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Currently, silver nanoparticles have boomed in food and medicine due to their potential applications, such as antibacterial
and anticancer activity. These nanoparticles have been synthesized by several techniques; however, green synthesis has
taken on greater importance due to the non-generation of toxic residues. Green synthesis has been constructed from plant
parts; however, the new trend comprises the use of agri-food waste extracts, known as sustainable green synthesis. The use
of agri-food waste reduces environmental pollution and confers on its added value. The main waste generated is found in
agricultural crops and industry from fruits and vegetables, cereal, bagasse from the food industry, and alcoholic beverages,
oil cake of the oil industry, among others. The main biomolecules in agri-food waste extracts include phenolic compounds,
alkaloids, terpenes, cellulose, hemicellulose, lignin, and proteins, whose function is to reduce the agents of the silver ion.
Therefore, the objective of this review was to promote the use of agri-food waste for the sustainable green synthesis of
silver nanoparticles and its application as antibacterial and anticancer agents.

1. Introduction

Nanotechnology is considered a multidisciplinary science
that aids in solving current problems, and where its function
is to manufacture nanoscale materials [1, 2]. The main appli-
cations of nanotechnology lie in the areas of food, medicine,
water treatment, solar energy conversion, and catalysis
[2–4]. Specifically, nanoparticles exhibit completely new or
improved properties based on characteristics such as size,

distribution, and morphology [5]. These can be obtained
from raw materials of natural origin (proteins and polyssac-
charides) [6, 7] or from inorganic precursors (metals, salts)
[8] Metallic nanoparticles have various applications, such
as antibacterial [9–12], antiviral [13–15], and anticancer
[16–18]. Also, different investigations focus on the synthesis
of metallic nanoparticles by various means, including phys-
ical, chemical, and biological methods [19]. However, chem-
ical methods employ chemical agents such as metal reducers
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that can be toxic and that limit their biomedical applications
[20]. Therefore, methods more friendly to health and the
environment have been implemented.

Silver nanoparticles have been synthesized from simple,
biocompatible, non-toxic, and eco-friendly protocols [21].
This technique is known as green synthesis and can use
microorganisms, enzymes, and plants or plant extracts,
which have been suggested as possible eco-friendly alterna-
tives [22]. The advantages of green synthesis over chemical
and physical methods include respect for the environment,
their profitability, and their easy scalability for the large-
scale synthesis of nanoparticles; in addition, it is not neces-
sary to use high temperatures, pressures, energy, and toxic
chemicals [23]. Green synthesis from plant materials
(including leaf, bark fruit, peel, seed, and root extracts)
[24–28] works under mild experimental conditions and
replaces hazardous chemicals with polyphenols, flavonoids,
proteins, saponins, or sugar as reducing agents as well as
capping agents [29]. An alternative to the use of plant
extracts for the synthesis of silver nanoparticles is agri-food
waste, known as the new era of the green synthesis of metal-
lic nanoparticles.

The use of agri-food waste for the synthesis of silver
nanoparticles is based on the justification that food produc-
tion is one of the most important human industries, which
can be responsible for a majority of environmental impacts
in developed countries [30]. Also, agricultural and food
industry wastes possess a plethora of phytochemicals, pro-
teins, and polysaccharides of commercial interest that can
be recovered to decrease the generation of waste [31–33].
The main agri-food wastes are generated from the produc-
tion of fruits [34], vegetables [35], cereals [36], and oilseeds
[37]. Fruit and vegetable industries generate large amounts
of waste biomass during processing, main in selecting, sort-
ing, and peeling, producing different types of solid residues
such as peel/skin, seeds, leaves, stems, and bark [38]. The
use of agri-food waste extracts as reducing agents renders
the synthesis of silver nanoparticles a sustainable system
because, in one same step, a green synthesis method is
employed and agri-food waste is given added value. There-
fore, the synthesis of silver nanoparticles from agri-food
waste denominated sustainable green synthesis.

Food industries generate a large amount of agri-food
waste at the level of agricultural crops, as well as during pro-
cessing, with around 1.6 billion tons of primary product
equivalents, and the total food wastage for the edible part
of this amounts to 1.3 billion tons [39]. In the wine industry,
wastes consist mainly in solid by-products, including marcs
or pomace and stems and may account on average for nearly
30% (w/w) of the grapes used for wine production, and poly-
phenols have been identified as major compounds [40].
Other agricultural wastes are straw, stover, peelings, cobs,
stalks, bagasse, and other lignocellulosic residues. The
annual lignocellulosic biomass generated by the primary
agricultural sector has been evaluated at approximately 200
billion tons worldwide [41]. Wine and lignocellulosic waste
are examples of agri-food waste that can be utilized to obtain
extracts with molecules that act as reducing agents for the
synthesis of silver nanoparticles and capping agents.

