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Tin (II) sulfide (SnS) is a metal chalcogenide semiconducting material with fascinating and admirable physical features for
practical applications in solid-state batteries, photodetectors, gas sensors, optoelectronic devices, emission transistors, and
photocatalysis among others. The energy gap of SnS semiconductor nanomaterial that facilitates its usefulness in many
applications can be adjusted through dopant incorporation which results in crystal lattice distortion at various crystallite sizes
of the semiconductor. This work employs lattice parameter descriptors to develop a hybrid genetic algorithm (GA) and
support vector regression algorithm (SVR) intelligent model for determining the energy gap of doped SnS semiconductors. The
predictive strength of the developed GA-SVR model is compared with the stepwise regression algorithm- (STRA-) based model
using different performance evaluation parameters. The developed GA-SVR model performs better than STRA model based on
root mean square error, mean absolute error, and correlation coefficient with performance improvement of 70.68%, 67.63%,
and 20.98%, respectively, using the testing set of data. Influence of different dopants and experimental conditions on energy
gap of SnS semiconductor were investigated using the developed model, while the obtained values for the energy gaps agree
with the measured values. The developed models demonstrate high degree of potentials in terms of accuracy, precision, and
ease of implementation that fosters their real-life applicability in estimating the energy gap of doped SnS semiconductor with
experimental stress circumvention.

1. Introduction

The harmful impact of fossil fuel energy on our environ-
ment has prompted researchers to turn their attention to
renewable energy sources such as sunlight to address the
demand for a sustainable and inexpensive clean energy
source [1, 2]. Photovoltaic thin films obtained from envi-

ronmentally friendly materials are needed to harness the
energy from sunlight [3, 4]. Examples of such materials
are the metal chalcogenide thin films which include CdS,
CdTe, Cu2S, CIS, CZTS, SnS, and CIGS among others.
Metal chalcogenides are materials with the potentials for
future success in many different fields [5–7]. Among these
materials, SnS has earned a lot of interest as an absorbing
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thin-film photovoltaic layer because of its optical, chemi-
cal, electrical, and physical properties that are better than
or can be compared with those of other materials [8, 9].
Its elemental components (Sn and S) are inexpensive, nat-
urally available, and harmless [10]. Out of all the com-
pounds of tin sulfide, SnS is found to exhibit unique
properties and can be used in thin-film heterojunction
solar cell fabrication [11], optoelectronic devices, near-
infrared (NIR) photodetectors, absorber layer, solid-state
batteries, holographic recording, capacitors, gas sensors,
electrical switching, photocatalysts, field emission transis-
tors, and drug delivery devices as a result of its simple
growth chemistry, high stability, natural abundance, and
low toxicity [12, 13]. The optical energy gap of this semi-
conductor that enhances its diverse applications is charac-
terized and modeled in this contribution using hybrid
intelligent and stepwise regression-based algorithms.

