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Aluminum composites with various reinforcement materials are widely applicable in advanced engineering due to their better
strength to weight ratio, better stiffness, and high thermal conductivity as well as excellent wear and corrosion properties. This
stimulates curiosity to study aluminum metal matrix composite reinforced with waste glass to improve its mechanical and
physical properties. The composite specimens were prepared using stir-casting rout by varying weight percentage of reinforcing
waste glass powder from 0% to 30%. The fabricated composite samples were characterized using universal testing machine, FTIR,
DSC, TGA, and optical microscope. The results revealed that as the waste glass particle content increased in the metal matrix,
there was a significant enhancement of the mechanical properties like hardness and tensile strength as compared to the pristine
sample. The microstructural properties analyzed using optical microscope show good bonding between the reinforcements and the
pristine materials in the composite that indicates the glass particulates are uniformly distributed in the Al-6061 matrix. All in all,
the effect of waste glass powder in aluminum metal matrix composite was clearly observed and it enhances the mechanical,
physical, and thermal properties of the newly fabricated aluminum-based composite materials.

1. Introduction

Researchers are always searching new materials for different
advanced engineering applications. In this aspect, a novel
concept of combining dissimilar materials during manufac-
ture led to the identification of composites as a new class
[1, 2]. This concept of multiphase composites provides excit-
ing opportunities for designing an exceedingly large variety
of materials with property combinations that cannot be
met by any of the monolithic conventional metal alloys,
ceramics, and polymeric materials [3, 4]. The composites,
especially metal matrix composites (MMCs), have received
considerable attention in the field of materials research due
to their lighter weight, higher strength, more wear resistance,
and greater fatigue and dimensional stability than conven-
tional composites [5–8]. MMCs are increasingly becoming
a new class of material in device applications because their

properties can be tailored through the addition of selected
reinforcements [9, 10]. In particular, particulate-reinforced
MMCs have recently found special interest because of their
specific strength and specific stiffness at room and elevated
temperatures [11, 12].

After more than a quarter of a century of active research,
MMCs, particularly aluminum matrix composites (AMCs),
are beginning to make a significant contribution to engineer-
ing application specifically in aerospace, automotive, and
electronic industrial practice [13, 14]. Al-6061 has the
advantages of low weight, high strength, ease of processing,
low-temperature resistance, corrosion resistance, and low
maintenance as a result it is widely used in machinery
manufacturing, shipbuilding, aerospace, and chemical
industries [15, 16]. Metals such as Al-6061, Al-7075, Al-
6063, and Al-2024 and glasses like window glass, door glass,
and bottle glass are the common waste materials that are
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discarded after primary uses so it is possible to fabricate dif-
ferent products, such as composite materials for different
engineering applications from waste materials [16–19].

A composite consists of a matrix and a reinforcement
phase meanwhile the reinforcing materials are strong with
low densities and the matrix is usually ductile or tough
materials. Reinforcements might exist in the form of parti-
cles, flakes, whiskers, short fibers, continuous fibers, or
sheets [20, 21]. The strength of the composites depends pri-
marily on the amount, arrangement, size or/and shape, and
type of reinforcement in the matrix phase [22, 23]. For
instance, glass particles are used as the reinforcement in
MMCs; there are some challenges such as poor bonding
between the glass particles and matrix [24–27]. The employ-
ment of a suitable fabrication method of MMCs reinforced
with glass particulates can solve some of these challenges.
Some of the traditional methods of fabricating waste glass
particle-reinforced MMCs are stir casting, metal spraying,
liquid metal infiltration, diffusion bonding, and powder met-
allurgy [28, 29]. Stir casting is one of the most established
techniques for developing metal matrix composites [30,
31]. It is performed commercially due to its flexibility, sim-
plicity, and applicability to large-quantity production. It is
a liquid-state method of composite materials fabrication, in
which a dispersed phase (ceramic particles, short fibers)
was mixed with a molten metal matrix by means of mechan-
ical stirring [32, 33]. The liquid composite material is then
cast by conventional casting methods and may also be proc-
essed by conventional metal-forming technologies. Wetting
is an important condition for the generation of a satisfactory
bond between particle reinforcements and liquid aluminum
metal matrix during casting composites, to allow transfer
and distribution of load from the matrix to the reinforce-
ments without failure [34, 35]. Excellent bonding is required
at the interface for good wetting [36, 37]. These bonds may
be formed by mutual dissolution or reaction of the particles
and metal matrix [38, 39]. The reaction phenomena are very
detrimental to the composite as they bring about a decrease of
the mechanical properties. If the composite combines the
strength of the reinforcement with the toughness of the
matrix, it is possible to achieve a desirable property, which is
not found in any monolithic conventional material [40, 41].

