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In this study, the new iterative method has been applied to a coupled system of fractional-order Drinfeld–Sokolov–Wilson
(FDSW) and fractional shallow water (FSW) equations. The fractional-order derivatives are taken in the Caputo sense whose
order is between 0 and 1. The suggested method is capable to handle the FDEs without any transformation and discretization.
The obtained results have been compared with the exact solution and with the q-homotopy analysis transform method. The
outcomes show the efficiency and effectiveness of NIM by comparing through tables and graphs.

1. Introduction

Differential equations (DEs) can be used to model the
majority of physical occurrences on the planet. The DEs
are divided into many categories. They may be in the form
of ordinary differential equations (ODEs) or partial differen-
tial equations (PDEs). Due to significant advancements in
mathematics, a new discipline known as fractional calculus
was introduced which has new concepts and operations for
handling derivatives and integrations. Fractional calculus
deals with the DEs of noninteger order known as
fractional-order differential equations (FDEs). Linear differ-
ential equations model the simple phenomenon while non-
linear equations are used in a variety of research and
engineering applications including plasma physics, hydrody-
namics, fluid dynamics, solid-state physics, acoustics, and

optical fibers. In many fields of engineering and biosciences,
the DEs occur in the form of coupled systems. The solution
of a differential equation may depend on the linearity of the
DE. The coupled systems in linear cases may be solved using
basic analytical methods. However, due to the higher degree
of nonlinearity, solving nonlinear differential equations by
simple methods is not always practicable. As a result of the
complexity for obtaining a solution of nonlinear DEs,
researchers initiated some new approaches for approximat-
ing the solution of nonlinear DEs. They may be perturbation
methods [1, 2], numerical methods [3, 4], iterative methods
[5, 6], etc. Sometimes these techniques apply some transfor-
mation to reduce the equations into more simple equations
or even a system of equations while some other techniques
offer the solution in the form of series that converges to
the exact solution [7, 8]. Besides, some other techniques
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which employ a trial function in an iterative scheme con-
verge quickly. The concept of homotopy from topology
and conventional perturbation methods introduced new
methods such as the optimal homotopy asymptotic method,
homotopy perturbation method, homotopy analysis method
suggest a general analytic solution [9–11]. Therefore, these
techniques are independent of the availability of a small
parameter. On the other hand, a relatively new method
known as the new iterative method (NIM) [12, 13] is a mod-
ified form of the Adomian decomposition method (ADM)
[14] in which the Adomian polynomials are replaced by DJ
polynomials in the nonlinear terms.

In the present work, coupled system of fractional-order
differential equations will be solved using NIM. FDEs have
been solved using NIM with the help of fractional derivative
and integral operators [13, 15–17]. In this paper, we will find
the solution of the Fractional Drinfeld–Sokolov–Wilson
(FDSW) coupled system and fractional shallow water
(FSW) coupled system. The fractional-order DSW equation
is used to add memory effects and genetic consequences into
the system, and these features let us grasp important physi-
cal properties of complex issues. The fractional DSW
coupled system is of the form [18]

Dβ
t φ x, tð Þ + 3ψ x, tð Þψ x, tð Þx = 0, ð1Þ

Dβ
t ψ x, tð Þ + 2ψ x, tð Þxxx + 2φ x, tð Þψ x, tð Þx + φ x, tð Þxψ x, tð Þ = 0,

ð2Þ

where 0 < β ≤ 1 is the fractional order of derivative of the
system and is defined with Caputo’s fractional derivative
operator.

The second coupled system presented in this paper is the
fractional-order shallow water (FSW) equation which
describes a thin layer of fluid in hydrostatic equilibrium with
a constant density. The equivalent wave motion is the
coupled SW equation. The time-fractional SW coupled sys-
tem is of the form [19]

Dβ
t φ x, tð Þ = −ψ x, tð Þφ x, tð Þx − φ x, tð Þψ x, tð Þx, ð3Þ

Dβ
t ψ x, tð Þ = −ψ x, tð Þψ x, tð Þx − φ x, tð Þx, ð4Þ

where φðx, tÞ and ψðx, tÞ denote the free surface and the
horizontal velocity component.

Many researchers pay attention to fractional DSW and
fractional SW equations by using different approaches
[20–23].

