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Geopolymer concrete could be the best alternative to ordinary Portland cement concrete due to its higher performance in any
severe condition. It reduces the carbon footprints to a very higher level. Machine learning methods are the future of the
construction industry because it predicts the mechanical strengths of concrete mix design on the basis of their constituents
without destructive test conduction. This study is aimed at developing the models to predict the mechanical strengths and
validate them with the actual results. After the experimental investigation, we found the results of the mechanical (including
compressive, splitting tensile, and flexural tensile) strength. The M2 mix of geopolymer concrete got the highest mechanical
strengths whereas the M5 mix gets the lowest mechanical strengths among all the mix designs. The machine learning methods
ANN (artificial neural network) and random forest are used to develop the models based on mixed experimental results.
Mechanical strength results are taken as outputs, and mixed constituents are taken as inputs for training and testing. The
performance of predicted results is checked based on R2, MAE (mean absolute error), RMSE (relative mean square error), RAE
(relative absolute error), and RRSE (root-relative square error). Random forest models show the best prediction to the ANN
models because it shows the negligible error between actual and predicted values. The R2 value is 1 of 12 predicted results out
of 15 by the use of random forest methods. So it is most suitable to predict the strength of geopolymer concrete based on their
constituent’s material quantity.

1. Introduction

Concrete is a very important material for our society and
nation because the development of infrastructures is built
primarily on concrete [1]. Concrete is the second most used
material in the world after the water [2]. The production of
concrete increases exponentially day by day [3, 4]. Portland
cement is an essential and primary material for the produc-
tion of ordinary concrete [5]. Around one ton of carbon

dioxide is produced during the production of one-ton
cement. The higher carbon dioxide emissions cause global
warming [6, 7]. It deteriorates the ice of the Arctic and Ant-
arctica mountains near the north and south poles of the
earth [8]. Carbon dioxide shares around 50% of emissions
among all greenhouse gases [9]. The cement industries
contribute to around 8 percent of carbon dioxide emissions.
So the production of concrete directly contributes to the
increment in global warming.
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Geopolymer is highly effective over conventional concrete
due to better strength, durability, and performance in various
severe conditions also [10–12]. It shows better resistance to
acid attack, sulphate attack, elevated temperatures, and
freeze-thaw, wetting-drying, and seawater conditions [13–15].
It is eco-friendly, economic, and sustainable concrete over con-
ventional concrete. It directly affects the circular economy
through the usage of industrial symbiosis. The various factors
that affect the properties of the geopolymer concrete would
be curing condition and temperature, the molarity of sodium
hydroxide, alkaline ratio, superplasticiser dosage and type,
liquid to binder ratio, fly ash and GGBFS contents and compo-
sition, and gradation of aggregates [14–22].

The above-defined problem could be reduced by the pro-
duction of geopolymer concrete, because it would replace
the cement content with pozzolanic materials like fly ash,
GGBFS, rice husk ash, and calcined clay (metakaolin)
[23–26]. The production of geopolymer concrete directly
reduces the emission of carbon dioxides around 80 percent
of ordinary concrete production [27]. The geopolymer is a
name of bonding that is firstly stated by Prof. Davidovits
in 1978. The geopolymer concrete is made with a different
bonding pattern than the Portland cement bonding, in
which the alkaline solution is used to activate the pozzolanic
material to react with each other. Sodium or potassium
hydroxide and sodium or potassium silicate are used as alka-
line solutions in the geopolymer concrete [28–34]. It reacts
with the alumino-silicates that are present in the pozzolanic
material and make bonds. It makes the bond-like K+ or N
a+‐ðAl‐O‐Si‐OÞn – xH2O, whereas the calcium silicate
hydroxide (C-S-H) bonds are made in the Portland cement
reaction. Geopolymerisation is a process of reaction to build
geopolymer bonds from the basic constituents. It occurs
during the reaction of alumino-silicate to alkaline solution
in the presence of water to make up to end products [35].
The geopolymer concrete is highly resistant to acid attack,
sulphate attack, seawater conditions, freeze-thaw conditions,
and other severe conditions compared to ordinary Portland
cement concrete [36, 37]. The geopolymer concrete is easily
usable in the construction of columns, beams, piles, and
slabs. It can also be usable in the stabilization of soils by
the mixing of materials with the weaker soils [38]. The geo-
polymer constituents are fly ash, GGBFS, sodium hydroxide,
sodium silicate, superplasticiser, aggregates, and water. The
mechanical property analysis is done over many years, in
which various research stated the optimum point to get
maximum strength and performance.