The objective of this investigation is to characterize the
effects of waste glass powder content on physical and
mechanical properties such as hardness and tensile strength
of aluminum alloy (Al-6061) for different engineering appli-
cation. Microstructural analysis of waste glass particle rein-
forced aluminum composite samples was further examined
by using optical microscopy.

2. Experimental Methods

In this study, there are some core procedures which would
be performed technically to realize the required output
materials. The waste window glass and Al-6061 alloy are col-
lected from the local place and are washed and filtered to
remove dust and any undesirable waste. The washed waste
window glasses and Al-6061 alloy were then sun dried for
6 hours. Dried and cleaned waste window glass was crushed

using a roller mill and sieved in order to obtain a desirable
particle size fraction in micro size of below 50μm. The waste
glass powder was then dried in the sun for 3 hours at room
temperature to reduce moisture content. After that, the Al-
6061 alloy was melted in crucible by heating in gas-fired
furnace at 760°C for 3 hr per sample. Then, the required
amount of the reinforcement waste glass powder was added
and stirred 30minutes with controlled feed following stirring
in order to form uniformly distributed reinforcement mass
through the fabricated composite sample. At every stage,
stirring was used at stirring speed of 500 rpm for 30min.
Then, the mixture was poured into the pattern mold. Finally,
the required aluminum-based composites fabricated for
characterization. Samples of appropriate dimension depend
on the type of test is cut using a diamond cutter for physical
and mechanical characterization.

We characterized the mechanical, thermal, and chemical
properties using the tensile strength universal testing
machine (ASTM D638) and hardness test by using brooks
hardness testing (ASTM E384) machines. The microstruc-
ture analysis of different samples is measured by optical
microscopy. Fourier transform infrared spectroscopy tech-
nique is being used extensively to perform reaction product
analysis on the functional group’s materials. FTIR-6061 type
is a reliable technique to analyze the interaction between
silicon and Al-6061matrix composite materials. Fourier trans-
form infrared spectroscopy (FTIR) is a standard method as a
nondestructive testing tool. Differential scanning calorimetry
(DSC) is used to measure the heat evolution from a sample
under a controlled condition and studies the phase transfor-
mation, precipitation, and dissolution activities. We used
DSC 3 - Differential Scanning Calorimeter instrument to
analyze the thermal properties of the composites.

3. Results and Discussions

Figure 1 shows the FTIR spectrum of the fabricated compos-
ites which enables to identify the properties of the specimen.
The indicated peaks in the figure play an important role to
measure the functional group of the prepared composite
and its bond interface interaction. It should be noted that
the peaks of glass powder appeared from 3200 to
2900 cm−1 which corresponds to Si-Ai-O stretching. The
peak appeared at 2400-2300 cm−1 which corresponds to
Si-Al-H stretching. The peak appeared at 1273 cm−1 which
corresponds to 1700-1600 cm-1 Si-Al stretching whereas a
small peak at 650 cm−1 indicated Al-O cm-1 stretching. Some
of the groups have been removed from the Al-6061 matrix
materials that indicates the brittleness of the glass powder
as compared to the Al-6061 matrix materials due to oxida-
tion, reduction, and thermal degradation.

Figure 2 presents thermogravimetric analysis (TGA) curve
of reinforced Al-6061 with waste glass particles. Comparing
the TGA curves of the different samples, it can be seen that
in almost all cases, these curves follow a similar course. The
Al-6061 matrix degradation starts at 220°C. The weight loss
of different samples is monotonously increased as the temper-
ature elevated from low to high level. This happened due to
diffusion movement on the Aluminum (Al-6061) matrix in
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the case of using annealed or heating process. Which lead
strong interaction bond will have between aluminum (Al-
6061) and glass powder. The first weight loss, which was
observed at ~220°C, is related to the removal of less stable
impurities in the composites and due to removal of surface
absorbed water. This means that reinforced Al-6061 samples
are thermally stable up to certain temperature.