The remaining article is planned as follows: Section 2
contains some basics from fractional calculus relevant to
our study. The essential concepts of the NIM are presented
in Section 3. The proposed approach is used to solve the
fractional DSW and fractional SW coupled systems in Sec-
tion 4. The numerical results by NIM are presented in Sec-
tion 5 with the help of graphs and Tables 1–4. The final
paragraph contains the conclusion.

2. Fractional Calculus

We will present some essential definitions from fractional
calculus that are relevant to our work [24].

Definition 1. The fractional integral operator in Riemann-
Liouville (R-L) sense is defined as

Iβt =
1

Γ βð Þ
ðt
0
t − γð Þβ−1 f γð Þdγ if β > 0, t > 0,

f γð Þ if β = 0,

8><
>: ð5Þ

where Γ is the gamma function.

Definition 2. The Caputo fractional derivative operator of
order β is described as follows:

Dβ
t φ tð Þ = 1

Γ n − βð Þ
ðt
0
t − γð Þn−β−1 f n γð Þdγ

� �
if n − 1 < β ≤ n, n ∈N:

ð6Þ

Definition 3. Relationship of the Caputo’s fractional deriva-
tive and the R-L integral is defined as follows:

If m − 1 < β ≤m,m ∈N , then

Iβt Dβ
t φ tð Þ

h i
= φ tð Þ + 〠

m−1

j=0
φ jð Þ γð Þ t − γð Þj

Γ j + 1ð Þ , t > 0, φ ∈ Cμ
β, μ ≥ −1:

ð7Þ

3. New Iterative Method

Assume a nonlinear equation of the form [12]

ψ χ, t
� �

= h χ, t
� �

+ Lψ χ, t
� �

+ℵψ χ, t
� �

, ð8Þ

where χ = χ1, χ2,⋯, χn, hðχ, tÞ, L, and ℵ indicate the
source term, linear operator, and nonlinear operator, respec-
tively. The solution of Equation (8), according to NIM, can
be expanded as follows:

ψ χ, t
� �

= 〠
∞

m=0
ψm χ, t
� �

: ð9Þ

Due to the linearity of L, ψðχ, tÞ is expressed as

L 〠
∞

m=0
ψm χ, t
� � !

= 〠
∞

m=0
L ψm χ, t

� �� �
: ð10Þ

The nonlinear operator N presented by Daftardar-Geiji
and Jaffari is expressed as

ℵ 〠
∞

m=0
ψm χ, t
� � !

=ℵ ψ0 χ, t
� �� �

+ 〠
∞

m=1
ℵ 〠

i

j=0
ψj χ, t
� � !

−ℵ 〠
m−1

j=0
ψj χ, t
� � !( )

:

ð11Þ
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Table 1: The absolute error of the 2nd-order NIM and 2nd-order q-HATM solution for φðx, tÞ the FDSW coupled system.

x t β = 0:5 β = 0:7 β = 0:9 β = 1:0 Exact sol. NIM error Error [18]

2.5

0.025 0.0880367 0.0880367 0.0880367 0.0880367 0.0880429 6:13333 × 10−6 1:23436 × 10−5

0.05 0.0971 0.0971 0.0971 0.0971 0.0971513 5:13081 × 10−5 1:00990 × 10−4

0.075 0.107004 0.107004 0.107004 0.107004 0.107185 1:809556 × 10−4 3:48632 × 10−4

0.1 0.117785 0.117785 0.117785 0.117785 0.118233 4:479405 × 10−4 8:45395 × 10−4

5

0.025 0.0880367 0.0880367 0.0880367 0.0880367 0.0880429 6:13333 × 10−6 9:30466 × 10−8

0.05 0.0971 0.0971 0.0971 0.0971 0.0971513 5:13081 × 10−5 7:63637 × 10−7

0.075 0.107004 0.107004 0.107004 0.107004 0.107185 1:809556 × 10−4 2:64499 × 10−6

0.1 0.117785 0.117785 0.117785 0.117785 0.118233 4:479405 × 10−4 6:43687 × 10−6

7.5

0.025 4:05657 × 10−6 4:05657 × 10−6 4:05657 × 10−6 4:05657 × 10−6 4:05689 × 10−6 3:215065 × 10−10 6:27408 × 10−10

