufacturing. Martin et al. [35] reported
crack-free AA7075 elements achieved by mixing nano-
ZrH2 particles with 7075 powder before SLM. All through
solidification, the recently shaped Al3Zr phase obviously
assisted granule modification, because of which the mechan-
ical properties are enhanced. Gu et al. [36] discussed that the
effect of nanoparticle reinforcement on the strength and
ductility of materials is enhanced simultaneously as manu-
factured by SLM. Zhang et al. [37] fabricated SiC/AlSi10Mg
composites by SLM technique, and the microstructure and
mechanical properties of composites are investigated. The
AMCs show the highest yield strength and modulus among
values of 408MPa and 90GPa, respectively. In the current
research work, the AMCs-B4C-Gr-Fe3O4 hybrid composite
is fabricated by selective laser melting (SLM) and investi-
gated tensile, hardness, and microstructure.

2. Experimental Details

2.1. Powder Preparation. The experiment’s matrix materials
were A356 alloy powder (60m, =2.662 g/cc) acquired from
Bhoomi Metal & Alloys in Maharashtra. B4C powder
(30m, 2.25 g/cc), Gr powder (100m, 2.26 g/cc), and Fe3O4
powder (60m, 4.9 g/cc) were acquired from Intelligent Mate-
rials Private Limited in Punjab and Saveer Biotech Limited
in Uttar Pradesh, respectively. In a planetary ball mill, three
samples (2, 4, and 6) of the A356-B4C-Gr-Fe3O4 hybrid
composite powder were prepared. The details of the sample
powder are mentioned in Table 1.

2.2. SLM Process. The A356-B4C-Gr-FE3O4 specimens were
created on an SLM machine designed by ARCI in Hydera-
bad, India, as shown in Figure 1. An SLM machine is fitted
with a fiber laser with a wavelength of 1076 nm. The entire
experiment was carried out with a continuous-wave laser
with a power of 400W and a spot size of 110m. To prevent
the specimens from oxidising, the SLM procedure was car-
ried out in a vacuum, as described in earlier literature
reviews [25–27]. The pressure in the chamber was fixed at
6 × 10−3 Pa. In addition, an argon gas flow was incorporated
into the experimental setting in order to evaluate the impact
of atmospheric conditions on the make superiority. The
chamber was emptied to the abovementioned pressure. Dur-
ing laser irradiation, the chamber pressure was adjusted to
1.5·103 Pa by using argon gas to produce flow. Table 2 and

2 Journal of Nanomaterials



Figure 2 show the process parameters and SLM procedure.
The experiment was carried out with each combination of
process parameters to construct single-layer samples with a
dimension of 14mm × 100mm.

3. Testing of Composite

3.1. Microstructural Investigation. The optical microscope
was used to examine the SLM specimens, as illustrated in
Figure 3. To produce a better disparity, the samples were
ground with 220, 400, 600, and 1000 grades of emery paper,
then refined with diamond suspensions of 6, 4, and 2mm
diameters, and etched using Kroll’s reagent (15mL of HF,
40mL of HNO3, and 60mL of water, ASTM E407) for 30
seconds. Optical microscopy was used to investigate the
microstructure (1000x magnifications, GX51, Olympus).

3.2. Microhardness.When test samples are very small or thin
in a composite sample, microhardness testing is a technique
for estimating a material’s hardness on a microscopic scale.
Microhardness was assessed on this specimen using UHL
VMHT digital microhardness equipment, as illustrated in
Figure 4. Ranges of indents may be completed on the sample
with the aid of computer control, and the hardness can be
computed (load range from 0.3 to 30 kgf) for the purpose
of detachment from an orientation point. This microhard-

ness apparatus is very well suited to create fractures on the
sample surface, allowing the rupture robustness to be
assessed.

3.3. Tensile Test. Microtension tests are used to measure the
strength and ductility of nanocomposites under uniaxial
tensile stresses in the development of novel alloys for quality
control, commercial shipment acceptance testing, and
structural design assistance. It was validated in accordance

Start

Draw and prepare 3D model of
the required specimen

3D CAD model converted into
.stl file format

Manufacturing process:
Physical model start

Sliced work start: Layer by
layer sliced by using slicing

Build the full specimen of 3D
CAD model

Final specimen with accurate
dimension

Figure 2: Flow chart of SLM process.

Figure 3: Optical microscope.

Figure 1: The SLM experimental setup.

Table 2: The list of SLM process machine specifications and laser
process parameters.

Fiber laser 400W

Spot sizes 80-115 μm

Scan processing speed 10m/s

Build area 280 × 280 × 365mm

Layer thickness 20-100 μm

Platform heating 200°C

Table 1: Sample powder details.

Sample no. Composite powder A356 B4C Gr FE3O4

1

A356-B4C-Gr-FE3O4

94 2 2 2

2 88 4 4 4

3 82 6 6 6

Figure 4: Microhardness tester (UHL VMHT digital).
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with ASTM B-557M standards using three specimens, each
measuring 100mm in length and 14mm in diameter, as
illustrated in Figure 5 for each AMC family. The microten-
sion was customary in any form at room temperature specif-
ically the methods of determination of yield strength, yield
point, elongation, tensile strength, and reduction of area.
The multipurpose microtensile testing machine type (Max.
static load ± 3000N andMax. dynamic load ± 2500N) among
dutiful seize is used to hold the tensile specimen as shown in
Figure 6.

3.4. SEM. In the microanalysis and failure analysis of nano-
composites, scanning electron microscopy (SEM) is used
very professionally. It is done at high exaggerations, pro-
duces high-resolution pictures, and precisely measures very
small facial features and objects. By rastering a focused
electron beam across the surface and distinguishing between
generated and backscattered electron signals, SEM offers
comprehensive high-resolution images of the material.
Figure 7 shows the SEM.