The alkali-activated concrete and geopolymer concrete
are different due to their reaction occurring during strength
and hardenings. In both concrete, the constituents are the
same, but the geopolymer concrete makes the geopolymer
bonds but the alkali-activated concrete makes the C-S-H
bonds, and it is the same bond constructed by the Portland
cement in the geopolymer bond formation of silica and alu-
mina bonds ðAl −O − Si −OÞn. In the geopolymer concrete,
all constituents have their unique importance. The pozzola-
nic materials are industrial solid wastes that reduce the waste
storage area and reduce the pollution developing due to waste
management and Portland cement production. The sodium

hydroxide and sodium silicate work as catalysts to activate
pozzolans to react and make bonds. A superplasticiser is used
to make the concrete workable at less water content.

Nowadays, the predictions of the mechanical strength of
the geopolymer concrete are performed by the use of
machine learning methods like ANN (artificial neural net-
work), GEP (gene expression programming), multiple linear
regression, generalized linear modelling, quadratic polyno-
mial regression, support vector machine, random forest,
and extreme gradient boosting [39–46]. The mechanical
strength (compressive strength, splitting tensile, and flexural
strength) would vary with the variation in the constituent’s
material quantity. Machine learning methods develop a
model to predict the compressive strength and other
strengths on the basis of the quantity of the constituent
material [47, 48]. The numerical models are developed by
the machine learning methods, and the performance of the
developed model is analysed by the R2 value [49–52]. If it
is near 1, then the numerical models provide higher accuracy
in the prediction of strength [53].

2. Research Significance

The geopolymer concrete samples were cast in the laborato-
ries and get the mechanical (compressive, splitting tensile,
flexural) strength via experimental analysis. The research
significance of this study is to predict the mechanical
strength of the geopolymer concrete by the use of artificial
neural networks and random forest algorithm machine
learning methods. The predicted values are validated by
the experimental results, and we check the accuracy of the
prediction of the results. The numerical models are devel-
oped by the ANN and random tree methods separately.
The predicted result performance was evaluated by the R2,
MAE (mean square error), RMSE (root mean square error),
RAE (relative absolute error), and RRSE (root-relative
square error).

3. Experimental Programme

3.1. Materials. In the geopolymer concrete mix, the GGBFS
and fly ash were used as binding materials, whereas sodium
hydroxide and sodium silicate are used as alkaline solutions.
The coarse aggregates of 20mm are used as maximum size
aggregates, and the stone dust or m-sand is used as fine
aggregates in the GPC. The SNF-based SP Conplast 430 is
used as a superplasticiser in the GPC. SEM analysis was con-
ducted on the fly ash and GGBFS, which clarified that the fly
ash is spherical and porous, whereas the GGBFS particles are
irregular in nature. Table 1 depicts the mineral oxides pres-
ent in the fly ash and GGBFS. Sodium hydroxide and
sodium silicate were purchased from CDH Chemicals
Private Limited, in which sodium hydroxide flakes have 98
percent of the minimum assay, whereas sodium silicates
are alkaline in nature. Coarse aggregate and fine aggregates
were collected from the locally available materials. Various
tests were conducted on the coarse and fine aggregates to
check their properties that meet the standards [49–52,
54–58]. Table 2 describes the properties of the fine aggregates
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that are found in the laboratory test analysis. Table 3 depicts
the properties of the coarse aggregates that are found through
the experiment tests conducted in the laboratories. After the
laboratory’s tests, it is concluded that the coarse and fine
aggregates are suitable for further investigation. Tap water
is used in the mixing of geopolymer concrete that has a pH
value of 7 [59].

3.2. Synthesis. Table 4 depicts the 10 mix designs of the geo-
polymer concrete, in which the GGBFS to fly ash ratio varies
from 0 to 0.75 as binding materials, and after, the extra water
varies from 5% to 30% of the binder. Sodium and sodium
silicate solutions were made 20-24 hours before mixing
and casting the samples. The pan mixer was used for the
mixing of geopolymer concrete for 15 minutes [60]. After
the mixing, the slump test was conducted on the mix to find
their workability. The fresh mix geopolymer concrete was
cast in the cubes, cylinders, and prism moulds of 150mm
× 150mm × 150mm, 150mm × 300mm, and 100mm ×
100mm × 500mm, respectively, for the sample preparation
[61–63]. The casted samples were demoulded after three
days. The samples were cured in the oven at 60°C for 24
hours after demoulding.

3.3. Experimental Test Setup. The mixed design specimens
were tested to find the compressive strength, splitting tensile
strength, and flexural tensile strength. All mix design
samples were tested after 7 days, 14 days, 28 days, 42 days,
and 56 days of casting. Cube samples were used to find
compressive strength, cylindrical specimens were used to
splitting tensile, and prism shape specimens were used for
flexural strength. Cube samples were weighed after 28 of
casting, which calculates the density of the samples.

4. Modelling

Two machine learning methods were used to model: artifi-
cial neural networks (ANN) and random forest.