The mechanism of green synthesis of silver nanoparticles
from agri-food waste extracts is similar to synthesis from
plant extracts, which is a bottom-up method [42]. The
bottom-up method consists of the reduction of the silver
atom, followed by nucleation and, finally, growth [43]. In
addition, the importance of new methods of synthesis of
silver nanoparticles is its powerful application as broad-
spectrum antibacterial agents, mainly in Bacillus subtilis,
Staphylococcus aureus, Escherichia coli, Micrococcus flavus,
Pseudomonas aeruginosa, Klebsiella pneumoniae, and Bacil-
lus pumilus, among others [44]; and as an agent against can-
cerous human cells such as MCF7 breast, A549 lung cancer
[45], PC-3 prostate cancer [46], A431 skin cancer [47], and
HeLa of cervical cancer [48], among others.

Therefore, the use of agri-food waste extracts is an alter-
native for the sustainable green synthesis of silver nanopar-
ticles, which broadens the panorama in terms of new
precursor agents for the synthesis of nanoparticles, and also
aids in reducing agri-food waste. The objective of this review
was to promote the use of agri-food waste for the sustainable
green synthesis of silver nanoparticles and promote its appli-
cation as an antibacterial and anticancer agent.

2. Conventional Green Synthesis of Silver
Nanoparticles: Plant Extracts

Current researchers have been intensely interested in silver
nanoparticles, owing to their large surface-to-volume ratio,
morphology, and small size, resulting in variations in their
physical and chemical characteristics [49]. The advantages
of green synthesis of silver nanoparticles include being an
economical, eco-friendly, under mild experimental condi-
tion, and a simple method for preparing silver nanoparticles
[49]. Currently, plants extract has been used for the synthe-
sis of silver nanoparticles and have many advantages over
chemical, physical, and microbial syntheses [50]. A great
variety of plant extracts have been successfully utilized for
synthesizing silver metal (Ag0) nanoparticles from silver
ions (Ag+) [51]. In addition, for the green synthesis of silver
nanoparticles, different concentrations and amounts of plant
extract as reducing agents have been evaluated, as well as dif-
ferent concentrations of silver nitrate (AgNO3) as precursor
of the synthesis [52, 53].

2.1. Extracts from Different Parts of the Plant. Aqueous
extracts have been obtained from different parts of plants
that contain phytochemicals and other biopolymers that
act as reducing agents of silver metal [54] (Figure 1). Some
recent parts of plant extracts reported include the following:
leaf extracts of Croton sparsiflorus morong [55], Psidium
guajava [56], Datura stramonium [57], Passiflora edulis f.
[58], and Annona reticulate [59]; from the stem extracts of
Saccharum officinarum [60], Diospyros montana [61], Vigna
unguiculata [62], and Jasminum auriculatum [63]; from the
root extracts of Lithospermum officinale [64], Berberis vul-
garis [65], Nepeta leucophylla [66], Bergenia ciliata, Bergenia
stracheyi, Rumex dantatus, and Rumex hastatus [67]; from
the fruit extracts of Cleome viscosa L. [16], Chaenomeles
sinensis [68], Terminalia belarica [69], Cornelian cherry
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[70], and Terminalia chebula [71]; and from the flowers
extracts of Madhuca longifolia [72], Bauhinia purpurea
[73], Scrophularia striata [74], and Fritillaria [75]. In addi-
tion, different variables such as pH and temperature have
been studied in the green synthesis of silver nanoparticles
from plant extracts.

.
Kathiravan [92] synthesized silver nanoparticles from

Trichodesma indicum-leaf extracts as follows: 20 g of clean,
dry, and cut leaves was placed into a beaker containing 100
mL of double-distilled water, which was boiled at 60°C and
then cooled and filtered with Whatman paper No. 1, and
the extract was obtained. For the synthesis of silver nanopar-
ticles, an aqueous solution of 1 mM of silver nitrate (AgNO3)
was used. Then, three concentrations (5, 10, and 15 mL) of
leaf extracts were evaluated separately with 45 mL of AgNO3
solution and stirred at 65°C for 30 min. Results by TEM
showed nanoparticles mostly spherical in shape, few nano-
particles were agglomerated, and size by XDR was 20, 35,
and 33 nm for 5, 10, and 15 mL of extract. Therefore, Richo-
desma indicum-leaf extract is an important reducing agent
for synthesizing silver nanoparticles by the green synthesis
process.

Shaikh et al. [93] synthesized silver nanoparticles from
Cassia toral L.-root extract. First, the root was washed with
deionized water, dried for 1–2 weeks at room temperature,
and reduced in size to a fine powder. Then, 10 g of root pow-
der was mixed with 100 mL of deionized water, stirred for 3
h, and the aqueous extract was separated by Whatman filter
paper no. 1. Continued, 5 mL of fresh root extract was added
to a conical flask containing 40 mL of 1 mMAgNO3 solution
under exposure to sunlight; 5 min later, silver nanoparticles
were synthesized. Results by TEM showed nanoparticles

spherical in shape and <100 nm in size. These authors con-
cluded that, from the extract from Cassia toral L. root, a rapid
synthesis of silver nanoparticles with an eco-friendly and
convenient method was obtained.

