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In transportation systems based on e-vehicles, the energy demand is met with the integration of renewable energy sources while
maintaining the voltage profile and mitigating the active and reactive power losses. Vehicle-to-grid optimization technique is used
to ensure this integration. Minimum active and reactive power losses are achieved when e-vehicles are integrated with the
renewable energy sources in a hybrid mode. A machine learning framework with nested learning is used to ensure optimal
methodology to trigger vehicular movement and monitoring of the SoC battery level. When the HEV operates, there is a high
possibility for battery degradation, leading to loss of its capacity. To determine the optimal policy, the TD(λ) learning
algorithm is incorporated. This algorithm is known to showcase high performance and a high convergence rate in a non-
Markovian environment. The output is simulated to record the readings observed which is aimed at optimizing the total
operation cost and reduction in battery replacement. The results show that for shorter drives, the battery replacement cost is
more and it is optimally possible to increase the battery life by 21% using the proposed work. Similarly, the recordings indicate
that the proposed work shows a significant reduction of about 8%–10% in the operating cost when compared with the RL and
rule-based policy.

1. Introduction

There is a rapid increase in energy demand by consumers
across several applications. The voltage profile has to be
maintained while reducing the energy losses in order to meet
these demands by distribution network operators. Con-
sumers are provided with energy through large distribution

and transmission networks from the centralized energy gen-
eration power plants. Throughout this process, due to distri-
bution and transmission losses, around 35% electricity is
lost. By 2030, the electricity demand is estimated to rise to
900GW while the environmental pollution may rise to
59% by conventional energy sources that operates towards
meeting this demand [1]. In order to meet the demands of
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the consumers, renewable energy sources (RESs) are
installed close to the load centers.

Along with the distribution and transmission losses,
environmental pollution can also be reduced with appropri-
ate integration [2]. At the consumer end, the green energy
generation sources installed are termed RESs. Microhydro,
wind turbines, solar photovoltaics, and so on are some of
the types of RESs [3]. The system complexity increases with
high losses, random energy consumption profiles, and differ-
ent types of connected sources with the integration of the
RES. Identification of objectives and integrated approaches
are implemented with the integration of the RES. It is crucial
to integrate the backup energy sources to increase the reli-
ability of the RES [4]. e-Vehicles or battery stations can be
considered as a backup energy source. During transporta-
tion, the excess energy from the e-vehicles can be supplied
back to the grid, enabling better payoffs at the consumer
end [5].

When energy storage facilities are not available, the self-
consumption at the generation site increases by 20–40%
with the integration of additional devices as the renewable
generation and load profiles do not coincide with each other
[6]. In Germany, the installation of over 34000 decentralized
solar energy storage systems was carried out in the past three
years. In the domestic fields, new photovoltaic plants are
installed as a routine to enable these applications [7]. During
the past few years, despite the availability of several commer-
cial energy storage devices like supercapacitors, chemical-
hydrogen storage, and batteries, none of these devices has
an efficient tracking and management system. Often, there
is a compromise in the energy device as none of the devices
can meet all the requirements of the customer for any spe-
cific application according to Daniel and Besenhard [8].

The high-power residential storage systems have a high
energy density. When two or more energy storage systems
are combined together, the coupling benefits the applica-
tions as one system complements the other based on the
demand. An overall high efficiency is achieved by the man-
agement system design in such cases. Improper utilization
of the available energy and facilities may result if the renew-
able energy allocation is not optimized. Hybrid energy stor-
age systems (HESS) are formed by pairing two different
storage devices. These devices are paired with each other
and operate on a swap mode. It is primarily used in the
building sector and several other applications. Coupling
HESS with complementary characteristics is beneficial as
the strengths of each device complement the other to opti-
mize the system.