4.1. ANN (Artificial Neural Network). ANN architecture is
primarily composed of the following elements: the inputs,
the weights, the sum function, the activation function, and
the outputs. In the ANN work areas, the weights modify
the input signals, which are summed with the bias term as
shown in equation (1). One of the most important features
of an ANN design is its sum function, which is comprised
of the inputs and weights [46]. The ANN operates in the fol-
lowing ways. The input signals are changed by the weights,
and the modified signals, combined with the bias term, are
summed together as shown in

y = f 〠
n

i=0
xiwi − b

 !
, ð1Þ

where “f ” represents the activation function and the xi
weight of the ith input neuron n represents the number of
neurons, and b is the bias term, with the result being denoted
as y; the output of the neural network (equation (1))
includes an input for the activation function “f ,” which is
referred to as “sum” in the equation. Multiple feedforward
artificial neural networks (ANN) use sigmoid functions,
which are mathematical functions having “S”-shaped curves,
to activate the network’s layers. When we look at equation
(2), the variable ∝ serves as a constant for controlling gradi-
ent in the semilinear zone.

f tð Þ = 1
1+e−∝t

, where t = 〠
n

i=0
xiwi − b: ð2Þ

The signals are sent to the next layers of the network
until the required outputs are attained. If the computed out-
put differs from the desired goal, the error is calculated and
the error is propagated backwards through the network from
the output layer to the input layer. The weights are adjusted
in response to the signal that has been reflected back. The
errors of the output nodes are propagated to all of the nodes
of the hidden layers, resulting in each node in the hidden
layers being given “blame” for the mistake that occurred.

To produce an accurate forecast of the intended output,
the ANN (artificial neural network) must be trained. Nor-
mally, data would be divided into two categories: training
and testing. The coefficient of determination (R2), mean

Table 1: Mineral composition of GGBFS and fly ash.

Characteristics SiO2 Al2O3 CaO Fe2O3 MgO SO3 LOI

Fly ash (%) 45.8 21.4 13.7 12.6 1.3 1.9 0.1

GGBFS (%) 34.52 20.66 32.43 0.57 10.09 0.77 0.3

Table 2: Properties of fine aggregate/stone dust (m-sand).

Test Results

Zone Zone II

Grade Well graded

Fineness modulus 2.756 (medium sand)

Specific gravity 2.62

Water absorption 1.21%

Silt content 6%

Bulk density 1610 kg/m3

Table 3: Properties of the coarse aggregate.

Test Results

Fineness modulus 7.29

Specific gravity 2.79

Water absorption 0.2%

Crushing value 23%

Impact value 22%

Flakiness index 24%

Elongation index 30%

Abrasion value 8%
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absolute error (MAE), root mean square error (RMSE),
relative absolute error (RAE), and root-relative square error
(RRSE) may be used to assess the accuracy of the ANN
created in predicting the intended output of the test data.

4.2. Random Forest Tree Algorithm. Random forests are a
type of tree predictor in which the values of a random vector
gathered independently and with the same distribution for
all trees in the forest are used to forecast each tree’s behav-
iour. The generalisation error converges a.s. to a limit as
the number of trees in a forest grows bigger. The generalisa-
tion error of a forest of tree classifiers is determined by the
strength of individual trees in the forest and their associa-
tion. The error rates are equivalent to AdaBoost when a ran-
dom selection of features is employed to split each node, but
they are more robust in terms of noise. Internal estimates are
used to assess error, strength, and correlation as a response
to increasing the number of features utilised in the splitting.
Internal estimations are also used to establish whether or not
variables are important. These ideas can be applied to regres-
sion as well. For predicting, random forests are a useful tool.
The law of large numbers prevents them from overfitting.
When the right kind of randomness is supplied, they become
accurate classifiers and regressors. In addition, the frame-
work sheds light on the random forest’s forecasting capacity
in terms of the strength of individual predictors and their
relationships. Using out-of-bag estimates, the otherwise
theoretical values of strength and correlation become
concrete [64].

5. Results and Discussion

This section describes the experimental results and pre-
dicted results via machine learning methods and validates
them together.

5.1. Experimental Results. The experimental section
describes the slump, density, compressive strength, splitting
tensile strength, and flexural strength of the all-mix designs.
Slump tests were conducted before the casting of moulds of
the plastic mix of the GPC. The density of the design mix of
the GPC was calculated after the 28 days of the casting by

the weight of the cube specimens before the compressive
strength test. The mechanical strength including compres-
sive strength, splitting tensile strength, and flexural strength
was tested after 7 days, 14 days, 28 days, 42 days, and 56 days
of the GPC mix casting. All the mechanical properties vary
similarly with the mixed design. After 28 days, the compres-
sive strength and all other strengths gained 95 percent
strength of total strength. The mechanical strength varied
from the ratio of GGBFS to fly ash from 0.00 to 0.75 and
got the optimum point at a 0.25 ratio mix. The GPC mix
varied the extra water from 5% to 30% of binder content.
The optimum point of the mechanical properties was found
at 20% of the binder content. The maximum compressive
strength, splitting tensile, and flexural strength are
32.9MPa, 4.8MPa, and 5.3MPa, respectively, after 56 days
of casting. Tables 5–7 depict the compressive strength, split-
ting tensile strength, and flexural strength values found after
the experimental tests.