Tin (II) sulfide (SnS) is one of the binary compounds
that fit into groups IV to VI metal chalcogenide semicon-
ductors with layered structures. These compounds exhibit
meaningful variations in their physical properties such as
absorbance and electrical and thermal conductivities when
taking measurements along their crystallographic axes
because of the presence of layers in their structures [14].
In SnS compound, six atoms of S are attached to each
atom of Sn through van der Waals bonding [15]. Tin
(II) sulfide is found to exist in various forms as SnS,
SnS2, Sn2S3, Sn3S4, and Sn4S5 [16]. Being a p-type semi-
conductor material, SnS has an enhanced direct energy
band gap that is widely used in photovoltaic applications
as a result of its high absorption coefficient (greater than
104 cm-1) [17]. It has a direct optical energy band gap
ranging from 1.2 eV to 1.5 eV [18, 19] and an indirect
optical energy band gap of 1 eV to 1.2 eV [20]. Its high
free carrier concentration of 1015 cm-3 makes it an impor-
tant material for many oxide reduction systems [21].
Experimental efficiency values for SnS-based solar cells
are found to fall short of theoretical projections. The the-
oretical photoconversion efficiency limit of SnS-based solar
cells is found to be between 25% and 30% [22], whereas
the efficiency from experiments is found to be between
4% and 5% [23, 24]. The reason for reduced theoretical
photoconversion efficiency can be attributed to short car-
rier lifetime, band alignment and offset, diffusion length,
crystalline lattice defects, presence of other tin sulfide
phases [10, 25], reduced purity, and fabrication flaws [26,
27]. The performance of SnS as a material for absorbing
solar energy can be enhanced by doping with Bi [28,
29], Ag [30, 31], Al [32], Fe [33], Cu [34], Sb [35, 36],
Ge [37], In [30, 31], and Pb [38]. Different techniques
have been reportedly employed in synthesizing SnS thin
films. The techniques includes electron beam evaporation
[39], molecular beam epitaxy [40], electrodeposition (ED)
[41–45], vacuum evaporation [46, 47], atomic layer depo-
sition (ALD) [48], sputtering [49], multilayer-based solid-
state reaction [50], plasma-enhanced chemical vapour
deposition (PECVD) [51], hot well vacuum deposition
(HWVD) [52], chemical bath deposition (CBD) [53–58],
chemical spray pyrolysis, [59–64], successive ionic layer

adsorption and reaction (SILAR) [65–67], and brush plat-
ing [68]. The need for a computational method of energy
gap characterization becomes significant since experimen-
tal synthesis as well as characterization of SnS semicon-
ductor is laborious, time-consuming, and costly. This
work employs a stepwise regression-based algorithm and
hybridization of genetic algorithm (GA) with support vec-
tor regression algorithm. Distorted lattice parameters are
used as descriptors to the models.

Support vector regression (SVR) is a machine learning
algorithm that learns and models linear as well as nonlinear
relationships between a dependent variable (known as tar-
get) and independent variables (known as descriptors)
[69]. SVR algorithm has the uniqueness of converging to
the very least minimum error even if it has a small number
of training samples [70]. This uniqueness stands SVR out
among other machine learning techniques such as artificial
neural network which shows better performance when
trained with lager number of samples [71–73]. However,
neural network and other machine learning techniques have
demonstrated superior performance in handling most diffi-
cult trend [74–76]. SVR algorithm is a support vector
machine classifier extension that converts input data to
higher-dimensional feature space and performs linear
regression in that space [77]. Its special feature is its ability
to solve nonlinear problems using kernel trick [78]. This dis-
tinctive characteristic of the algorithm, along with other
inherent properties including its ability to easily converge
to global solutions and a solid background in mathematics,
has been harnessed in various applications [79–81]. The
existence of constraints, which are the conditions of convex
optimization problems, is responsible for the observed global
minimum convergence [82]. To improve the efficiency of the
prediction of SVR algorithm, SVR hyperparameters are
enhanced through optimization. In this study, genetic algo-
rithm (GA) is used to enhance SVR hyperparameters to have
a more robust hybrid model for predicting the energy gap of
tin (II) sulfide semiconductor.

Genetic algorithm is an optimization algorithm based on
Charles Darwin’s theory of natural selection [83]. It involves
the selection of the fittest individuals from a given popula-
tion to produce the best offspring for the next generations.
The offspring of these individuals will have characteristics
similar to the parents. If parents have the best fitness levels,
their offspring will be better than them [84]. This process
repeats itself until the best fit individuals are found. This
concept can be used to solve a search problem through a
set of solutions that are selected from a selection of the best
ones. The steps that are considered in a genetic algorithm are
initial population generation, fitness function computation,
selection, crossover, elitism, and mutation operation.

The rest of the manuscript is organized as follows: Sec-
tion 2 contains the formulation of the proposed hybrid sup-
port vector regression and genetic algorithm. Section 3
contains a description of the dataset and the computational
methodology of the proposed hybrid algorithm. The results
of the proposed hybrid model and comparisons to the
results of other developed model are discussed in Section
4. Section 5 contains the conclusion to the study.
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2. Mathematical Formulation and Background

The mathematical formulation of the support vector regres-
sion algorithm and the applied genetic optimization tech-
nique is presented in this section. In addition, the
background of the stepwise regression algorithm is also
discussed.