Multiple energy storage systems are interchangeably
operated by the hybrid system thereby benefiting from the
most efficient characteristics of each storage facility. An elec-
tric vehicle installed with photovoltaic components consist-
ing of a vanadium redox flow battery as well as a solar
lead-acid battery is considered as the HESS in this work.
At a smart house premise, the power required to charge
the e-vehicle with the integration of the vanadium redox
flow battery and the solar lead-acid battery via PV installa-
tion is considered to be a commercially mature technology
as it meets the load demand in an optimized manner. Low

fluctuations are observed when lower grid interactions occur
at a higher self-energy consumption rate at both the energy
storage systems. This energy is termed the upper target. Dur-
ing deep discharges, intolerance and high current character-
istics are observed with short cycle life in the lead-acid
battery systems.

The power and capacity of the battery are independent
of their sizes, making them easy to differentiate. Without
causing any damage to the system, these batteries can per-
form deep discharge while maintaining the cycle durability
of VRB-type batteries. It is possible to operate the battery
in higher power ranges by replacing it with a powerful one
or by increasing the capacity of the storage tanks. However,
when compared to VRB, the lead-acid battery systems have a
considerable efficiency rate, medium energy density, shorter
reaction time, and financially favorable conditions. When
compared to the lead-acid battery systems, the VRB has
lesser efficiency and a higher price and can be called an
immature technology [9]. Some of the key contributions of
this proposed work include the following:

(i) Decrease in the HEV operating cost with respect to
battery replacement and fuel cost

(ii) Optimal methodology to trigger vehicular move-
ment and monitoring of the SoC battery level

(iii) Outer-loop adaptive learning to decrease battery
replacement costs and inner-loop reinforcement
learning to decrease the amount of fuel consumption

2. Literature Survey

In order to reduce the reliance on fossil fuels and adopt
RESs, decentralization of electrical energy generation is a
crucial step [10]. Over the past few years, there has been a
7% increase in wind power and 4% increase in solar PV
globally. There has been a 13% increase in wind energy
and 27% increase in the solar PV-based energy generation
on average in the last five years [11, 12]. RESs depend on
weather constraints and are unpredictable, small in capacity,
and complex. In conventional power systems, several issues
and challenges with respect to high active and reactive power
losses, voltage profile balancing, and network reliability are
caused by these characteristics [13, 14]. Hybrid backup
energy source models and enhanced integration approaches
are used by researchers to analyze the impact of the RES on
the system. Some of the most commonly used energy backup
sources are the battery banks and e-vehicles. They supply
power to the grid during peak and emergency hours and
increase reliability due to their interconnections. The system
reliability is enhanced by researchers by considering battery
banks as backup sources. Very few researchers have paid
attention to using e-vehicles for this purpose. While over-
coming the electric constraints, integration of e-vehicles into
the grid is crucial.

Reliability assessment and the advantages of integration
of the RES are discussed in [15]. Reference [16] discusses
the integration approaches and challenges of distribution
of energy sources and the uncertainty model. For energy
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management, [17] discusses distributed energy resource
optimization using an internet framework. Reference [18]
discusses and analyzes the issues of unbalanced grids and
voltage sag. The case studies with implementation in West-
ern Australia, architecture development and application,
and adaptive schemes for renewable energy source integra-
tion are discussed in [17] for overcoming the issues in the
optimization of the RES. Improving the distribution network
voltage profile, minimization of the utility cost, energy gen-
eration cost, tariff structuring, initial cost, carbon emission,
line loading, real and reactive power losses, and other such
multiple advantages rely on the proper allocation of the
RES. Machine learning, neural network, particle swarm opti-
mization, genetic algorithms, fuzzy logic controller, and
other tools can be used for the optimization of voltage sensi-
tivity analysis, voltage indexing, power loss sensitivity tech-
niques, and other novel methods used for RES integration.
In order to integrate the RES into the grid, the roadmap is
discussed by the authors in [19] whereas the limitations of
integration of the RES into the grid are discussed by the
authors in [20]. Various optimization techniques for the
integration of e-vehicles and the grid are discussed by the
authors of [21]. The reliability of the RES and integrated grid
can be improved largely by identifying an appropriate
vehicle-to-grid optimization approach.

