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Nonsmall cell lung carcinoma (NSCLC) is the leading cause of deaths related to carcinomas of lung by the involvement of several
risk factors. Tumor cells, in general, exude larger quantities of biological macromolecules in comparison to their noncancerous
opposites. Vesicular bodies or cavities created by the folding back of endosome membranes mingle with the plasma membrane
and result in the release of exosomes into the extracellular space after which they enter proximal or distant cells of target.
Exosomes are nanovesicles that can carry microRNAs (miRNAs) and other such macromolecules as cargos into the tumor
environment by means of cell-to-cell communication. These materials transported by exosomes can act as indicators for
oncogenesis and metastasis and result in resistance among therapy-sensitive cancer cells. The cargos inside the vesicles loaded
with miRNAs vary according to their particular state and therefore can act as potential prognostic or diagnostic markers for a
variety of diseases including lung cancer, especially NSCLC. Although the roles of exosomal miRNAs are unclear or
contradictory, the possibility of using exosomes as efficient nanovesicles for the treatment of NSCLC using biological molecules
such as miRNA remains critical. Hence, this review focuses on the roles of exosomal and cell-free miRNA in NSCLC therapy
at preclinical and clinical levels.

1. Introduction

In the United States, 228,820 new cases and 135,720 deaths
related to cancers of lung and bronchus were estimated to
happen in 2020. Men are more prone compared to women
according to the American Cancer Society Statistics of
2020 [1]. Among Afro-American population of the USA,
25,390 new cases and 16,550 deaths were estimated to occur
in the year 2019 [2]. According to the 2021 estimate, 235,760
new cases and 131,880 deaths were projected for cancers of
the lung and bronchus [3]. In 2022, the number of new cases
was projected at 236,740 along with 130,180 deaths [4]. Lung
cancer was the top-most cancer according to GLOBOCAN
estimate of 2018 with 2.1 million new cases and was the
leading cause of cancer-related deaths in 93 countries with
1.8 million deaths [5]. In the 2020 global estimate, the num-
ber of new cases did rise to 2.2 million although the esti-

mated deaths did not vary significantly in comparison to
the 2018 estimate [6].

NSCLC is a type of epithelial carcinoma that originates
in the bronchial tubes. The symptoms such as persistent
cough, dyspnea, and loss of appetite and weight are usually
diagnosed at a very advanced stage [7, 8]. Adding to this,
NSCLC is related to the majority of lung cancers (more than
80%) and is one of the deadly cancer types across the world
which is generally identified by either a histological or cyto-
logical approach [9, 10]. Among the three types of NSCLC,
squamous-cell carcinoma accounts for 25–30% cases, adeno-
carcinoma relates to highest percentage (40%) of cases,
whereas, large-cell carcinoma comprises about 5-10% of all
lung cancer cases [11]. Relating to the cancer status in China
of 2018, 4.3 million (24%) new cases and 2.9 million (30%)
deaths happened, with lung cancer being the foremost cause
with 774,323 cases (18.1% of total) [12]. Since NSCLC

Hindawi
Journal of Nanomaterials
Volume 2022, Article ID 8402500, 13 pages
https://doi.org/10.1155/2022/8402500

https://orcid.org/0000-0001-5506-0148
https://orcid.org/0000-0002-0556-365X
https://orcid.org/0000-0003-2607-8183
https://orcid.org/0000-0003-2890-9358
https://orcid.org/0000-0003-1161-6583
https://orcid.org/0000-0001-7877-2519
https://orcid.org/0000-0002-1614-7360
https://orcid.org/0000-0001-7245-2346
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/8402500


accounts for a higher incidence rate related to lung cancers,
this review will focus on this type of cancer, excluding the
information on small cell lung cancer (SCLC).