5.2. Modelling Analysis. In the modelling analysis, ANN and
random forest algorithm machine learning methods are used
for the prediction of compressive strength, splitting tensile
strength, and flexural strength. Figure 1 shows the working
flow chart of the regression model. It shows the total process
of the regression work. It starts with data collection which
includes the input and output data with their variables. After
that, it shows the data preparation for training and testing
separately. The training data process the input data with
their parameters and classify them. After the completion of
training, data were tested with the other remaining datasets.
After the completion of training, testing of the data validates
the results as output.

5.2.1. ANN Result Analysis. Artificial neural networks are
becoming more popular because they could be used to solve
a broad variety of problems in science and engineering. Pre-
dictive statistical models of complex processes that are non-
linear in nature, such as biological systems, are often
employed in this technique. It is possible to simulate a broad
spectrum of complex system behaviour with the help of an
ANN. Neuron components are used to describe the ANN’s
functioning, which is much more like a normal human

Table 4: Mix designs.

Mix
designs

Fly ash
(kg/m3)

GGBFS
(kg/m3)

Coarse aggregate
(kg/m3)

Fine aggregate
(kg/m3)

NaOH solution
(kg/m3)

Sodium silicate
(kg/m3)

Superplasticiser
(kg/m3)

Extra water
(kg/m3)

M1 405 — 1269 683 81.0 (13M) 81.0 — 81

M2 303.75 101.25 1269 683 81.0 (13M) 81.0 — 81

M3 202.5 202.5 1269 683 81.0 (13M) 81.0 — 81

M4 101.25 303.75 1269 683 81.0 (13M) 81.0 — 81

M5 303.75 101.25 1269 683 81.0 (13M) 81.0 — 0

M6 303.75 101.25 1269 683 81.0 (13M) 81.0 — 20.25

M7 303.75 101.25 1269 683 81.0 (13M) 81.0 — 40.5

M8 303.75 101.25 1269 683 81.0 (13M) 81.0 — 60.75

M9 303.75 101.25 1269 683 81.0 (13M) 81.0 — 101.25

M10 303.75 101.25 1269 683 81.0 (13M) 81.0 — 121.5
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brain. To put it another way, “garbage in and garbage out”
refers to a way of computer works, as input parameters are
used to duplicate the system’s process in order to decide
the output. To build an ANN model, the input and output
components must be included with the latter being con-
trolled by the former. The ANN principle is made up of a
network of interconnected neurons, each of which carries
its own weight. This means that the model’s answer is found
by multiplying the weight by the network’s total number of
signals. There are three layers in a basic ANN network: the

input layer, the hidden layers, and the output layer. Before
data training, the input and output layers are defined, and
the hidden layer on the other hand is discovered by trial
and error during data training. Figure 2 represents a com-
mon ANN architectural model. It describes the initially put
input of 10 datasets of 10-attribute numeric type and after
applying the regression method multilayer perception on
that. After the input is applied, target the 15 classes.

The model is composed of input factors
(x1, x2, x3, x4 ⋯ xn) and weights (w1,w2,w3,w4 ⋯wn), with
weights (y1, y2, y3, y4 ⋯ yn) for each factor. Singular value or
sum function (sigmoid) processing is the ultimate processing
method, and it has the final impact on the outputs. As a result,
equation (1) provides a broad description of the analogy.

It has been shown in the study that the ANN technique
is capable of anticipating significant responses regardless of
whether the data being processed is riddled with errors or
missing information. The ANN method is divided into three
stages which are learning, training, and model performance
evaluation. The first of these efforts is education. The output
variables are predicted correctly during the training stage,
and the network’s weights and biases (supervised or unsu-
pervised) are modified to ensure that the output variables
are predicted reliably. The supervised training approach
constructs a model using previously completed experimental
data, while the unsupervised training method does not
employ real-world input and output data. During the testing
stage, the network may react to the input without modifying
the overall network architecture.

After a series of trials and errors, the best ANN model
may be found at the end of each stage of development. At
some point in the learning process, Alshihri realized that it
was feasible to continue developing a large number of
networks, at which time the process could be paused and
evaluated at various points in the learning process. Use

Table 7: Flexural strength in MPa.