The currently used HESS systems cannot be optimized
with conventional techniques. Several researchers are
exploring and researching the control systems for this rea-
son. The energy flow between the conventional battery and
supercapacitor is managed with rule-based algorithms in
Chatzakis et al. [22]. The threshold values are compared
for parameters like battery output current and load demand
for the application of the respective rule. The lithium-ion
battery and LAB are used for the constitution of the HESS,
which is controlled using the abovementioned techniques.
The results are compared by Piao et al. [23]. When com-
pared to first-order filtering, the rule-based approach termed
“amplitude sharing algorithm” delivers better results. When
the battery and fuel cell or battery and superconducting
magnet are used as power storage systems, the power alloca-
tion is managed efficiently with the help of a fuzzy logic con-
troller as observed in Zhang et al. [24] and Min et al. [25].

Without the need for complex mathematical knowledge,
the most appropriate alternative can be chosen from the set
of rules designed by experts using the rule-based algorithms
to which this control technique belongs. With the increase in
complexity of the system, the difficulty in configuration also
increases [26]. The current technique in Zhang et al. [24]
focuses on the smooth operation of fuel cells rather than
the exploitation of storage systems with high-efficiency oper-
ation ranges. The generalization of the setting and attribu-
tion of a group of rules prior to design the management
techniques for the analyzed HESS is weakened and is not
considered within the scope of this paper. The first-order fil-
tering technique is the commonly used HESS management
technique in the existing literature. A conventional battery
system is used in addition to a supercapacitor or any other
storage system to manage the high power fluctuations
according to this technique [22, 27]. Along with several

parameters, the response time of the two energy storage sys-
tems is considered for designing the linear filtering system.

In the current management system, the design is inde-
pendent of the response time, and hence, the filtering tech-
niques presented by Changhao et al. and Liu et al. [23, 27]
are unsuitable. Shema et al. [28] analyze a HESS project on
the Pellworm island of the North Sea. Cost-efficient and sta-
ble energy supply is achieved by exploiting the redox flow
batteries and lithium-ion batteries used in the storage system
of the renewable energy sources, namely, 300 kWp wind
farm and 700 kWp PV park. The optimization approach
can follow the mixed-integer linear programming technique.
The generalization part is not available in the linear pro-
gramming algorithms that are applicable in a simple and
easily comprehensive manner. When global solutions are
claimed, this approach can be avoided. Hybrid techniques
are often preferred in the existing literature as several tech-
niques are combined thereby overcoming several drawbacks.
For example, two neural networks are combined with a low-
pass filter by Xia et al. in [29] to decide the reference power
percentage that must be allocated to each facility. The effi-
ciency behavior is worsened by the excessive on-site genera-
tion or demand energy partitioning between the available
storage devices, making this technique unfavorable. As
explained, unlike the case designed here, low pass filters
are not applied. Chatzakis et al. in [22] conceptualized the
combination of a filtering technique with a rule-based algo-
rithm. However, the requirements mentioned in this topic
cannot be fulfilled by this system.

3. Proposed Architecture

The proposed work is aimed at decreasing the HEV operating
cost with respect to battery replacement and fuel cost. A
machine learning framework with nested learning is used to
ensure optimal methodology to trigger vehicular movement
and monitoring of the SoC battery level. Here, an outer-loop
adaptive learning to decrease battery replacement costs and
inner-loop reinforcement learning to decrease the amount of
fuel consumed are incorporated. In the inner loop reinforce-
ment learning is used because of the following considerations:

(1) The HEV energy management inner loop holds
information on the current fuel consumption, power
demand, and vehicle speed without retaining any
prior information on the vehicle parameters

(2) Different HEV operation modes are required to
change the battery charge level, power demand,
and change in vehicle speed for a driving trip. Based
on the current state, different actions are taken using
a reinforcement learning agent