There are several factors and associated risks in oncogen-
esis which can be intrinsic or nonintrinsic. Exogenous nonin-
trinsic risk factors are modifiable and include carcinogens,
viruses, and life-style linked factors. Endogenous nonintrinsic
risk factors include aging, genetic vulnerability, inflammation,
hormones, and several other reasons which could be modified
to some extent based on the individual. Intrinsic risks arise due
to errors in reproduction of human genome and are irrevers-
ible [13]. Age of onset of tobacco smoking, consumption of
alcohol, dietary fat, and fermented milk products are risk fac-
tors for lung cancer based on life-style that occur in both sexes
[14–22]. Heritable genetic susceptibility in the family, geo-
graphical location, air pollution, and infections are risk factors
independent of life-style of an individual. Epstein-Barr virus,
human papillomavirus, hepatitis B and C viruses, human T-
cell lymphotropic virus-1, human herpesvirus-8, and Merkel
cell polyomavirus are oncogenic viruses. Opisthorchis viver-
rini, Clonorchis sinensis, and Schistosoma haematobium are
oncogenic flukes. Helicobacter pylori, Chlamydia, and Myco-
plasma are prominent carcinogenic bacteria [23–36]. With
this background, it is important to note that NSCLC is prom-
inent in humans who carry gene variations. This set of popu-
lation with gene variations is three times more vulnerable to
the NSCLC when they do smoke in comparison to nonsmok-
ing population [37].

Exosomes and their components can be used as a bio-
markers, vaccines, and drug carriers in exosome theranostics
[38–40]. They are recently identified as drug carriers of
nanoscale with typical characteristics such as enhanced per-
meability and retention effect and passive targeting [41, 42].
There are several advantages of using exosomes as nanocar-
riers as they can surpass presystemic metabolism, cross
blood-brain barrier effectively, and avoid undesired accumu-
lation in nontargeted sites such as liver [43]. Correlating to
this advantage, the interaction with the blood-brain barrier
results in the transfer of exosomes across the barrier by
mechanisms such as endocytosis, micropinocytosis, and
phagocytosis [44].

Exosomal miRNAs are on an average 22 nucleotide in
length and are significant, small, endogenous, noncoding
RNA constituents of the exosomes. They can regulate the
levels of several target mRNAs after the occurrence of tran-
scription [45–47]. These RNA molecules are released from
many cell types which can regulate the changes in neigh-
bouring cells or cells that are faraway. Since 1993, the year
of discovery of miRNAs, a minimum of 1% of human
genome has been identified to have the ability to produce
miRNAs and each miRNA is designated to function in the
regulation of 200 mRNAs [48]. They may possess altered
profiles compared to their parent exosomes and can play sig-
nificant roles in cancer cells [49].

Research on exosomes and their role as nanocarriers is
still at its early years. Hence, this review was aimed at ana-
lyzing the biogenesis, loading, and delivery of miRNA by
exosomes and the roles of miRNA as biomarkers and sup-
pressors of NSCLC.

2. Conventional Therapeutic
Approaches for NSCLC

Surgery, radiation therapy, chemotherapy, targeted therapy
for selective mutations and using inhibitors in addition to
Immunotherapy are conventional means for therapy of
NSCLC [50–52]. Lobectomy, wedge resection, segment-
ectomy, and pneumonectomy are surgical options for
NSCLC [53–56]. Carboplatin or cisplatin, paclitaxel, doce-
taxel, gemcitabine, and vinorelbine are the chemotherapeu-
tic drugs used [57–59]. Inhibition of epidermal growth
factor receptor (EGFR) using erlotinib, gefitinib, entrectinib,
afatinib, dacomitinib, and icotinib and anaplastic lymphoma
kinase (ALK) using alectinib, brigatinib, ceritinib, crizotinib,
and lorlatinib can stop or slow the growth of NSCLC [51, 60,
61]. Atezolizumab, avelumab, durvalumab, cemiplimab,
nivolumab, and pembrolizumab are monoclonal antibodies
used for immunotherapy of NSCLC [62–64]. Although these
therapies are significant for the management of NSCLC, the
side effects remain a concern for cancer care [11, 65]. The
systemic toxicity remains critical, and therefore, alternative
means of NSCLC treatment is the need of the hour.