Mix designs 7 days 14 days 28 days 42 days 56 days

M1 2.5 3.0 3.5 3.6 3.6

M2 3.1 4.0 5.0 5.2 5.3

M3 2.9 3.7 4.5 4.7 4.9

M4 2.7 3.6 4.2 4.4 4.6

M5 2.1 2.4 3.0 3.2 3.3

M6 2.5 3.1 3.7 3.9 4.0

M7 2.8 3.5 4.2 4.4 4.5

M8 3.0 3.8 4.6 4.7 4.8

M9 2.9 3.6 4.4 4.6 4.7

M10 2.7 3.2 4.0 4.2 4.3

Training
classifier

Data collection

Dataset preparation

Training dataset

Testing dataset

Start

Load training data

Set input parameter

Input training data into
calssifier

Input parameters (10) and output
parameter (15)

Input training data into
calssifier

Validating classifier

Get result a�er training

Training
finished

Training
finished

End

Figure 1: Regression working flow chart.

Table 5: Compressive strength in MPa.

Mix designs 7 days 14 days 28 days 42 days 56 days

M1 21.5 25.4 28.3 28.7 29.0

M2 24.4 29.1 32.1 32.6 32.9

M3 22.9 26.4 29.6 30 30.2

M4 21.7 25.1 28.4 29.0 29.3

M5 16.2 18.1 19.9 20.3 20.8

M6 21.3 23.8 26.9 27.3 27.7

M7 23.6 27.6 30.8 31.2 31.6

M8 24.1 28.9 31.9 32.4 32.6

M9 24.0 28.4 31.6 32.0 32.4

M10 23.4 27.6 30.2 30.8 31.1

Table 6: Splitting tensile strength in MPa.

Mix designs 7 days 14 days 28 days 42 days 56 days

M1 2.3 2.8 3.1 3.2 3.2

M2 2.9 3.8 4.6 4.7 4.8

M3 2.7 3.6 4.3 4.5 4.6

M4 2.6 3.4 3.9 4.1 4.2

M5 1.9 2.2 2.8 2.9 3.0

M6 2.2 2.9 3.6 3.8 3.9

M7 2.6 3.4 4.0 4.2 4.3

M8 2.8 3.8 4.4 4.6 4.7

M9 2.7 3.6 4.3 4.5 4.6

M10 2.5 3.2 3.9 4.2 4.3
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different random weights to reexamine the network, and
keep going until you get the results you want. When it comes
to selecting the best neural network model, R2 (result coeffi-
cient) and MSE (mean square error) are the most important
metrics to consider. MATLAB software was used to evaluate
the ANN model’s performance. The straining and recall
techniques were used to build the model utilizing the error
backpropagation approach. Lee claims that this approach
can deal with issues involving several variables (multidimen-
sional). Table 8 shows the datasets that were used for model
development in this study. An LM multilayer feedforward
backpropagation model was used to train the data, which
is easily accessible in the MATLAB computing environment

and is based on the feedforward backpropagation model. A
total of 250 samples of data (including those from this study
and others like it) were used to compile the database for this
study’s findings. Seventy percent of the input data was uti-
lized in the learning phase, and fifteen percent was used in
each of the testing and validation stages. The data in
MATLAB were automatically normalized rather than manu-
ally dividing using the maximum values, which was done by
hand in MATLAB. The procedure was done multiple times
until the best model that met the R2 and MSE conditions
was found.

Geopolymer concrete’s compressive strength, splitting
tensile strength, and flexural strength may be calculated by

Figure 2: ANN architecture that best models the performance of the geopolymer concrete.
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using an empirical model. Input data of the geopolymer con-
crete that was formed included fly ash and GGBS as well as
extra water, slump value, density, sodium hydroxide, sodium
silicate, coarse and fine particles, and superplasticiser. The
output data included the kind of concrete produced and
the type of concrete produced. The most important output
variables are compression strength, split tensile strength,
and flexural strength. Various testing periods of 7, 14, 28,
42, and 56 days were included in the output data (age). To
achieve the lowest feasible mean squared error (MSE), the
ANN architecture shown in Figure 2 has been optimized to
represent the concrete’s behaviour. An estimated ten neu-
rons are found in the input phase, twelve are in the hidden
layer, and fifteen are in the output layer. For the selected
model, the correlation and error analysis results are shown
in Tables 9, 10, and 11. Results in Tables 5, 6, and 7 show
that the model selected fits the criterion for error perfor-
mance in a neural network model of artificial intelligence.
In the case when a model’s R2 is near one and its MSE is
modest, it shows that the predicted and actual data are per-
fectly correlated. When it comes to ANN models, it is widely
accepted that the better the model, the better it is in foretell-
ing the future behaviour of a system. Errors were calculated
by using the following mathematical formulas to determine
the R2, MAE, RMSE, RAE, and RRSE:

R2 = n∑xiyi−∑xi∑yið Þ2

n∑x2i − ∑xið Þ2
� �

n∑y2i − ∑yið Þ2
� � ,

MAE = 1
n
〠
n

i=1
xi − yij j,

RMSE =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

� �
〠
n

i=1
xi − yij j2

s
,

RAE = ∑n
i=1 xi − yij j

∑n
i=1 xi − 1/nð Þ∑n

i=1xij j ,

RRSE =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑n
i=1 xi − yið Þ2

∑n
i=1 xi − 1/nð Þ∑n

i=1xið Þ2
s

,

ð3Þ

where “x” represents the experimental value, “y” repre-
sents the predicted value, and “n” represents the total
number of values.