(3) Instead of decreasing the instantaneous fuel con-
sumption at every time step, the inner-loop HEV
energy management focuses on decreasing the total
amount of fuel consumed during the driving trip.
Similarly, instead of the immediate reward, rein-
forcement learning targets the cumulative return
optimization
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For optimal energy management, knowledge on the cur-
rent reward and current state of the system is required, with-
out need for prior information. To decrease fuel usage, SoH
degradation in the battery is taken into consideration along
such that the inner-loop reinforcement learning involves
battery capacity fading. The system works such that the
inner loop acts as an independent HEV energy management
system that automatically decreases the operating cost. To
determine the optimal SoC range, an adaptive learning
methodology is used in the outer loop for several trips.
The SoH battery degradation can be identified by observing
the SoC range. Hence, the outer loop is important in
decreasing battery replacement in the e-vehicle. Moreover,
using prior information about the average speed and trip
length during the driving trip, it is possible to reduce the bat-
tery replacement cost, by the outer loop.

3.1. SoH Estimation.When the HEV operates, there is a high
possibility for battery degradation, leading to loss of its
capacity. In general, a battery is said to reach its life expec-
tancy when its fading level reaches 20%–30%. This can be
expressed as follows:

Qfade =
1 −Qfull
Qnom

full
× 100%, ð1Þ

such that Qfull represents the full charge capacity of the bat-
tery and Qnom

full is the nominal value of Qfade.
Similarly, the state of charge (SoC) can be expressed

using equation (2) as follows:

SoC = Qbatt
Qfull

× 100%: ð2Þ

On continuous operation, the total capacity fading after
M cycles can be determined using equation (3) as follows:

Qfade = 〠
M

m=1
Qfade,cycle mð Þ: ð3Þ

It has been observed that the charging/discharging cycle
of the battery holds the same average SoC and same SoC
swing. But, in practical scenarios, it is not possible for the
battery to adhere to a specific charging/discharging cycle
pattern. Hence, a cycle-decoupling methodology which can
be used to determine the pattern of battery charging/dis-
charging is used. Using this technique, it is possible to calcu-
late the total fading capacity of the battery.

3.2. Reinforcement Learning. In the reinforcement learning
environment, “agent” represents the decision maker while
every other thing is known as the “environment.” An
agent-environment interaction is represented in Figure 1
for a sequence of “t” discrete time steps. Here, the state of
the environment is observed for every step “t” such that a
set of possible actions and states is taken into consideration.
After one time step, the outcome of the action taken is given
as a reward while a new state is established in a different

environment. To incorporate inner-loop reinforcement
learning, the reward for the action taken should be known
to the HEV controller (agent) as it plays a crucial part in
deriving the optimal policy. For an action taken “a” in state
“s,” the reward “r” can be evaluated using the following for-
mula:

r = −mf :ΔT −w:ΔQfade, ð4Þ

such that w represents the battery weight, xx is the length of
the time step, and ΔQfade and w are the battery capacity fad-
ing and fuel consumption rate, respectively. Here, mf :ΔT
can be determined directly from the fuel consumption while
ΔQfade can be determined with the help of SoH estimation
and cannot be determined online. However, since the time
complexity is large, it is safer to derive ΔQfade using an
equivalent cycle method.

Accordingly, it is possible to calculate the SoQavg and
SoQswing values using equation (5) as follows:

SoQhigh = max
t

SoQ tð Þ,

SoQlow = min
t
SoQ tð Þ,

SoQavg =
SoQhigh + SoQlow

2 ,

SoCswing = SoQhigh − SoQlow:

ð5Þ

Agent Environment

Action

State Reward

Figure 1: Interaction between the agent and the environment.

Table 1: Key parameters.

Denotation Parameters Rating

Lw Distance between wheels and axles 2.5m

A Vehicle frontal area 3.48m2

M Total vehicle mass 1360 kg

η Total transmission efficiency 98%

Rw Wheel radius 0.36m

f e Bearing friction coefficient 0.001

α Total gear ratio 10.0
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3.3. TD(λ) Learning Algorithm. To determine the optimal
policy, the TD(λ) learning algorithm is incorporated. This
algorithm is known to showcase high performance and a
high convergence rate in a non-Markovian environment.
The lambda “λ” parameter represents the trace decay
parameter. It lies within the range 0 and 1. Here, for every
state-action pair, the Q value is represented by Qðs, aÞ. The
charge level is represented as “q” and the vehicle speed is
represented as “v” with respect to the state “s.” Similarly,
the action “a” will pick the kth gear ratio and its correspond-
ing “i” current is discharged from the battery. The following
are the steps involved in the TD(λ) algorithm:

Step 1. An arbitrary value is assigned for Qðs, aÞ at the initial
stage.