3. Understanding the Biogenesis and
Structure of Exosomes as Nanovesicles for
miRNA Transfection

According to the International Society of Extracellular Vesi-
cles, extracellular vesicles could be classified into exomers (<
50 nm), exosomes (30 to 150 nm), microvesicles (100 to
1000 nm), large oncosomes (1μm to 10μm), migrasomes
(500 nm to 3μm), and apoptotic bodies (100 nm to 5μm)
[66, 67]. Among these vesicles and exosomes, which are
extracellular nanovesicles of size less than 150nm, can help
defend against diseases such as cancer by creating a differ-
ence in cellular homeostasis. This can help in trafficking of
cargos including components at the genomic and proteomic
levels between cells. Till date, more than 9000 proteins, 3000
mRNAs, 2500 miRNAs, and 1000 lipids have been identified
to be a part of exosomes. Endocytosis results in production
of early endosomes which is rich in intracellular vesicles.
These early endosomes mature into late endosomes or intra-
cellular multivesicular bodies which are later degraded by
lysosomes and released into the extracellular space as exo-
somes. Rab27a and Rab27b are responsible for the secretion
of exosomes that perform cell-to-cell communication pre-
dominantly in tumor microenvironment. These exosomes
can be isolated by techniques that include ultracentrifuga-
tion, ultrafiltration, immunoaffinity and size-exclusion chro-
matography, immunoassays, precipitation (using
polyethylene glycol for example), microfluidics, and
magnetic-activated cell sorting. These techniques have
unique principles and in their own way yield exosomes with
low to high purity. Among these techniques, size-exclusion
chromatography is the most suitable for the isolation of exo-
somes [49, 68–73].

After isolation, exosomes are transfected with mature
miRNAs by means of methods using lentivirus, transfection
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kits, or electroporation [74–78]. The transfected exosomes
are usually distinguished by their dimensions, structure,
density during floating, and the presence of proteins identi-
fied as markers including Alix, TSG101, flotillin 1, HSP70,
and CD9. They are identified by adopting techniques such
as transmission electron microscopy and nanoparticle track-
ing analysis [79–81]. After transfection, exosomes intended
for drug delivery are taken up by recipient cells through
endocytosis, macropinocytosis, and phagocytosis leading to
delivery of the intended cargo such as proteins, mRNAs,
and miRNAs [70, 82].

A clear understanding of the structure and composition
of exosomes is necessary to utilize them better in nanomed-
icine. The lumen of exosomes is rich in RNA, rRNA,
lncRNA, mRNA, miRNA, DNA, proteins, and lipids. Cell
adhesion molecules such as integrins and tetraspanins are
found on exosomal surface. Cytosolic and membrane-
bound proteins such as tubulin, actin, ANNEXINS, RAB,
GTPases, Rab GTPases, SNARE, integrins, tetraspanins
(CD9, CD63, CD37, CD81, CD82, and CD53), endosomal
sorting complex required for transport (ESCRT) proteins
(Alix, TSG101), flotillin, dynamin, and syntaxin are identi-
fied to be involved in biogenesis, transport, and uptake of
exosomes. Heat-shock proteins such as HSP70, Hsp90, and
cytochrome C are used in improving the therapeutic ability
of exosomes by involving in exosome release and signaling
[83]. Online databases such as Vesiclepedia and Exocarta
are used to determine the contents of these nanovesicles.
Taken altogether, the research on exosomes suggests that
these nanobodies are either flat or round lipoprotein bilipid
layered with sizes of 30 to 150 nm and membrane potential
ranging between -14 and -24mV [84].

Activities of endonucleases such as Drosha and Dicer
can lead to the formation of miRNAs via the canonical path-
way. The noncanonical pathway is Drosha- and Dicer-
independent [85]. In the canonical pathway, pri-mRNA syn-
thesized by the transcription of specific genes are processed
into pre-miRNA with the help of a complex that contains
a RNA binding protein named DiGeorge syndrome critical
region 8 (DGCR8) and Drosha, eventually leading to the for-
mation of one end of the mature miRNA. The pre-miRNA is
released into cytoplasm by Exportin-5 and is further proc-
essed by Dicer into mature miRNA [Figure 1]. The nonca-
nonical pathway is either Drosha/DGCR8-independent or
Dicer-independent [86, 87].