0.05 4:48085 × 10−6 4:48085 × 10−6 4:48085 × 10−6 4:48085 × 10−6 4:48356 × 10−6 2:702048 × 10−9 5:14926 × 10−9

0.075 4:94552 × 10−6 4:94552 × 10−6 4:94552 × 10−6 4:94552 × 10−6 4:95510 × 10−6 9:576419 × 10−9 1:78358 × 10−8

0.1 5.45240× 10-6 5.4524× 10-6 5.4524× 10-6 5.45240× 10-6 5.47623× 10-6 2.382852× 10-8 4.34062× 10-8

10

0.025 5:37770 × 10−8 3:49043 × 10−8 2:87695 × 10−8 2:7333 × 10−8 2:73351 × 10−8 2:166307 × 10−12 4:22746 × 10−12

0.05 7:37214 × 10−8 4:34152 × 10−8 3:28010 × 10−8 3:01918 × 10−8 3:02100 × 10−8 1:820637 × 10−11 3:46956 × 10−11

0.075 9:27727 × 10−8 5:2151 × 10−8 3:71170 × 10−8 3:33227 × 10−8 3:33872 × 10−8 6:452584 × 10−11 1:20177 × 10−10

0.1 1:11597 × 10−7 6:12942 × 10−8 4:17686 × 10−8 3:67380 × 10−8 3:68986 × 10−8 1:605564 × 10−10 2:92470 × 10−10

Table 2: The absolute error of the 2nd-order NIM and 2nd-order q-HATM solution for ψðx, tÞ the FDSW coupled system.

x t β = 0:5 β = 0:7 β = 0:9 β = 1:0 Exact sol. NIM error Error [18]

2.5

0.025 0.474805 0.385607 0.351313 0.342621 0.342623 1:595560 × 10−6 5:67484 × 10−6

0.05 0.558666 0.429127 0.374743 0.359897 0.35991 1:308247 × 10−5 4:57167 × 10−5

0.075 0.63306 0.470474 0.398436 0.377993 0.378038 4:519525 × 10−5 1:55336 × 10−4

0.1 0.703019 0.511305 0.422738 0.396935 0.397044 1:095138 × 10−4 3:70588 × 10−4

5

0.025 0.0392622 0.0319312 0.0290606 0.0283316 0.0283322 5:654244 × 10−7 5:67870 × 10−7

0.05 0.0459425 0.0355452 0.0310238 0.0297801 0.0297847 4:581037 × 10−6 4:60060 × 10−6

0.075 0.051697 0.038937 0.0330033 0.0312959 0.0313116 1:565947 × 10−5 1:57255 × 10−5

0.1 0.0569726 0.0422418 0.0350246 0.0328792 0.0329168 3:759878 × 10−5 3:77553 × 10−5

7.5

0.025 0.00322299 0.00262123 0.00238556 0.00232572 0.00232577 4:667055 × 10−8 4:66719 × 10−8

0.05 0.00377121 0.0029179 0.00254673 0.00244463 0.00244501 3:781143 × 10−7 3:78125 × 10−7

0.075 0.00424335 0.00319632 0.00270924 0.00256908 0.00257037 1:292494 × 10−6 1:29253 × 10−6

0.1 0.00467611 0.00346756 0.00287517 0.00269905 0.00270215 3:103259 × 10−6 3:10335 × 10−6

10

0.025 0.000264559 0.000215164 0.000195819 0.000190907 0.000190911 3:831095 × 10−9 3:83110 × 10−9

0.05 0.00030956 0.000239516 0.000209049 0.000200668 0.000200699 3:103867 × 10−8 3:10387 × 10−8

0.075 0.000348315 0.00026237 0.000222388 0.000210883 0.000210989 1:060983 × 10−7 1:06098 × 10−7

0.1 0.000383838 0.000284635 0.000236009 0.000221552 0.000221806 2:547404 × 10−7 2:54740 × 10−7
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Table 3: Numerical comparison of different values of β and absolute error of the 2nd-order NIM solution of φðx, tÞ for the FSW system.