Step 2. For every step “t,” an action “a” is chosen based on
the values of Qðs, aÞ.

Step 3. The exploration-exploitation policy is used to avoid
the risk of being caught in an optimal solution. This means
that for the current state, the maximum Qðs, aÞ is not chosen
using the action “a”.

Step 4. Based on the action chosen, a new state is identified
and given the reward.

Step 5. According to the reward and state, the values of Qð
s, aÞ are updated for the various values of ðs, aÞ pairs within
eðs, aÞ. eðs, aÞ represents the eligibility of every state-action
pair that has been previously used.

Step 6. A new constant λ is used which holds a value between
0 and 1.

Step 7.When using the eligibility of the state-action pair, it is
not necessary to update “e” and the Q value for every state
action.

Step 8. Hence, a record of the most recent state-pair action
“M” is recorded while all other pairs are ignored.

4. Result and Discussion

The operation of the electric vehicle is simulated and devel-
oped using vehicle simulator ADVISOR. Table 1 represents
the key parameters that are taken into consideration. In this

work, we have compared the proposed work with the rule-
based policy and reinforcement learning policy.

The output is recorded. Based on the simulation results
observed, the following are the outcomes recorded:

(1) On optimizing the total operation cost, it is seen that
the replacement cost of the battery is significant

(2) The cost of replacing the battery is a significant part
of the total operating cost and is even identified to be
higher than the fuel cost

(3) The RL policy that is in effect will use the rule-based
policy to decrease the fuel consumption. However,
this policy will not take into consideration the cost
of the battery

The results of the observations are tabulated in Table 2
which also shows that for shorter drives, the battery replace-
ment cost is more and it is optimally possible to increase the
battery life using the proposed work.

The reading was taken for several trips across Coimba-
tore, Tamil Nadu, India, and the amount of charge required
for the trips was recorded. The recordings indicate that the
proposed work was able to record a significant reduction
in the operating cost when compared with the RL and
rule-based policy.

5. Conclusions and Future Scope

In this paper, the HEV energy management is outlined as
well as a solution to efficiently manage it through optimiza-
tion of the HEV operating cost with respect to battery
replacement and fuel cost. In this work, the instantaneous
fuel consumption is decreased at every time step, with focus
on reducing the total amount of fuel consumed with inner-
loop HEV energy management. Similarly, instead of the
immediate reward, reinforcement learning targets the cumu-
lative return optimization. The proposed work indicates that
for shorter drives, the battery replacement cost is more and
it is optimally possible to increase the battery life by 21%.
The readings observed also show significant reduction of
about 8%–10% in the operating cost when compared with
the RL and rule-based policy.

Data Availability

The data used to support the findings of this study are
included within the article.

Table 2: Operating cost of the proposed, RL, and rule-based policies.

Trip Distance Proposed (in Rs.) RL (in Rs.) Rule-based (in Rs.)

Gandhipuram to Brookfield Road 3 km Rs.4.26 per unit Rs.4.52 per unit Rs.4.64 per unit

Gandhipuram to Sai Baba Colony 2.7 km Rs.4.06 per unit Rs.4.36 per unit Rs.4.58 per unit

Gandhipuram to Rs. Puram 2.9 km Rs.4.12 per unit Rs.4.46 per unit Rs.4.65 per unit

Saravanampatti to Ganapathy 4 km Rs.5.45 per unit Rs.5.69 per unit Rs.5.83 per unit

Saravanampatti to Gandhipuram 8.7 km Rs. 12.64 per unit Rs.14.04 per unit Rs. 15.12 per unit
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