Figure 3 shows the measurement result of the differential
scanning calorimetric (DSC) analysis, which has four dis-
tinct phase changes represented by A, B, C, and D. Region
A indicates melting phase of the composite and both B and
C regions indicate glass transition, while region (D) indicates
crystallization phase of the composite. At curve (A), the
composite specimens start to melt at a temperature range
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Figure 1: The FTIR spectrum of waste glass reinforced Al-6061 matrix composite: (a) unreinforced Al-6061 matrix, (b) samples with
varying weight percentage of reinforcing waste glass powder.
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Figure 2: TGA curve for reinforced Aluminum (Al-6061) matrix with different amount of waste glass powder content that varies from 0 to
30wt %.
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from 564°C, which is the composite high endothermic reac-
tion and high heat absorbed phase process due to diffusion
movement and effect of temperature, whereas at point (C),
it can be seen that fabricated composite has a melting tem-
perature between 500 and 650°C while for Al-6061, matrix
in the range of 580 to 650°C. The glass transition tempera-
ture estimates the maximum operating temperature of the
composite, which is about 620°C. In the effect of glass
powder on Al-6061 matrix at a temperature of 625°C, which
has a high peak value and the bonding of glass powder on
Al-6061 matrix composite is higher, the process is exother-
mic reaction. It reveals that the composite material is
released heat and its phase is glass transition phase. On the
other hand, region (D) in the temperature range of 630°C-
1000°C, the composite materials have endothermic reaction
and heat is absorbed with the composite.

In this research work, a Rockwell hardness number
(RHN) tester (1/16-inch, ball indenter) was used to deter-
mine the hardness of the hybrid composite specimens. A
load of 100 KN was applied for 15 seconds on each speci-
men. As illustrated in Figures 4(a) and 4(b), Rockwell hard-
ness number (RHN) of the samples increase with increasing
the glass powder concentration in the new fabricated com-
posite. A combination of 20wt % glass powder and 80wt
% Al-6061 metal matrix composite exhibited a minimum
deformation approximately 63.2± 0.756 value of RHN is
found for the reinforced composite. The newly fabricated
aluminum-based composite is enhanced by 23.94% as com-
pared to the parent materials. This is an indication that a

good interfacial bonding is obtained and that the critical size
of the reinforcement for load transfer is reached. On the
other hand, the hardness strength of Al-6061 matrix and
glass powder composites decreases due to (i) weak bonding
interaction of the composite, (ii) the density difference on
Al-6061 matrix and glass powder, a further increase in glass
powder leads to increase of the RHN value which indicates
that there is no good chemical reaction in the composite
materials, agglomeration, grain found for the reinforced
composite and as a result, the composite should have the
properties of the nonreinforced metal matrix, (iii) less hard-
ness properties of glass powder and Al-6061 matrix mate-
rials, (iv) glass powder to glass powder entanglements and
due to these easily pull-out the glass powder from Al-6061
matrix materials, (v) the minimum weight percentage of
glass powder is used, and (vi) it may be poor interfacial
interaction of the composite. In general, the more the weight
percentage of glass powder associated with the harder prop-
erty of the composite materials, and the higher the hardness
numbers, the smaller the strength of the materials will have.
It is clearly seen that the hardness of Al-6061 is found to
reinforcements thereby improving the tribological character-
istics of the composite. Also, the addition of glass powder
enables the elimination of voids in the composite, thereby
increasing the bonding and strength of the matrix and rein-
forcement materials.

Figure 5 shows the stress-strain curve of the fabricated
composites. Specimens were prepared for tensile test with a
dimension of length, width, and thickness of 150mm,
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Figure 3: DSC curves for waste glass particle reinforced Al-6061 metal matrix samples.
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20mm, and 3.5mm, respectively. The ultimate tensile
strength (UTS) value of unreinforced Al-6061 matrix mate-
rials is recorded at 78.3N/mm2. Among several glass powder
added specimens, a composite material with 20wt % of glass
powder and 80wt % of Al-6061 matrix reaches a maximum
ultimate tensile strength value of 263± 0.546N/mm2, show-
ing an approximately 56.6% enhancement over the parent
material. The highest tensile strength improvement achieved
for specimen 20wt % of glass powder might be attributed to
the reason of a sufficient adhesive bond between the glass
powder particles and the Al-6061 matrix compared to that
of the other specimens. The glass powder served as rein-
forcement because the major share of load was taken up by
the glass powder.