4. Exosome Mediated Delivery of miRNA

Signature miRNA patterns are useful in designing miRNA
therapeutics directed towards several signaling pathways
for intervening majority of pathological conditions that
may either be an autoimmune condition, communicable,
or noncommunicable [88, 89]. Studies show that exosomes
are preferred choices for deriving miRNAs to be used in
biomarker-associated research. Significant percentage of
published research recommends the preferred use of exoso-
mal miRNAs in comparison to nonexosomal miRNAs with
regard to quality and stability [90, 91]. This statement seems
appropriate since exosomes encompass a variety of proteins

and genome constituents that can help in the detection of
cancer. The volume of exosomes in blood and other body
fluids is higher and therefore can aid in early detection of
cancer. In addition, they can improve the stability of miR-
NAs with enhanced protection against degradation [92].

Exosomes are efficient drug delivery agents for miRNA
and can modulate signal transduction between cells thereby
leading to inhibition of tumor development [93]. Inhibition
of tumors by extracellular vesicles like exosomes may involve
several mechanisms such as apoptosis involving upregula-
tion of enzymes such as Caspase 9 and downregulation of
macromolecules such as Myc, TCF7, ki-67, and CD31 [94].
After being synthesized or identified, they can target tumor
environment specifically in case they are derived from tumor
cells. Specific antigens on vesicular surface can be primed for
targeted cancer immunotherapy [95].

Cellular stress involving the endoplasmic reticulum can
indeed increase the secretion and release of these nanovesi-
cles into the extracellular space [96]. The released exosomes
can interconnect or crosstalk via the involvement of several
molecular mechanisms and result in the release of numerous
components. These vesicles are usually emitted in plasma,
urine, milk, bronchial lavage, bile, cerebrospinal fluid, amni-
otic fluid, and saliva and thereby act as biomarkers for cell-
to-cell contact [97–99]. The comparison of the above-
mentioned mechanisms with relation to the release of exo-
somes still remains uncertain. Other than considering lipid
composition and endosome membrane properties, biogene-
sis of exosomes is closely related to the specificity of cargo
molecules involved that are involved in multiple cellular
processes of tumor [100].

After being added onto the target cell, exosomes are
internalized by endocytosis or phagocytosis and their con-
tents are delivered into cytosol. After such internalization
occurs, the cancer cells and stromal cells communicate with
each other and produce exosomal miRNA. This can lead to a
communication that can affect both these cells. During this
communication, the exosomal miRNA released can modify
the invasive and metastatic behaviors of cancer cells thereby
turning them into aggressive phenotypes of cancer. Hence,
exosomes and exosomal miRNAs, the influence of both
which remain the same in cancer, play significant roles in
the tumor environment [101–105]. Yet, exosomes are syn-
thesized more in cancer patients compared to normal sub-
jects [106].

5. Advantages of Using Exosomes Loaded with
miRNA for Cancer Therapy in
Comparison to Conventional Means

Recent research at the nanolevel is growing rapidly which
focuses on the use of exosomes and other sources for the
treatment of cancer [107]. This can be achieved by commu-
nication between cells, identification of suitable miRNA and
their potential as biomarkers and for other applications [72].
Targeting oncogenic miRNA by miRNA-based drugs (e.g.,
TargomiR) via injection into the tumor interstitial fluid or
space can increase the specific targeting and decrease the
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levels of oncogenic miRNAs which is a huge prospect in can-
cer therapy [108].

Exosomes loaded with miRNA showed improved accu-
mulation of more than 25000 times in comparison to the
control exosomes observed in NSCLC cells. These miRNA
were antiproliferative, anti-invasive, and antiangiogenic in
such tumor models [109]. Owing to their nanosize and
membrane integrity, exosomes can cross blood-brain barrier
and escape immune surveillance. Therefore, they possess
increased half-time in circulation, can improve the bioavail-
ability of miRNA cargo for the intended use in nanomedi-
cine, and suppress the resistance among cancer cells [110,
111]. Additional benefits of using exosomal miRNA include
their disclosed origin, their therapeutic target, cellular
responses which can help monitor tumor resistance, and
their use as prognostic and diagnostic biomarkers [103].
Due to these benefits in comparison to conventional thera-
peutic approaches, exosomal miRNAs could be considered
potential candidates for the personalized therapy of NSCLC.