2.1. Support Vector Regression. As a computational intelli-
gence method, support vector regression (SVR) is developed
based on the statistical learning theory for solving regression
problems [82]. SVR evolves from the support vector
machine (SVM) initially formulated to solve classification
problems [85, 86]. Several SVM implementations have been
achieved in different research areas after formulation [87,
88]. SVM is therefore a universal term that is subdivided
into support vector classification (SVC) and support vector
regression (SVR) [86]. SVR is developed based on SVM ele-
ments, in which support vectors are primarily closer points
towards the algorithm hyperplane in an n-dimensional fea-
ture space that separates the data points around the hyper-
plane [89]. It is a supervised learning approach that uses
the kernel trick to transfer observed data to a target variable
[90]. To develop a predictive model, SVR makes use of a col-
lection of training data that contains predictor variables as
well as their corresponding observed responses. By relying
solely on the predictor variables, the resulting SVR model
can accurately generalize to future unknown data [91].
SVR is based on sound mathematical theory and its optimi-
zation problem has an optimal and global solution in the
form of linearly constrained quadratic programming [92].
Linear regression constructed with SVR is generally defined
as contained in

f x,∝ð Þ = w, xh i + b, ð1Þ

where w ϵ K and b ϵℝ.
The purpose of SVR is to determine w vector and bias b

such that for all training datasets, the defined error threshold
epsilon ε is not exceeded. To ensure adequate SVR training
and flatness, the constrained equations governing the opera-
tional implementation of SVR algorithm, vector ω should be
minimized while the minimization of the Euclidean norm
kwk2 should be obtained by a transformation to a convex
optimization problem as revealed in

Minimize
1
2

wk k2

Subject to
yi − w, xih i − b ≤ ε

w, xih i + b − yi ≤ ε

( ð2Þ

Constraints that may prevent the possibility and feasi-
bility of the convex optimization problem in equation (2)

are factored in through slack variables (ξi and ξi
∗) inclu-

sion. The optimization problem is further transformed as
reported in

Minimize
1
2

wk k2 + C〠
i

i=1
ξi + ξ∗i
� �

Subject to

yi − w, xih i − b ≤ ε + ξi

w, xih i + b − yi ≤ ε + ξ∗i

ξi, ξ
∗
i ≥ 0

8>><
>>:

ð3Þ

where C is the regularization or penalty factor.
Regularization or penalty factor C, kernel function

parameter, and the epsilon parameter ε are all user-defined
parameters that significantly influence the SVR model gen-
eral performance. The penalty factor C controls the existing
difference between training data error tolerance and model
complexity. The number of support vectors in insensitive
zones is determined by the epsilon parameter, while the ker-
nel function parameter controls the transfer of the input
data to a feature space of higher dimension. [93, 94].

2.2. Genetic Algorithm. Genetic algorithm (GA) is a type of
random optimization approach that belongs to the family
of heuristic evolutionary computational algorithms moti-
vated by Darwin’s theory of evolution [95, 96]. GA consists
of three operations after fitness evaluation and computation:
selection, crossover, and mutation. If all three operations
remain constant throughout the algorithm, it is referred to
as a simple genetic algorithm [83]. GA begins with no
knowledge of the optimal solution and relies entirely on
environmental responses to find the best solution by utiliz-
ing evolutionary principles [97]. Application of GA starts
from a population containing individual data structures that
resemble chromosomes, which consists of genes that encode
the individual’s hereditary characters that can be reproduced
when running the algorithm [98–100]. After that, each chro-
mosome is decoded and assigned a fitness criterion as well as
a fitness number using the root mean square error metric.
The probability of selection of each individual is determined
by the assigned fitness number [101]. Every new member
goes through the same process. Genetic algorithm operators
which include crossover, mutation, and selection are utilized
in generating subsequent generations. This procedure is
repeated until the convergence requirement is met.