4. Result and Discussion

4.1. Microstructure. Figure 8 shows the fascia microstruc-
tures of A356 with 2, 4, and 6% B4C-Gr-Fe3O4 at magnifica-
tions of 100. The nanocomposite specimen remained
sophisticated in terms of removing particles from the sur-
face. Optical microscopes are expected to support particle
distribution vestiges. The additive manufacturing process
was inspected under an optical microscope to determine
the specimen reinforcement pattern. The homogeneous dis-
persion of nanoparticles in the matrix material of the A356
alloy was clearly visible. The presence of nanoparticles leads
to the formation of cracks, which leads to elastic deforma-
tion with increases in load. Composite rupture is represented
by dimples, voids, clusters, and cracks. Fragile composite
fracture in the form of cracks and rupture is due to the
strong interfacial bonding between the reinforcements and
the A356 matrix.

ø 14ø 11.5

20

50

100

R 5

20

Figure 5: Microtensile test specimen.

Figure 7: Scanning electron microscopy (SEM).

Figure 6: Multipurpose microtensile testing machine.
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4.2. Microhardness. The specimen for the microhardness test
was prearranged with a length and diameter of 10mm × 12
mm. The surface to be examined should have a metallo-
graphic finish; hence, emery sheets of various grit sizes
(100-1000) were used to finish the surface.

Dimples

Microstructure of A356 with 2% of B4C-Gr-Fe3O4

Microstructure of A356 with 4% of B4C-Gr-Fe3O4

Microstructure of A356 with 6% of B4C-Gr-Fe3O4
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Figure 8: Microstructure of A356 with reinforcement B4C-Gr-Fe3O4.

Table 4: Ultimate strength value of A356 with B4C-Gr-Fe3O4
hybrid composites.

Ultimate strength value (N/mm2)

A356 with 2% B4C-Gr-Fe3O4 260.10

A356 with 4% B4C-Gr-Fe3O4 290.06

A356 with 6% B4C-Gr-Fe3O4 325.43
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Figure 9: The microhardness values.
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Figure 10: Stress vs. strain (UTS value in N/mm2).

Table 3: Microhardness value of A356 with B4C-Gr-Fe3O4 hybrid
composites.

Microhardness value (VHN)

A356 with 2% B4C-Gr-Fe3O4 144

A356 with 4% B4C-Gr-Fe3O4 163

A356 with 6% B4C-Gr-Fe3O4 188
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Equation (1) calculates the microhardness:

MH= MAL
AI , ð1Þ

where,
MH is microhardness
MAL is maximum applied load, and
AI is the area of indentation.
The Vickers Hardness Number (VHN) for A356 with 2,

4, and 6% reinforcement is 144, 163, and 188, respectively.
With the reinforcement of 4% graphite and 3% ferrous
oxide, the microhardness value of LM25 was 112. As the per-
centage of graphite (Gr) in the composites increases, the
hardness of the normal particles falls [38]. When compared
to matrix A356 alloy, the combined BHN value of A356/Gr/
B4C is 63.1 and the hardness value of the hybrid composite
increased by roughly 56.1 percent. The harder B4C ceramic
particles are responsible for the increased hardness [39–41].
The research used A356 nanoparticles and reinforcements
to achieve the better improvement in microhardness demon-
strated in Figure 9 and Table 3.

4.3. Tensile Test. The ultimate tensile strength and stress-
strain of the composites are improved with increased rein-

forcement, as shown in Figure 10. The variance in ultimate
tensile strength with the AMMCs is shown in Table 4. The
load value of graphite and iron oxide (2, 4, and 6 percent)
increases as the boron carbide reinforcement is increased.
260.10, 290.06, and 325.43N/mm2 are the maximum ulti-
mate tensile strengths, respectively [40, 41].

4.4. FESEM. When the manufactured composite material
was subjected to fracture analysis, the results were as indi-
cated in Figure 11. The FESEM image of the broken surface
shows the mixing behaviour of ductile fracture, brittle frac-
ture, and ploughing of reinforced material. Ductile fracture
behaviour is caused by plastic deformation of the material
prior to fracture, which results in the creation of a hollow.
The quick and sudden fracture under stress causes brittle
fracture behaviour. Transverse ruptures cause the ploughing
fracture, which results in a deep hole-like cavity. All of these
point to the fracture mixing behaviour [41].

5. Conclusion

SLM successfully created hybrid nanocomposites of B4C-
GFe3O4 with varied reinforcements (2, 4, and 6). The
microstructural analysis demonstrated that particles were
distributed uniformly throughout the matrix material.

A356 with 2% B4C-Gr-Fe3O4

A356 with 4% B4C-Gr-Fe3O4

A356 with 6% B4C-Gr-Fe3O4

Figure 11: FESEM of tensile specimen (fracture analysis).
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Fractographic analysis was used to examine the tensile char-
acteristics of the produced MMCs. The following are the
results and conclusions of the hardness and tensile test:

(i) The microhardness of nanocomposite A356 with 2,
4, and 6% reinforcement is 144, 163, and 188 VHN,
according to the findings of a microhardness test

(ii) Tensile testing of nanocomposite A356 with 2, 4,
and 6% reinforcement yielded 260.10, 290.06, and
325.43N/mm2, respectively

(iii) The fractographic images reveal a combination of
ductile and brittle fracture behaviours, as well as
ploughing of reinforced material

(iv) Ductile fracture behaviour is caused by plastic
deformation of the material prior to fracture, which
results in the creation of a hollow. The quick and
sudden fracture under stress causes brittle fracture
behaviour. Transverse ruptures cause the ploughing
fracture, which results in a deep hole-like cavity
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