Although the therapeutic and diagnostic tools are
improved every day, the disease prognosis for NSCLC is
poor due to understanding drug resistance and the mecha-
nisms involved. With their auspicious role as biomarkers
in diagnostics and prognostics, miRNAs can be a valuable
addition to NSCLC therapy in humans [112]. Therefore, fur-
ther studies at in vitro and in vivo levels are necessary and
these studies remain critical to elucidate the actual role or
involvement of miRNAs in therapy of NSCLC. Therefore,

the following sections of this review will focus on a set of
in vitro and in vivo studies on NSCLC therapy using miR-
NAs and the discussion of the associated mechanisms.

6. Mechanistic Studies for miRNA as Tumor
Suppressors on NSCLC at the
Preclinical Level

There are several studies supportive of miRNA interaction
with its targets as a major direction for drug design and
use in cancer therapy [113]. To begin, miR-6839-3p acted
as a tumor suppressor by targeting and causing a decline
in the expression of transcriptional enhancer associate
domain transcription factor 4 (TEAD4) which is known to
promote lung cancer. The cell lines used in the study were
A549, SPC-A1, NCI-H1299, H1650, PC9, H1975, and
NCI-H1703 [114]. miR-148b is known to regulate key
mechanisms in tumor and normal cells and declined the
cancer cell population at the G2/M phase in PC14/B and
A549 cells. This tumor suppressor enhanced apoptosis and
inhibited the MAPK/JNK signaling of these two NSCLC
cells possibly by targeting MAP3K9 [115]. miR-7, an endog-
enous noncoding tumor-suppressor RNA, is downregulated
in A549, H1299, and H1355 NSCLC cells. Yet, it induces
apoptosis via the downregulation of Bcl-2 and suppresses
the growth of A549 cells by inhibition of migration [116].
The tumor suppressor miR-608 promoted apoptosis induced
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Figure 1: Biogenesis, isolation, miRNA transfection into exosomes, and release into the target cell.
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by doxorubicin in A549 and HCC4006 via the inhibition of
expression of transcription factor activating enhancer-
binding protein 4 (TFAP4) [117]. miR-377, miR382, and
miR-498 were identified as possible tumor suppressors in
A549, 95-D, HCC827, H1299, and SK-MES-1 cells. EZH2
is a target for these three miRNAs [118]. miR-448 is a tumor
suppressor in A549, SK-MES-1, Calu-3, and H1299 cells by
the suppression of proliferation, migration, and invasion of
these cells [119].

Lentivirus-mediated delivery of miR-218 decreased the
cellular proliferation and reduced the growth of human lung
A549 cells injected into 6-week-old nude mice. The tumor
tissues showed low levels of STAT3 and Ki-67 in compari-
son to tissues infected with the control virus without
miRNA. The study indicated the involvement of IL-6/
STAT3 pathway and identified its role in prognosis of lung
cancer [74]. miR-200c as a tumor suppressor did improve
the sensitivity of A549 cells towards methotrexate by target-
ing EZH2 and suppressing its invasive property. Apoptosis
was induced via the P53/P21 pathway [120]. Overexpression
of miR-144-3p inhibited the propagation and invasiveness of
NCI-H1975, NCI-H441, NCI-H1792, and SPC-A1 lung ade-
nocarcinoma cells. This miRNA downregulated the expres-
sions of VEGFA, MMP2, and MMP9 and inhibited the
growth of NCI-H1975 xenograft tumor in nude mice. The
miRNA suppressed the expressions of EZH2, an oncogene
associated with lung cancers to yield such effects [121].
miR-26a, with antioncogenic properties and known roles
in several pathways, decreased the proliferation and induced
apoptosis in docetaxel-resistant SPC-A1 and H1299 lung
adenocarcinoma cells by the downregulation of EZH2
[122]. miR-101-3p with potent characteristics of an antitu-
mor agent decreased the viability, migration, and invasive
properties of H520, H1703, H2170, and SK-MES-1 lung
squamous carcinoma cells and induced apoptosis by causing
an inhibition of the target EZH2 [123].