2.3. Stepwise Regression. As a multiple linear regression tech-
nique, stepwise regression helps in finding the optimum
combination of independent variables for predicting the
dependent variable by incrementally adding or removing
variables [102]. With significantly less processing than is
required for all conceivable regressions, stepwise regression
is a reliable approach for selecting the right subset models
or the right set of independent variables that is the most suit-
able for the dependent variable [103]. Subset models are
determined by adding and deleting variables that have max-
imum influence on the residual sum of squares. Selection of
variables can be in forward, backward, or a combination of
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both directions. Forward selection involves a successive
addition of variables to a subset that has already been cho-
sen. Each step adds to the subset a variable from the vari-
ables in the subset that is absent in the model that
generates maximum reduction in the residual sum of
squares. Forward selection continues with no termination
condition till every variable is included in the model. Back-
ward stepwise variable selection starts by choosing the subset
models from the complete model and removing every vari-
able whose removal at each step will minimally increase
the residual sum of squares and continue till one variable
is contained in the subset model. It should be noted that
when using forward and backward techniques, the impact
of the addition or removal of a variable on the inputs of
other variables to the model is not taken into account. As a
result, stepwise regression rechecks the significance of all
previously added variables at each step. If the partial sums
of squares of any earlier added variables do not reach a min-
imal condition to remain in the model, the selection process
switches to backward elimination, with variables being dis-
carded one by one till the minimal requirement is met by
all remaining variables. The variable selection procedure is
complete when every variable within the model fulfills the
requirement to remain and no variables outside the model
have the entry requirement.

3. Computational Methodology of the Proposed
Hybrid GA-SVR

Details of the data employed for the simulation and model-
ing as well as the methods used for combining SVR and GA
into a robust hybrid model are discussed in the present
section.

3.1. Description of the Employed Set of Data for Simulation.
The lattice parameters of doped forty-one samples of SnS
semiconductors were employed in establishing an
intelligent-based relationship through which energy gap of
the semiconductor nanocatalyst could be determined. The
experimental data for model development and validation
was extracted from the literature [30, 104–110]. Aside from
doping, an experimental condition such as annealing tem-
perature influences the dislocation density as well as the
sample microstrain with ultimate impact on the sample lat-
tice parameters. The employed data for simulation and
modeling is statistically analyzed and presented in Table 1.

The obtained coefficients of correlation between each of
the model predictors and the energy gap strongly indicate
the presence of a very weak linear relationship between lat-
tice parameters (a, b, and c) and energy gap despite the phys-
ically established influence of dopants on SnS lattice
parameters and energy gap [30]. Hence, the need for the
proposed hybrid intelligent-based algorithms becomes nec-
essary. The presented mean and maximum values for each
descriptor as well as the energy gap further enhance insight-
ful information from the employed data such as the dataset
content, while the presented standard deviations allow useful
information about the experimental consistencies in the
acquired set of data.

3.2. Computational Description of the Proposed Hybrid
Intelligent-Based Algorithms. The whole computing task
involving hybridizing SVR with GA was carried out on
MATLAB. All the datasets were first randomized to provide
a regular distribution of data points and to improve the
models’ computational efficiency before the start of simula-
tion. Randomization is the process of strategically splitting
a dataset into training and testing set to prevent a situation
where the training and testing samples are biased, resulting
in testing the model on what it has not been trained to learn.
The implemented splitting ratio for the training and testing
sets for this work is 8 : 2. Genetic algorithm assists in hyper-
parameter searching and, as a result, improves the accuracy
and strength of the model. The hyperparameters optimized
by the genetic algorithm are the kernel option, epsilon, and
penalty or regularization factor. The stepwise descriptions
of the computing strategies for the hybridized GA-SVR
model are itemized as follows:

Step I. Initialization and generalization of population
size: a random generation of several individual solutions is
used to initiate a specific number of initial populations.
The size of the initially created population is determined
by the description of the problem as well as the scope of
the search space

Step II. Evaluation of possible solutions: the evaluation
of the probable solution of the initially generated population
is achieved by using the fitness function to determine the
strength of the solution using the root mean square error
(RMSE). A solution with the least RMSE value indicates
the maximum measure of fitness and vice versa. Procedures
for the evaluation of fitness are listed below:

(a) Selection of kernel function: select a kernel function
from Gaussian, Sigmoid, or polynomial function

(b) Every chromosome that represents hyperparameters
is fed into the kernel function of choice, and the SVR
algorithm is trained with the training dataset. The
RMSE value for every assessed chromosome was
recorded, whereas the generated support vectors by
the respective SVR algorithms were saved for later
use

(c) Saved support vectors in step b are further employed
for evaluating each SVR algorithm that has been
trained with the help of the testing dataset and the
chromosome that shows the least value of RMSE is
saved

(d) Each developed model is evaluated with RMSE test-
ing as obtained in c. The model with the least RMSE

Table 1: Statistical analysis of the employed set of data.

Statistical parameters a (Å) b (Å) c (Å) Eg (eV)

Mean 4.30 11.19 3.94 1.35

Correlation coefficient -0.17 -0.14 0.14 1.00

Maximum 4.79 11.48 4.24 1.88

Standard deviation 0.18 0.18 0.17 0.19
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value is chosen as the best, and the model with the
highest RMSE value is considered the worst model

Step III. Reproduction phase: breeding of subsequent
generation is achieved by selecting a fraction of the existing
initial population. Selection of individual solutions is per-
formed by using a fitness-based approach, and breeding of
new populations with the best fitness is ensured by using a
selection probability of 0.8

Step IV. Implementation of crossover operator: the
crossover operator changes or modifies the chromosomal
programming from one generation to the next. The proba-
bility of sexual crossover of 0.65 was implemented in this
research work to replace weaker chromosomes in the popu-
lation. Selection of offspring resulted in the exchange of
sequences and portions of the parent chromosomes

Step V. Mutation operator: the mutation operator helps
to maintain the diversity in genetics from one generation
to the next. It also ensures that each gene has access to the
entire range of alleles. In this work, distortion of solutions
was prevented by adopting 0.009 probability of mutation
for generating mutated offspring

Step VI. Replacement of population: the least-fit individ-
uals in the population (as determined by the computed
RMSE) are replaced by new individuals

Step VII. Stopping conditions: Step II to Step V were
repeated for the newly generated population. The repetition
continues and only stops when the value of RMSE-testing is
zero or when the RMSE testing yields the same result after
fifty consecutive iterations

4. Results and Discussion

This section discusses the results of the developed hybrid
intelligent model. The results of the developed stepwise
regression are also compared with intelligent-based models.
Influence of model convergence on the population size is
also presented.

4.1. Optimizations of Intelligent-Based Model Parameters
Using Genetic Evolutionary Optimization Algorithm.
Figure 1 is a presentation of the results of the evolved opti-
mization genetic algorithm for finding the best values for
SVR hyperparameters. The convergence of the regulation
factor which regulates a trade-off between complexity and
error minimization in the developed hybrid GA-SVR model
is illustrated in Figure 1(a). The population sizes were
adjusted between ten to one hundred as shown in
Figure 1(a). For ten exploring numbers of chromosomes,
the model converges to relatively high values of penalty
factor.

When the size of population was increased to fifty for
proper exploration and exploitation of the search space,
the values of the penalty factor got reduced and global con-
vergence was attained. Further increase in the size of chro-
mosomes does not influence the model performance and
convergence. The variation of the threshold error as mea-
sured by the hyperparameter epsilon with population size
is presented in Figure 1(b). At a population size of ten, the

model converges to a very low error threshold. However,
model overfitting was observed. The overfitness disappeared
when the population size changes to fifty due to optimiza-
tion of the exploration and exploitation capacity of the
model. Any increase in the size of the population beyond
fifty brings no further development to the model perfor-
mance. The parameter that influences transformation of
data from a space to another through kernel trick was inves-
tigated at different population size and presented in
Figure 1(c). Gaussian kernel function was used for the trans-
formation, while the optimum size of the chromosomes for
kernel parameter optimization is fifty as shown in the figure.
The value of each of the intelligent-based model parameters
is presented in Table 2.