x t β = 0:5 β = 0:7 β = 0:9 β = 1:0 Exact sol. NIM error

2.5

0.025 0.380492 0.298803 0.269985 0.262974 0.262985 1:092004 × 10−5

0.05 0.461865 0.337071 0.289279 0.276917 0.277008 9:164358 × 10−5

0.075 0.536682 0.374877 0.309367 0.291859 0.292184 3:24701 × 10−4

0.1 0.608701 0.413306 0.330496 0.307833 0.308642 8:08642 × 10−4

5

0.025 2.70572 2.12482 1.91989 1.87004 1.87011 7:765359 × 10−5

0.05 3.28437 2.39695 2.05709 1.96919 1.96984 6:516877 × 10−4

0.075 3.81641 2.66579 2.19994 2.07544 2.07775 2:308985 × 10−3

0.1 4.32854 2.93907 2.3502 2.18904 2.19479 5:750343 × 10−3

7.5

0.025 7.1448 5.61085 5.06972 4.93807 4.93827 2:05054 × 10−4

0.05 8.6728 6.32945 5.43201 5.19988 5.2016 1:720863 × 10−3

0.075 10.0777 7.03935 5.80922 5.48047 5.48657 6:097163 × 10−3

0.1 11.43 7.76097 6.20598 5.78043 5.79561 1:51845 × 10−2

10

0.025 13.6977 10.7569 9.71947 9.46706 9.46746 3:931213 × 10−4

0.05 16.6271 12.1346 10.414 9.969 9.9723 3:299169 × 10−3

0.075 19.3206 13.4956 11.1372 10.5069 10.5186 1:168923 × 10−2

0.1 21.9132 14.879 11.8979 11.082 11.1111 2:911111 × 10−2

Table 4: Numerical comparison of different values of β and absolute error of the 2nd-order NIM solution of ψðx, tÞ for the FSW system.

x t β = 0:5 β = 0:7 β = 0:9 β = 1:0 Exact sol. NIM error

2.5

0.025 -1.23094 -1.09261 -1.03916 -1.02563 -1.02564 1:255342 × 10−5

0.05 -1.35945 -1.16031 -1.07566 -1.05253 -1.05263 1:038012 × 10−4

0.075 -1.47213 -1.22437 -1.11257 -1.08072 -1.08108 3:623311 × 10−4

0.1 -1.57702 -1.28731 -1.15038 -1.11022 -1.11111 8:888889 × 10−4

5

0.025 -3.2825 -2.91362 -2.7711 -2.73501 -2.73504 3:347578 × 10−5

0.05 -3.62521 -3.09415 -2.86844 -2.80674 -2.80702 2:768031 × 10−4

0.075 -3.92569 -3.26498 -2.96685 -2.88192 -2.88288 9:662162 × 10−4

0.1 -4.20538 -3.43283 -3.06769 -2.96059 -2.96296 2:37037 × 10−3

7.5

0.025 -5.33406 -4.73464 -4.50304 -4.44439 -4.44444 5:439815 × 10−5

0.05 -5.89096 -5.028 -4.66121 -4.56095 -4.5614 4:498051 × 10−4

0.075 -6.37925 -5.30559 -4.82113 -4.68311 -4.68468 1:570101 × 10−3

0.1 -6.83374 -5.57835 -4.98499 -4.81096 -4.81481 3:851852 × 10−3

10

0.025 -7.38562 -6.55566 -6.23498 -6.15377 -6.15385 7:532051 × 10−5

0.05 -8.15671 -6.96184 -6.45399 -6.31517 -6.31579 6:22807 × 10−4

0.075 -8.83281 -7.3462 -6.67542 -6.48431 -6.48649 2:173986 × 10−3

0.1 -9.4621 -7.72387 -6.9023 -6.66133 -6.66667 5:333333 × 10−3
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Equations (9)–(11) are substituted in Equation (8) to
obtain

〠
∞

i=1
ψi = h + 〠

∞

m=0
L ψmð Þ +ℵ ψ0ð Þ + 〠

∞

m=1
ℵ 〠

m

j=0
ψj

 !
−ℵ 〠

m−1

j=0
ψj

 !( )
: ð12Þ

We define the recursive relation as follows:

ψ0 χ, t
� �

= h,

ψ1 χ, t
� �

= L ψ0ð Þ +ℵ ψ0ð Þ,

ψ2 χ, t
� �

= L ψ1ð Þ +ℵ ψ0 + ψ1ð Þ −ℵ ψ0ð Þ,
⋮

ψm χ, t
� �

= L ψm−1ð Þ +ℵ ψ0 + ψ1+⋯+ψm−1ð Þ −ℵ ψ0 + ψ1+⋯+ψm−2ð Þ,
 m = 1, 2, 3⋯ ,

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

ð13Þ

and then,

ψm χ, t
� �

= L ψ0 + ψ1+⋯+ψm−1ð Þ +ℵ ψ0 + ψ1+⋯+ψm−1ð Þ,
 m = 1, 2, 3,⋯,

〠
∞

m=0
ψm χ, t
� �

= h χ, t
� �

+ L 〠
∞

m=0
ψm χ, t
� � !

+ℵ 〠
∞

m=0
ψm χ, t
� � !

:

ð14Þ

The n-term NIM solution of Equations (8) and (9) is

ψ χ, t
� �

= ψ0 + ψ1+⋯+ψn−1: ð15Þ

3.1. NIM Convergence. In this section, the conditions for the
convergence of NIM are given in the following theorems for
the series ∑∞

m=0ψmðχ, tÞ.

3

2

1

0

0

𝜑
 (x

, t
)

x

t

Approx. sol. of 𝜑 (x, t) 

0

x

–5

5 0.00

0.05

0.10

Figure 1: 2nd-order NIM solution of φðx, tÞ FDSW system.
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Exact. sol. of 𝜑 (x, t) 

–5

5 0.00

0.05

0.10

0
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Figure 2: Exact solution of φðx, tÞ FDSW system.
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Theorem 4. If ℵ is Cð∞Þ in a neighborhood of ψ0 and kℵnð
ψ0Þk ≤ L, for some real L > 0 and any n
kψjk ≤M < 1/e, j = 1, 2,⋯, then the series ∑∞

n=0Gn is conver-
gent, and moreover, kGnk ≤ LMnen−1ðe − 1Þ, n = 1, 2,⋯.

Theorem 5. If ℵ is C∞ and kℵnðψ0Þk ≤M ≤ e−1∀n, then the
series ∑∞

n=0Gn is convergent. The detail of NIM convergence
can be seen in article written by Bhalekar and Daftardar-
Geiji in [25].

4. Implementation of NIM

In this section, we implement NIM firstly to the fractional
Drinfeld–Sokolov–Wilson coupled system and then to the
fractional shallow water coupled system. The implementa-
tion is done by considering the fractional derivative in Capu-

to’s sense, and the R-L integral is applied to the equations.
The method is applied directly for obtaining an approximate
solution.

4.1. Fractional Drinfeld–Sokolov–Wilson (FDSW) Coupled
System. Consider the FDSW system of the form by rearran-
ging Equation (1), and we write [18]

Dβ
t φ x, tð Þ = −3ψ x, tð Þψ x, tð Þx, ð16Þ

Dβ
t ψ x, tð Þ = −2ψ x, tð Þxxx − 2φ x, tð Þψ x, tð Þx − φ x, tð Þxψ x, tð Þ,

ð17Þ

2.0
1.5

1.0
0.5

0.0

0

𝜓
 (x

, t
)

x

t

Approx. sol. of 𝜓 (x, t) 

–5

5 0.00

0.05

0.10

0

x

0.05

Figure 3: 2nd-order NIM solution of ψðx, tÞ FDSW system at c = 2.
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Figure 4: Exact solution of ψðx, tÞ FDSW system at c = 2.
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together with the initial condition

φ x, 0ð Þ = 1
2 3cð Þ sech2

ffiffiffi
c
2

r
x

 !
,

ψ x, 0ð Þ = c sech
ffiffiffi
c
2

r
x

 !
:

ð18Þ

Equation (16) has the exact solution for β = 1 as

φ x, tð Þ = 1
2 3cð Þ sech2

ffiffiffi
c
2

r
x − ctð Þ

 !
,

ψ x, tð Þ = c sech
ffiffiffi
c
2

r
x − ctð Þ

 !
:

ð19Þ

Applying Iβt to Equation (16), we have

Iβt D
β
t φ x, tð Þ = φ x, 0ð Þ + Iβt −3ψ x, tð Þψ x, tð Þx

� �
,

Iβt D
β
t ψ x, tð Þ = ψ x, 0ð Þ + Iβt −2ψ x, tð Þxxx − 2φ x, tð Þψ x, tð Þx − φ x, tð Þxψ x, tð Þ� �

:

ð20Þ

By substituting the initial condition, we get

φ x, tð Þ = 1
2 3cð Þ sech2

ffiffiffi
c
2

r
x − ctð Þ

 !
+ Iβt −3ψ x, tð Þψ x, tð Þx

� �
,

ψ x, tð Þ = c sech
ffiffiffi
c
2

r
x − ctð Þ

 !
+ Iβt −2ψ x, tð Þxxx − 2φ x, tð Þψ x, tð Þx − φ x, tð Þxψ x, tð Þ� �

:

ð21Þ

By NIM algorithm, the zeroth-order component of φðx, tÞ
and ψðx, tÞsolution is as follows:

φ0 x, tð Þ = 1
2 3cð Þ sech2

ffiffiffi
c
2

r
x

 !

ψ0 x, tð Þ = c sech
ffiffiffi
c
2

r
x

 !

8>>>>><
>>>>>:

9>>>>>=
>>>>>;
: ð22Þ

The first-order component of solution is as follows:

φ1 x, tð Þ =
3c5/2tβ tanh ffiffi

c
p

x/
ffiffiffi
2

p� �
sech2 ffiffi

c
p

x/
ffiffiffi
2

p� �
ffiffiffi
2

p
Γ β + 1ð Þ

ψ1 x, tð Þ =
c5/2tβ tanh ffiffi

c
p

x/
ffiffiffi
2

p� �
sech ffiffi

c
p

x/
ffiffiffi
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The second-order component of solution is as follows:
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Figure 5: 2nd-order NIM and exact solution of φðx, tÞ at t = 0:1 of
FDSW equation and for fractional values of β.
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By combining the zeroth, first, and second-order compo-
nents of φðx, tÞ and ψðx, tÞ the solution, we obtain the 2nd-
order NIM solution as

4.2. Fractional Shallow Water (FSW) Coupled System. Con-
sider the nonlinear FSW coupled system by rearranging
Equation (3), and we have [19]

Dβ
t φ x, tð Þ = −ψ x, tð Þφ x, tð Þx − φ x, tð Þψ x, tð Þx, ð26Þ

Dβ
t ψ x, tð Þ = −ψ x, tð Þψ x, tð Þx − φ x, tð Þx, ð27Þ

together with the initial condition

φ x, 0ð Þ = 1
9 x2 − 2x + 1
	 


,

ψ x, 0ð Þ = 2 1 − xð Þ
3 ,

ð28Þ

where c is the wave front’s velocity. The exact solution of
Equation (26) is given as

φ x, tð Þ = x − 1ð Þ2
9 t − 1ð Þ2 ,

ψ x, tð Þ = 2 x − 1ð Þ
3 t − 1ð Þ :

ð29Þ

Applying Iβt to Equation (30), we have

Iβt D
β
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� �
,

ð30Þ

Iβt D
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ð31Þ
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Figure 14: Comparison of the absolute error of the 2nd-order NIM
solution for φðx, tÞ and ψðx, tÞ at t = 0:01 for the fractional SW
equations.
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By substituting the initial condition, we get

φ x, tð Þ = 1
9 x2 − 2x + 1
	 


+ Iβt −ψ x, tð Þφ x, tð Þx − φ x, tð Þψ x, tð Þx
� �

,

ψ x, tð Þ = 2 1 − xð Þ
3 + Iβt −ψ x, tð Þψ x, tð Þx − φ x, tð Þx

� �
:

ð32Þ

Using the procedure of NIM, we have the zeroth-order com-
ponent of the solution as

φ0 x, tð Þ = 1
9 x2 − 2x + 1
	 


ψ0 x, tð Þ = 2 1 − xð Þ
3

8>><
>>:

9>>=
>>;
: ð33Þ

The first-order component of solution is as follows:

φ1 x, tð Þ = 2 x − 1ð Þ2tβ
9Γ β + 1ð Þ

ψ1 x, tð Þ = −
2 x − 1ð Þtβ
3Γ β + 1ð Þ

8>>>><
>>>>:

9>>>>=
>>>>;
: ð34Þ

The second-order component of solution is as follows:

By NIM algorithm, the zeroth-order component of φðx, tÞ
and ψðx, tÞ solution is as follows:

5. Numerical Results and Discussion

The fractional DSW and fractional SW coupled systems of
PDEs have been solved by NIM. We calculated the approx-
imate solution up to 2nd order and observed the convergence
of the method. The results have been plotted with the help of
2D and 3D graphs and also shown in the tables through a
numerical comparison for different values. The following
discussion shows the detail of figures and tables.