miRNA-4465, known to possess roles of a prognostic
indicator in cancer, suppressed the proliferation and metas-
tasis of A549 and H2170 cells by regulating its target onco-
gene EZH2 [124]. Proapoptotic miRNA-557 suppressed
the proliferative and invasive properties of A549 and NCI-
H460 by causing a decrease in lymphocyte enhancement fac-
tor 1 (LEF1) [125]. Lung cancer suppressor miR-1244 inhib-
ited the proliferation and induced apoptosis in cisplatin-
resistant A549 and NCI-H522 cells by regulating the myo-
cyte enhancer factor 2 named MEF2D [126]. Yet, another
lung cancer suppressor miR-218 reduced the transcription
factor MEF2D in A549, H450, and H1229 cells thereby caus-
ing a decline in proliferative, survival, and invasive proper-
ties of those cells. In H1975 and A549 cells, the miRNA
affected the proliferative and invasive properties. The molec-
ular targets were IL-6R and JAK3. The STAT3 signaling was
inhibited after treatment [74, 127]. Transfection of miR-137
caused a decline in expression of an oncogenic histone
demethylase named lysine-specific demethylase 1 (LSD1)
in A549 and H460 cells by the downregulation of EZH2,
HDAC1, and HDAC1 [128]. The influence of miR-26b on
A549, 95D, and H520 cells was studied. The miRNA inhib-
ited the migration and invasive properties of these cells using

migration and invasion enhancer 1 (MIEN1) as a target by
the involvement of NF-κB/MMP-9/VEGF pathways [129].

The overexpression of miR-582-5p decreased the prolif-
eration and colony-forming ability of human NSCLC lines
H460, H661, H647, H358, H1975, H661, H1299, and H226
and nullified filamentous actin (F-actin), despite increasing
cellular apoptosis and YAP/TAZ phosphorylation. miR-
582-5p targeted the actin regulators NCKAP1 and PIP5K1C
resulting in suppression of YAP/TAZ-driven cell prolifera-
tion [130]. Similarly, the overexpression of miR-567
decreased the A549 cell proliferation, induced apoptosis,
and cell cycle arrest at sub-G1 and S phases. The cyclin-
dependent kinase 8 (CDK8) gene was the therapeutic target
to obtain such effects as an outcome [131]. Adding to this,
miRNA-377 prevented the proliferation and induced apo-
ptosis in A549 and Calu-6 cells by targeting and downregu-
lating the expressions of EGFR, MAPK1, and PAK2 of ErbB
signaling pathway [132].

The oncogenic and therapeutic effects of nonprotein-
coding transcripts in NSCLC are presented in Table 1. These
studies indicate that several miRNAs have crucial roles, and
EZH2 is a possible and valuable target for the treatment of
NSCLC.

7. Exosomal miRNA as Biomarkers for the
Detection of NSCLC

At the preclinical level, miR-19, miR-20, miR-21, miR-125,
miR-205, miR-155, miR-let-7, miR-148a, miR-148b, and
miR-320a are potential prognostic biomarkers for lung can-
cer. The miR-test for circulating miRNAs has a specificity of
approximately 75%, and therefore, miRNAs could be con-
sidered as efficient prognostic markers for lung cancer
[133–135]. Diagnostic biomarkers for lung cancer detection
include let-7a, let-7b, let-7e, miR-15b, miR-17, miR-19a,
miR-19b, miR-20a, miR-21, miR-21-5p, miR-22, miR-24,
miR-25, miR-26b, miR-28-3p, miR-30b, miR-30c, miR-31,
miR-92a miR-93, miR-106a, miR-125a, miR-126, miR-140-
3p, miR-140-5p, miR-142-3p, miR-145, miR-146a, miR-
148a, miR-150, miR-152, miR-155, miR-182, miR-190b,
miR-193a-3p, hsa-miR-195-5p, miR-197, miR-203, miR-
205, miR-210, miR-210-3p, miR-221, miR-222, miR-223,
miR-320, miR-375, miR-425, miR-451, miR-486, miR-566,
miR-660, miR-1260b, miR-1290, miR-3182, and miR-5100
[136–146].