On the other hand, tensile strength of the composite is
decreased with increasing the weight percentage of matrix
(Al-6061) (70-75wt %). It can be deduced that the initial lin-
ear portion of the graph shows the elastic properties of the
composite specimen, which is consistent as observed in the
linear increments from 0 to 20wt % of glass powder loading
and from 80 to 100% of matrix loading. This linear incre-
ment indicates that there is a better interfacial distribution
between glass powder and Al-6061 matrix and the compos-
ite becoming stiff and could withstand higher stress at the
same strain portion. According to Hooks’ law, Young’s mod-
ulus of the composite is increased and the tensile stress–
strain curve can be separated into three regions. Initially,
the tensile strength deformation is linear until a maximum
stress (the yield stress) is reached. The tensile strength is
increased up to 20wt % glass powder due to molecular ori-
entation, high bonding formation, and absence of defect
between the glass powder and aluminum matrix that gives
uniform distribution to the composites. The tensile modulus
shows a linear increase with glass powder content in the
composites. Figures 6(a) and 6(b) and 6(c) and 6(d) gener-
ally show Young’s modulus and tensile strength versus the
glass powder content, respectively. These curves depicted
the maximum value at 20wt % of glass powder which shows
an approximate 56.6% enhancement compared to the unre-
inforced Al-6061 matrix materials.

Figure 7 shows the microstructure of the fabricated
aluminum-glass particle composite samples at a filler
content of 5-30wt % at 60x magnification. The optical
micrographs depicted in Figure 7 show the homogeneous
distribution of glass powder with some debris observed in
some parts of the composites as it exceeds beyond the limit
of solubility that is 20wt % of waste glass particulates. At
all contents of aluminum considered, homogeneous filler
particle’s distribution and dispersion were found for all
concentrations, with a particle density proportional to the
glass particle filler content. It is also observed that the addi-
tion of glass powder indicates a minimum grain size, defect,
agglomeration with proper stirring speed, and uniform dis-
tribution of the composite due to good bonding interaction
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Figure 5: The stress–strain curve of the fabricated specimens that
result in tensile strength of different percentage composition glass
powder composites.
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Figure 4: Rockwell hardness number versus glass powder content measurements of reinforced Al-6061 composite.
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and fair proportion of the composite. We observed agglom-
eration because of clustering effect and nonuniform distribu-
tion of particles specially in Figures 7(b) and 7(e), the
interfacial bonding and the matrix hardening.

4. Conclusions

This experimental study aimed at preparing an Al-6061
metal matrix composite reinforced with glass powder using
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Figure 6: Young’s modulus curve of the composite material in (N/mm2) (a, b) and tensile strength (N/mm2) (c, d).
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Figure 7: Optical microscope images of Al6061 alloy with reinforced particles: (a) Al6061+5wt % waste glass particles; (b) Al6061+10wt %;
(c) Al6061+15wt %; (d) Al6061+20wt %; (e) Al6061+25wt %; (f) Al6061+30wt % composites.
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the stir-casting technique. The effect of the glass particles on
the bonding properties of Al-6061 was investigated because
of its impact on the mechanical properties of the composites.
The microstructural and mechanical properties of the com-
posite sample were also examined. The fabricated composite
with composition of 80wt % Al-6061 and 20wt % glass pow-
der enhanced its tensile strength by 56.6% compared to the
pristine. This enhancement is due to a sufficient adhesive
bond between the glass powder and the Al-6061. The pres-
ence of 20wt % glass powder in the parent material has
increased its hardness by 23.94% due to strong harmonic
bonding interaction and fair proportion of density differ-
ence. The specimen with this combination is found to have
a minimum hardness number value of 63.2± 0.756 RH. In
comparison with the unreinforced metal Al-6061, the pro-
posed composite exhibits a good improvement in hardness
and tensile strength. The microstructural analysis using opti-
cal microscope shows good bonding of the reinforcement with
the matrix material. It is evident that waste glass powder is a
low-cost material that can be used as reinforcement in metal
matrix of aluminum with improved mechanical properties.
Generally, we conclude that aluminum alloy with reinforce-
ment of powder glass improves properties of the base alloy
especially mechanical properties with their excellent quality
of hardness and tensile strength of the composite.
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