The error convergence as the exploration and exploita-
tion capacity of the model is altered at different iteration
points and population size is presented in Figure 1(d). Pre-
mature and local convergences were observed for a popula-
tion size of ten, while the model shows global convergence
as the number of chromosomes exploring the space attained
fifty.

4.2. Computation and Comparison of the Performance of the
Developed Models. The empirical equation governing the
implementation of the developed STRA model is presented
in equation (4). Implementation of the stepwise regression-
based empirical equation requires adequate knowledge of
the distortion along the a-axis, b-axis, and c-axis due to the
incorporated dopants.

STRA = 240:0888 − 55:8272a − 13:5334b
− 22:7139c + 3:224602ab + 5:147369ac:

ð4Þ

Incorporation of foreign materials into the crystal struc-
ture of SnS semiconductor results in elongation or contrac-
tion in the crystal lattices of the semiconductor which are
made used by the developed empirical equation for energy
gap computation. To determine the energy gap of SnS semi-
conductor, the developed STRA model is compared to the
developed hybrid intelligent GA-SVR model in terms of per-
formance measuring parameters, utilizing mean absolute
error (MAE), root mean square error (RMSE), and correla-
tion coefficient (CC). The comparison of STRA and GA-
SVR model in the training phase of model development
using correlation coefficient is presented in Figure 2(a). As
shown in Figure 2(a), the GA-SVR model has better perfor-
mance than the STRA model, with a performance improve-
ment of 47.06%. The comparison of GA-SVR and STRA
models based on RMSE for the training set of data presented
in Figure 2(b) shows 91.7% percentage improvement of GA-
SVR over STRA model. Similar training phase comparison
based on MAE is presented in Figure 2(c) in which the
developed intelligent GA-SVR-based model outperforms
STRA model with a performance enhancement of 92.70%.

Comparisons during the testing phase of model develop-
ment are presented in Figures 2(d)–2(f) based on CC,
RMSE, and MAE performance metrics, respectively. On
these three bases, the developed GA-SVR model
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outperforms STRA model with 20.98%, 70.68%, and 67.63%
improvements in performance, respectively. Table 3 presents
the values of each of the performance evaluation parameters
during the training and testing phases of model develop-

ment. The table further presents the percentage improve-
ment for each of the evaluation parameters at the training
and testing stage of model development.

For further clarification on the performance superiority
of the developed GA-SVR intelligent model and STRA
model, a correlation cross-plot of the estimates of both
models is presented in Figure 3. The estimates of GA-SVR
model are perfectly aligned, while deviations characterize
the results of the developed STRA model. The observed
deviations of the outcomes of the developed STRA model
may be due to the failure of the stepwise regression-based
model to account for nonlinearity behavior characterizing
the lattice parameter distortion in SnS semiconductor after
foreign material incorporation. The developed intelligent-
based model addresses the nonlinearity through convex
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Figure 1: Optimization of model parameters using genetic algorithm. (a) Penalty factor convergence at various sizes of the population. (b)
Epsilon convergence at various sizes of the population. (c) Gaussian kernel parameter convergence at various sizes of the population. (d)
Error convergence at various sizes of the population.

Table 2: Optimum values of the intelligent model parameters.

Intelligent model parameters Optimum values

Penalty factor 147.6952

Function (kernel) Gaussian

Error threshold epsilon 0.0067

Hyperplane lambda E-7

Kernel parameter 0.0306

Population size 50

6 Journal of Nanomaterials



optimization procedures in SVR development, invocation of
Lagrange multipliers, and hyperparameter optimization
using genetic algorithm.

4.3. Comparisons of Energy Gap of Doped SnS
Semiconductors during Validation of the Developed Models.
The energy gaps of doped samples of SnS semiconductors
are presented in Figures 4 and 5. The samples investigated

and presented in this section were not included during the
training phase of model development. The developed GA-
SVR model only employs the support vectors obtained dur-
ing the training processes for its prediction. Figure 4 pre-
sents the influence of indium and silver nanoparticle
inclusion on the energy gaps of SnS semiconductor.