NSCLC patients exhibit distinctive exosomal miRNA
profile in comparison to healthy controls [147]. As an exam-
ple, exosomal miR-620 were significantly lower among
NSCLC patients in comparison to healthy controls [148].
Exosomal miR-126 could target and inhibit the gene ITGA6
and prevent NSCLC cells from progressing further [149].
NSCLC samples could be identified in comparison to control
samples by the presence of miRNAs such as hsa-miR-451a,
hsa-miR-486-5p, hsa-miR-363-3p, hsa-miR-660-5p, hsa-
miR-15b-5p, hsa-miR-25-3p, and hsa-miR-16-2-3p [150].
Interestingly, in progressive NSCLC patients, miR-320d,
hsa-miR-320c, and hsa-miR-320b were upregulated before
treatment, whereas, hsa-miR-125b-5p was downregulated
in plasma exosomes after being treated with checkpoint
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inhibitors of PD-1/PD-L1 pathway [151]. Exosomal miR-
23b-3p, miR-10b-5p, and miR-21-5p are representative of
poor overall survival [152]. In addition, miR-19-3p, miR-
21-5p, miR-221-3p, and miR-17-5P are upregulated in
NSCLC patients when compared to their healthy counter-
parts [153, 154]. Yet, miR-141 was expressed lesser in
NSCLC patients than patients with no tumour [155],
whereas, miR-181-5p, miR-30a-3p, miR-30e-3p, miR-361-
5p, miR-10b-5p, miR-15b-5p, and miR-320b were specific
to a group of cancers categorized into NSCLC [156].

Reports suggest sputum miRNAs such as miR-21, miR-
143, miR-155, miR-210, and miR-372 to be clinical markers
for early detection of NSCLC [157]. Polymorphisms in hsa-
miR-196a2 have been identified to play insignificant roles in
toxicity observed among individual cells or organs, whereas,
the overall toxicity was significantly higher in NSCLC
patients treated with platinum-based drugs [158]. High
expressions of miR-16 in patients with NSCLC are assigned

to be associated with poor disease-free and overall survival
[159]. Contrasting to this report, high exosomal miRNA-
32 levels have been correlated to improved progression-
free and overall survival in patients treated with platinum-
based drugs [160]. Similarly, miR-4782-3p could inhibit
NSCLC proliferation by targeting the protease named ubiq-
uitin specific peptidase 14 (USP14) [161]. These studies indi-
cate that exosomal miRNA could be considered as potential
diagnostic and prognostic noninvasive biomarkers for
NSCLC, which can improve the chances of an intended tar-
geted therapy.

8. Systemic Safety Profile of Exosomal miRNAs

Analysis in the major organs such as the lung, liver, spleen,
and kidneys of tumor-bearing mice after intravenous injec-
tion of exosomal miRNA-142-3p indicates that exosomal
miRNA are systemically nontoxic. This mRNA was

Table 1: Therapeutic effect of nonprotein-coding transcripts in NSCLC.

miRNA Cells treated Target Mechanism Reference

miR-
6839-3p

H1299 TEAD4
Decline in the expression of transcriptional enhancer

associate domain
[114]

miR-
148b

PC14/B and A549 MAP3K9 Enhanced apoptosis and inhibited the MAPK/JNK signaling [115]

miR-7 A549, H1299 and H1355 Bcl-2 Apoptosis and inhibition of migration [116]

miR-
608

A549 and HCC4006 TFAP4 Apoptosis [117]

miR-
200c

A549 EZH2 Initiation of P53/P21 pathway [120]

miR-
144-3p

NCI-H1975, NCI-H441, NCI-
H1792 and SPC-A1

EZH2
Downregulation of the expressions of VEGFA, MMP2 and

MMP9
[121]

miR-26a
Docetaxel- resistant SPC-A1 and

H1299
EZH2 Apoptosis [122]