As shown by the chosen network architecture’s perfor-
mance, the projected and actual testing results on geopoly-
mer concrete are highly compatible. While maintaining a
high degree of accuracy in its predictions, the chosen model
can provide both input and output data for the tested con-
crete. A low matching percent error for the anticipated
strength further supports the model’s usefulness, indicating
that the prediction made by this model is statistically reli-
able. This conclusion shows that the model’s performance
may be relied on in absolute terms because of the proximity
of the datasets (predicted and actual). This demonstrates
that the selected model is capable of accurately responding
to a system with a high degree of confidence in its perfor-
mance. Tables 12, 13, and 14 show the validation of results
between actual and predicted values by both the ANN model
and the random tree method. Tables 9, 10, and 11 show the
performance of the machine learning method model for the
prediction of mechanical strength to the actual results found
through experimental analysis.

5.2.2. Random Forest Results.We provide a simple and effec-
tive random forest in this study. It is executed on the server
to process the data collected from the input. The random
forest algorithm illustrates the suggested model’s definition
and process flow, respectively. Table 12 shows the validation
between the compressive strength of actual output vs. pre-
dicted output by both ANN and random tree. Table 9 shows
the performance of prediction with their limited error of
compressive strength. Similarly, Tables 13 and 14 show val-
idation of splitting tensile and flexural strength between
actual experimental and predicted values. Tables 10 and 11
show the performance of prediction with their limited error
of splitting tensile and flexural strength.

Table 12 describes the compressive strength value at 7
days, 14 days, 28 days, 42 days, and 56 days, which includes
the actual value and predicted value. ANN and random
forest tree machine learning methods were used to predict
the compressive strength. The random forest tree method
predicted a more accurate compressive strength than the

Table 8: Input and output specification for the model development.

Input data Minimum Maximum

Fly ash (kg/m3) 405 101.25

GGBFS (kg/m3) 0 303.75

Extra water (kg/m3) 0 121.5

Slump (mm) 0 190

Density (kg/m3) 2406 2506

Coarse aggregate (kg/m3) 1269 1269

Fine aggregate (kg/m3) 683 683

NaOH solution (kg/m3) 81 81

Sodium silicate (kg/m3) 81 81

Superplasticiser (kg/m3) 4.05 4.05

Output data

Compressive strength (MPa)

7 days 16.2 24.4

14 days 18.1 29.1

28 days 19.9 32.1

42 days 20.3 32.6

56 days 20.8 32.9

Splitting tensile (MPa)

7 days 1.9 2.9

14 days 2.2 3.8

28 days 2.8 4.6

42 days 2.9 4.7

56 days 3 4.8

Flexural strength (MPa)

7 days 2.1 3.1

14 days 2.4 4

28 days 3 5

42 days 3.2 5.2

56 days 3.3 5.3
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ANN method. Ten data are used at the same time for indi-
vidual compressive strength. This table contains the 150
datasets of the compressive strength, whereas the actual data
are 50 and the predicted data are 100.

The analysis, known as the sensitivity analysis, was
conducted to determine the impact of each variable on the
prediction of the mechanical strength of GPC. It is impor-
tant to understand how each of the input parameters will

Table 9: Compressive strength performance analysis evaluation between actual experimental results and predicted results.

7 days 14 days 28 days 42 days 56 days
Random tree ANN Random tree ANN Random tree ANN Random tree ANN Random tree ANN

R2 1 0.9992 1 0.9997 0.9999 0.9982 0.9999 0.999 1 0.9984

MAE 0 0.0886 0 0.0739 0.02 0.2593 0.02 0.1943 0 0.258

RMSE 0 0.1146 0 0.104 0.0447 0.3193 0.0447 0.2374 0 0.3088

RAE 0 5.19% 0% 3.14% 0.81% 10.47% 0.81% 7.82% 0% 10.54%

RRSE 0 4.98% 0% 3.33% 1.30% 9.30% 1.29% 6.87% 0% 9.08%

Table 10: Splitting tensile strength performance analysis evaluation between actual experimental results and predicted results.

7 days 14 days 28 days 42 days 56 days
Random tree ANN Random tree ANN Random tree ANN Random tree ANN Random tree ANN

R2 1 0.9994 1 0.9978 1 0.9991 1 0.9984 1 0.9983

MAE 0 0.0108 0 0.0333 0 0.0267 0 0.0359 0 0.0363

RMSE 0 0.013 0 0.0459 0 0.0356 0 0.0484 0 0.05

RAE 0 4.56% 0 8.40% 0 6.15% 0 7.77% 0 7.63%

RRSE 0 4.50% 0 9.52% 0 6.50% 0 8.44% 0 8.49%

Table 11: Flexural tensile strength performance analysis evaluation between actual experimental results and predicted results.