Lattice inclusion of indium and silver particles enhances
faults and mismatch in lattice and ultimately leads to a
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Figure 2: Performance comparison between the developed STRA model and intelligent (GA-SVR) based model. (a) Training performance
comparison on the basis of correlation coefficient. (b) Training performance comparison on the basis of root mean square error. (c) Training
performance comparison on the basis of mean absolute error. (d) Testing performance comparison on the basis of correlation coefficient. (e)
Testing performance comparison on the basis of root mean square error. (f) Testing performance comparison on the basis of mean absolute
error.
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distortion in the crystal lattice. The observed distortion and
lattice strain that influences the semiconductor energy gap
can be attributed to the ionic radii difference between Sn2+

of 9.3 nm and In3+ of 8.0 nm.
Copper and indium incorporation presented in Figure 5

introduce band levels in SnS semiconductor close to the
valence band which promotes conduction electrons from
indium/copper at a wavelength lower than the required
wavelength for electron movement from the valence to con-
duction bands. The sulfur vacancies due to the valence dif-
ference between In3+ and Sn2+ further enhance electron
movement from conduction to the valence band. The energy
gap of SnS semiconductor is expected to reduce as the grain
sizes get reduced in accordance with quantum size effect
since the quantum size becomes apparent when the grain
sizes approach values smaller than 100nm. Hybridization
of valence and conduction bands as a result of dopants
incorporation also influences the value of energy gap. The
estimates of the developed STRA and GA-SVR models have
excellent agreement with the measured values [31, 104, 108].
The deviations observed in the estimates of STRA model as
compared with that of GA-SVR model may be attributed
to the failure of STRA-based model to account for nonline-
arity behavior existing between lattice distortion of doped

Table 3: Performance of the developed model as well as percentage improvement.

Training Testing
CC RMSE MAE CC RMSE MAE

GA-SVR 0.9978 0.0122 0.0084 0.9900 0.0322 0.0282

STRA 0.528262 0.1518 0.1151 0.7823 0.1098 0.0871

% improvement of GA-SVR over STRA model 47.05732 91.9628 92.7033 20.9817 70.6798 67.6319
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2.0

1.8

1.6

1.4

1.2

1.0
In 4% Ag 6%

Experimentally measured energy gap
GA-SVR intelligent based model
STRA model

Concentration of dopants

Ag-doped-200

En
er

gy
 g

ap
 (e

v)
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SnS semiconductor and the energy gap. The mathematical
background governing the implementation of the hybrid
intelligent GA-SVR-based model, such as convex optimiza-
tion implementation, Lagrange multipliers, and empirical
risk implementation, further strengthens the potentiality
and superiority of the intelligent model for effective captur-
ing of the relationship between lattice distortion and the cor-
responding energy gap.

5. Conclusion

The band gap energy of the nanostructured SnS semicon-
ductor incorporated with some dopants is modeled with
stepwise-based regression algorithm (STRA) and hybrid
intelligent-based genetic algorithm- (GA-) embedded sup-
port vector regression (SVR) algorithm. The developed
models employ lattice parameters of distorted nanostruc-
tured semiconductor as model inputs. The developed GA-
SVR model performs better than STRA model with perfor-
mance improvement of 47.06%, 91.7%, and 92.70% during
the training phase using the correlation coefficient, root
mean square error, and mean absolute error as performance
measuring yardsticks. The developed models further investi-
gate the influence as well as the significance of indium, cop-
per, and silver incorporation on lattice structure of SnS
semiconductor and the obtained model estimates align per-
fectly with the measured energy gaps. The superiority of
the intelligent-based model (GA-SVR) over stepwise
regression-based model (STRA) can be attributed to the
intrinsic mathematical background of the employed
intelligent-based model which includes the implementation
of Lagrange multipliers, convex optimization invocation,
and employed empirical risk. The outcomes of the developed
model provide an intelligent, fast, and cost-effective method
of SnS energy gap characterization with a high degree of pre-
cision as well as experimental stress circumvention.
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