miR-
101-3p

H520, H1703, H2170 and SK-MES-
1

EZH2
Apoptosis and inhibition of the mitosis, invasion and

migration
[123]

miRNA-
4465

A549 and H2170 EZH2 Inhibition of proliferation and metastasis [124]

miRNA-
557

A549 and NCI-H460 LEF1 Decrease in migration and invasion [125]

miR-
1244

Cisplatin-resistant A549 and NCI-
H522

MEF2D Inhibition of proliferation and induction apoptosis [126]

miR-
218

A549, H450, and H1229 MEF2D Decline in proliferation, survival and invasion [127]

miR-
218

H1975 and A549 IL-6R and JAK3 Inhibition of STAT3 signaling [74]

miR-
137

A549 and H460 LSD1 Downregulation of EZH2, HDAC1 and HDAC1 [128]

miR-
26b

A549, 95D, and H520 MIEN1 Involvement of NF-κB/MMP-9/VEGF pathways [129]

miR-
582-5p

H460, H661, H647, H358, H1975,
H661, H1299 and H226

NCKAP1 and
PIP5K1C

Nullified filamentous actin (F-actin), increased cellular
apoptosis and YAP/TAZ phosphorylation

[130]

miR-
567

A549 CDK8
Decreased the cell proliferation, induced apoptosis and cell

cycle arrest at sub-G1 and S phases
[131]

miRNA-
377

A549 and Calu-6
EGFR, MAPK1,

and PAK2
Prevented the proliferation and induced apoptosis [132]
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identified to be tumor-specific as they were observed in the
tumor environment even after 48 hours, whereas, absent in
those major organs. This indicates that exosomes loaded
with miRNA could be used effectively in cancer treatment.
Although there are only limited reports on nanotoxicity of
exosomes, current updates indicate them to be nanovectors
with limited or no toxicity or immunogenicity against nor-
mal cells [162–167]. In short, exosomes possess significant
biocompatibility, low immunogenic potency, and are rela-
tively safe. They are taken up by cells adopting mechanisms
such as phagocytosis, micropinocytosis, endocytosis, and
fusion [168].

9. Future Perspective and Conclusions

With regard to future research, target specificity is an impor-
tant criterion for miRNA delivery into the tumor environ-
ment. Biogenesis of each exosome should be identified and
monitored for specific type of cancer rather than following
an unsystematic approach. Exosomal membranes could
therefore be modified for such purposes. This can improve
targeting and improve yield of the desired effect. Further-
more, synergism with existing drugs (e.g., doxorubicin) can
eliminate the side effects and improve the anticancer efficacy
[169]. Isolation methods and purity check for exosomes
have to be optimized better to control the limitations that
may arise in the future [170]. Low-cost methods should be
developed for large-scale production of exosomes. Improved
insights and understanding of exosome usage such as route
of administration and specific targeting are the issues to con-

sider [165, 171]. The advantages and limitations of the use of
exosomal miRNA are presented in Figure 2.

NSCLC, the leading cause of deaths related to lung can-
cers, are both metastasized and treated by exosomes loaded
with microRNAs through the communication of nearby
and far cells. Exosomes which are released as several vesicles
into the extracellular space could be considered as biomark-
ers for lung cancers. Although, both miRNA and exosomes
are involved in cancer therapy, exosomal miRNA are com-
paratively nontoxic and possess improved bioavailability in
the tumor environment. Studies elucidate EZH2 as a possi-
ble and valuable target for the treatment of NSCLC at pre-
clinical levels using miRNA. Although several preclinical
and few clinical reports determine the roles of miRNA as
biomarkers and tumor suppressors, further studies are war-
ranted to determine the efficacy of exosomal miRNA in
treatment and management of NSCLC.
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• Limited modes of isolation
• Large-scale production is expensive
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NSCLC cells

TARGET

miRNA loaded exosomes

• Anti-NSCLC effects
• Limited or no toxicity in normal cells
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• Better accumulation and availability
• Anti-proliferative
• Anti-invasive
• Anti-angiogenic
• Suppression of cancer cell resistance

to therapeutic drugs

Figure 2: Multiple roles of exosomes loaded with miRNA in NSCLC.
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