Figures 1 and 2 show the 2nd-order NIM and the exact
solution, respectively, in 3D plots φðx, tÞ while Figures 3
and 4 show the 2nd-order NIM and the exact solution,
respectively, ψðx, tÞ for the fractional DSW equations. In
Figures 5 and 6, the different fractional values of β of the
2nd-order NIM solution are compared for φðx, tÞ and ψðx,

tÞ, respectively. In Figure 7, the 2D plot shows the absolute
error for the 2nd-order NIM solution for both φðx, tÞ and
ψðx, tÞ of the fractional DSW equation. Similarly, the frac-
tional SW coupled system of equations is discussed in
Figures 8–14. The 3D plots of Figures 8 and 9 represent
the 2nd-order NIM solution and the exact solution, respec-
tively, φðx, tÞ. Figures 10 and 11 show the 2nd-order approx-
imate solution and exact solution for ψðx, tÞ of the fractional
SW equations. The 2D plots in Figures 12 and 13 compare
the different fractional values of β for the 2nd-order approx-
imate solution of φðx, tÞ and ψðx, tÞ, respectively. In
Figure 14, the absolute errors are compared for the 2nd-order
NIM solution of the fractional SW equations. In all these fig-
ures, we noted that as the fractional order of differential
equation tends to 1, the approximate solution converges to

φ2 x, tð Þ = 2 x − 1ð Þ2 3Γ β + 1ð Þ2t2β/Γ 2β + 1ð Þ + 2Γ 2β + 1ð Þt3β/Γ 3β + 1ð Þ	 

9Γ β + 1ð Þ2

ψ2 x, tð Þ = −
4 x − 1ð Þ 3Γ β + 1ð Þ2t2β/Γ 2β + 1ð Þ + Γ 2β + 1ð Þt3β/Γ 3β + 1ð Þ	 


9Γ β + 1ð Þ2

8>>>><
>>>>:

9>>>>=
>>>>;
: ð35Þ

φ x, tð Þ = φ0 + φ1 + φ2 =
1
9 x2 − 2x + 1
	 


+ 2 x − 1ð Þ2tβ
9Γ β + 1ð Þ + 2 x − 1ð Þ2 3Γ β + 1ð Þ2t2β/Γ 2β + 1ð Þ + 2Γ 2β + 1ð Þt3β/Γ 3β + 1ð Þ	 


9Γ β + 1ð Þ2
( )

ψ x, tð Þ = ψ0 + ψ1 + ψ2 =
2 1 − xð Þ

3 −
2 x − 1ð Þtβ
3Γ β + 1ð Þ −

4 x − 1ð Þ 3Γ β + 1ð Þ2t2β/Γ 2β + 1ð Þ + Γ 2β + 1ð Þt3β/Γ 3β + 1ð Þ	 

9Γ β + 1ð Þ2

( )

8>>>>><
>>>>>:

9>>>>>=
>>>>>;
:

ð36Þ
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exact solution and for β = 1, the approximate solution over-
laps the exact solution which verifies the accuracy of our
proposed method.

6. Conclusion

We implemented new iterative method (NIM) for the solu-
tion of the fractional Drinfeld–Sokolov–Wilson equations
and fractional-order shallow water equations. The numerical
comparison is made with the q-homotopy analysis trans-
form method. The results show that NIM is conveniently
convergent and provides an accurate approximate solution.
The tables and figures show that as the value of β approaches
the classical value (1 for these systems) of the differential
equation, the approximate solution converges to the exact
solution. Comparisons in tables and graphs verify that
NIM converges more rapidly and is widely useful for obtain-
ing the approximate solution of differential equations.
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