7 days 14 days 28 days 42 days 56 days
Random tree ANN Random tree ANN Random tree ANN Random tree ANN Random tree ANN

R2 1 0.9985 1 0.9989 1 0.9987 1 0.9998 1 0.9999

MAE 0 0.0159 0 0.0188 0 0.0319 0 0.0144 0 0.0114

RMSE 0 0.0185 0 0.0269 0 0.0423 0 0.0188 0 0.0149

RAE 0 7.25% 0 5.05% 0 7.13% 0 3.18% 0 2.38%

RRSE 0 6.64% 0 6.03% 0 7.64% 0 3.38% 0 2.56%

Table 12: Compressive strength validation between actual experimental results and predicted results.

7 days 14 days 28 days 42 days 56 days

Actual
Predicted

Actual
Predicted

Actual
Predicted

Actual
Predicted

Actual
Predicted

Random
tree

ANN
Random
tree

ANN
Random
tree

ANN
Random
tree

ANN
Random
tree

ANN

21.5 21.5 21.48 25.4 25.4 25.388 28.3 28.3 28.265 28.7 28.7 28.671 29 29 28.959

24.4 24.4 24.173 29.1 29.1 28.955 32.1 32 31.822 32.6 32.5 32.361 32.9 32.9 32.599

22.9 22.9 22.904 26.4 26.4 26.367 29.6 29.6 29.393 30 30 29 30.2 30.2 29.926

21.7 21.7 21.538 25.1 25.1 24.882 28.4 28.4 27.806 29 29 28.546 29.3 29.3 28.77

16.2 16.2 16.204 18.1 18.1 18.111 19.9 19.9 19.928 20.3 20.3 20.338 20.8 20.8 20.834

21.3 21.3 21.177 23.8 23.8 23.653 26.9 26.9 26.478 27.3 27.3 26.97 27.7 27.7 27.308

23.6 23.6 23.47 27.6 27.6 27.477 30.8 30.8 30.42 31.2 31.2 30.937 31.6 31.6 31.204

24.1 24.1 24.19 28.9 28.9 28.939 31.9 32 31.959 32.4 32.5 32.452 32.6 32.6 32.683

24 24 23.886 28.4 28.4 28.401 31.6 31.6 31.156 32 32 31.714 32.4 32.4 31.982

23.4 23.4 23.387 27.6 27.6 27.588 30.2 30.2 30.052 30.8 30.8 30.716 31.1 31.1 30.99
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affect the projected outcome because they are crucial to the
accuracy of the models that are used for prediction. Each
input parameter contributed to the predicted output of the
mechanical strength of GPC.

Table 9 depicts the coefficient of determination (R2),
mean absolute error (MAE), root mean square error
(RMSE), relative absolute error (RAE), and root-relative
square error (RRSE) values of predicted compressive
strength to the actual experimental results of both machine
learning methods. The random forest tree model is more rel-
evant to the ANN model in all-day compressive strength.
The random forest tree method shows a determination coef-
ficient value of 1 at 7 days, 14 days, and 56 days, whereas the
ANN model does not show a determination coefficient value
of 1 in any day prediction.

Table 13 describes the splitting tensile strength value at 7
days, 14 days, 28 days, 42 days, and 56 days, which includes
the actual value and predicted value. ANN and random
forest tree machine learning methods were used to predict
the splitting tensile. The random forest tree method pre-
dicted more accurate splitting tensile strength than the

ANN method. Ten data are used at the same time for indi-
vidual compressive strength. This table contains the 150
datasets of the compressive strength, whereas the actual data
are 50 and the predicted data are 100.

Table 10 depicts the coefficient of determination (R2),
mean absolute error (MAE), root mean square error
(RMSE), relative absolute error (RAE), and root-relative
square error (RRSE) values of predicted splitting tensile
strength to the actual experimental results of both machine
learning methods. The random forest tree model is more rel-
evant to the ANN model in all-day splitting tensile strength.
The random forest tree method shows a determination coef-
ficient value of 1 at 7 days, 14 days, 28 days, 42 days, and 56
days, whereas the ANN model does not show a determina-
tion coefficient value of 1 in any day prediction.

Table 14 describes the flexural strength value at 7 days,
14 days, 28 days, 42 days, and 56 days, which includes the
actual value and predicted value. ANN and random forest
tree machine learning methods were used to predict flexural
strength. The random forest tree method predicted more
accurate flexural strength than the ANN method. Ten data

Table 13: Splitting tensile strength validation between actual experimental results and predicted results.

7 days 14 days 28 days 42 days 56 days

Actual
Predicted

Actual
Predicted

Actual
Predicted

Actual
Predicted

Actual
Predicted

Random
tree

ANN
Random
tree

ANN
Random
tree

ANN
Random
tree

ANN
Random
tree

ANN

2.3 2.3 2.297 2.8 2.8 2.802 3.1 3.1 3.103 3.2 3.2 3.204 3.2 3.2 3.203

2.9 2.9 2.876 3.8 3.8 3.814 4.6 4.6 4.615 4.7 4.7 4.716 4.8 4.8 4.811

2.7 2.7 2.693 3.6 3.6 3.647 4.3 4.3 4.332 4.5 4.5 4.542 4.6 4.6 4.641

2.6 2.6 2.588 3.4 3.4 3.445 3.9 3.9 3.943 4.1 4.1 4.162 4.2 4.2 4.266

1.9 1.9 1.899 2.2 2.2 2.22 2.8 2.8 2.815 2.9 2.9 2.92 3 3 3.022

2.2 2.2 2.183 2.9 2.9 2.974 3.6 3.6 3.642 3.8 3.8 3.854 3.9 3.9 3.955

2.6 2.6 2.581 3.4 3.4 3.502 4 4 4.083 4.2 4.2 4.314 4.3 4.3 4.419

2.8 2.8 2.809 3.8 3.8 3.797 4.4 4.4 4.399 4.6 4.6 4.598 4.7 4.7 4.699

2.7 2.7 2.686 3.6 3.6 3.613 4.3 4.3 4.327 4.5 4.5 4.532 4.6 4.6 4.63

2.5 2.5 2.502 3.2 3.2 3.213 3.9 3.9 3.907 4.2 4.2 4.213 4.3 4.3 4.316

Table 14: Flexural strength validation between actual experimental results and predicted results.

7 days 14 days 28 days 42 days 56 days

Actual
Predicted

Actual
Predicted

Actual
Predicted

Actual
Predicted

Actual
Predicted

Random
tree

ANN
Random
tree

ANN
Random
tree

ANN
Random
tree

ANN
Random
tree

ANN

2.5 2.5 2.498 3 3 3.002 3.5 3.5 3.505 3.6 3.6 3.602 3.6 3.6 3.602

3.1 3.1 3.074 4 4 4.014 5 5 5.028 5.2 5.2 5.215 5.3 5.3 5.312

2.9 2.9 2.912 3.7 3.7 3.728 4.5 4.5 4.54 4.7 4.7 4.719 4.9 4.9 4.914

2.7 2.7 2.718 3.6 3.6 3.621 4.2 4.2 4.238 4.4 4.4 4.415 4.6 4.6 4.613

2.1 2.1 2.111 2.4 2.4 2.412 3 3 3.016 3.2 3.2 3.206 3.3 3.3 3.305

2.5 2.5 2.521 3.1 3.1 3.12 3.7 3.7 3.762 3.9 3.9 3.928 4 4 4.022

2.8 2.8 2.837 3.5 3.5 3.572 4.2 4.2 4.295 4.4 4.4 4.442 4.5 4.5 4.533

3 3 3.012 3.8 3.8 3.789 4.6 4.6 4.599 4.7 4.7 4.7 4.8 4.8 4.8

2.9 2.9 2.909 3.6 3.6 3.602 4.4 4.4 4.43 4.6 4.6 4.614 4.7 4.7 4.712

2.7 2.7 2.711 3.2 3.2 3.207 4 4 4.005 4.2 4.2 4.203 4.3 4.3 4.302
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are used at the same time for individual compressive
strength. This table contains the 150 datasets of the
compressive strength, whereas the actual data are 50 and
the predicted data are 100.

Table 11 depicts the coefficient of determination (R2),
mean absolute error (MAE), root mean square error
(RMSE), relative absolute error (RAE), and root-relative
square error (RRSE) values of predicted flexural tensile
strength to the actual experimental results of both machine
learning methods. The random forest tree model is more
relevant to the ANN model in all-day flexural strength.
The random forest tree method shows a determination coef-
ficient value of 1 at 7 days, 14 days, 28 days, 42 days, and 56
days, whereas the ANN model does not show a determina-
tion coefficient value of 1 in any day prediction.

6. Conclusion

After the experimental investigation, we found the results of
the mechanical strength. The machine learning methods
ANN and random forest develop the models based on
experimental inputs and outputs. Conclusion is based on
the following areas:

(i) In the experimental analysis, the M2 mix got the
maximum mechanical (including compressive,
splitting tensile, and flexural tensile) strengths
whereas the M5 mix gets the minimum mechanical
strengths among all the mix designs

(ii) ANN and random forest models check the perfor-
mance of prediction based on the R2, MAE, RMSE,
RAE, and RRSE

(iii) Random forest models show the best prediction to
the ANN models because it shows the negligible
error between actual and predicted values. The R2

value is 1 of 12 predicted results out of 15 by the
use of random forest methods. So it is most suitable
to predict the strength of geopolymer concrete
based on their constituent’s material quantity
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