Soshnikova et al. [94] synthesized silver nanoparticles
from three distinct Cardamom fruits (5-year-old Amonum
villosum, fresh A. villosum, and fresh Elletaria cardamo-
mum). First, to obtain the fruit extract, 10 g of each fruit
was ground thoroughly and autoclaved for 1 h at 100°C in
100 mL of sterile water and filtered with Whatman filter
papers. For the synthesis, 1 mM of AgNO3 solution was
added to the diluted extracts at room temperature. A color
change in the reaction mixtures indicated the formation of
nanoparticles. Nanoparticles were collected by centrifuga-
tion at 16,000 rpm for 10 min, washed thoroughly with ster-
ile water, and finally washed with 80% MeOH. The best
extract evaluated by UV-vis was 5-year-old A. villosum,
and FE-TEM revealed a size between 5 and 15 nm and a
spherical shape. Elemental analysis by EDX demonstrated
the presence of silver nanoparticles. These authors con-
cluded that silver nanoparticles had been conveniently syn-
thesized by a rapid and green method utilizing the aqueous
extract of Fructus amomi. The methodology of green synthe-
sis was innocuous, ecologically benign, and inexpensive.

2.2. Biomolecules as Reducing Agents. The reduction of the
silver ion (Ag+) of silver nitrate (AgNO3) to the silver atom
(Ag0) is due to the biomolecules found in plant extracts as
reducing agents. Sathishkumar et al. [95] reported this effect
of silver ion reduction by terpenoids (cinnamaldehyde, ethyl
cinnamates, and β–caryophyllene) of the Cinnamon zeylani-
cum-bark extract. The identification of color change is a pri-
mary tool that confirms the ability of compounds of plant

(a) Hibiscus rosa sinensis

(g) Coffea arabica

(i) Bunium persicum (j) Artocarpus heterophyllus Lam

(n) Gum kondagogu

(p) Emblica officinalis fruit

(o) Tagetes erecta f lowers

(h) Jatropha curcas

(b) Iresine herbstii (c) Carob (d) Cycas (e) Mimusops elengi, Linn (f) Boerhaavia diffusa

Seed extracts

Leaf extracts

Other extracts

Individual biomolecules
extracts

(k) Strach (i) Chitosan and heparin (m) Geraniol

Conventional green
synthesis of silver

nanoparticles

Figure 1: Conventional green synthesis of silver nanoparticles from plant extracts. Green synthesis from (a)–(f) leaf extracts [76–81], (g)–(j)
seed extracts [82–85], (k)–(m) individual biomolecule extracts [86–88], (n)–(p) and other biomolecule extracts [89–91].
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extracts in nanoparticle synthesis [96]. This color change is
due to the excitation of surface plasmon resonance (SPR)
in the nanoparticles [97, 98]. Figure 2 presents how the
biomolecules reduce the silver ion to the silver atom for
the synthesis of silver nanoparticles.

Vidhu et al. [99] mention that several factors exert an
influence on the formation of silver nanoparticles, such as
the plant source and the organic compound in plant extract.
For example, phytochemical analysis of the Macrotyloma
uniflorum extract has indicated the presence of phenolic
acids such as caffeic acid and p-coumaric acid. These
biomolecules possess hydroxyl and carbonyl groups, which
are able to bind to metals and which may inactivate ions
by chelating. This chelating ability of phenolic compounds
is probably related to the high nucleophilic character of the
aromatic rings rather than to specify chelating groups within
the molecule. In caffeic acid, active hydrogen may be respon-
sible for the reduction of silver ions leading to the formation
of silver nanoparticles, as depicted in Figure 2(a). Edison and
Sethuraman [100] report that the major biomolecules pres-
ent in the Terminalia chebula fruit are hydrolyzable tannins,

polyphenols, gallic acid, and chebulagic acid. The possible
mechanism for the reduction of Ag+ can form intermediate
complexes with the phenolic groups (–OH) present in
hydrolysable tannins, which subsequently undergo oxidation
to quinone forms, with a consequent reduction of silver ion
(Ag+) to silver metal (Ag0) (Figure 2(b)). Ahmad et al. [101]
report that luteolin is a common flavone found in the aerial
parts of the basil plant. Formation of the enol form of the
luteolin freely releases reactive hydrogen, which is responsi-
ble for the conversion of Ag+ into Ag0 and the subsequent
formation of nanoparticles, as shown in Figure 2(c).

Then, the biomolecules reduce the silver ion into metallic
silver as a first phase, and two additional phenomena are
observed for the synthesis of silver nanoparticles, known as
nucleation and growth (Figure 3). The nucleation phase
occurs when particles of the metal plates tend to migrate
toward other metal particles, forming agglomerates called
clusters [2]. These clusters then tend to form small silver
nanoparticles. Then, the growth phase occurs where the adja-
cent small nanoparticles spontaneously begin to coalesce to
form larger particles. This spontaneous process, controlled
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Figure 2: Biomolecules of plant extracts as reducing and capping agents for the green synthesis of silver nanoparticles. Reducing agents: (a)
caffeic acid in Macrotyloma uniflorum extract [99], (b) phenolic compounds in Terminalia chebula [100], and (c) luteolin and rosmarinic
acid in basil extract [101]. Capping agents: (d) biomolecules in Latana camara-leaf extracts [102] and (e) biomolecules in Terminalia
cuneata-bark extract [103].
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thermodynamically, is due to that the larger particles are
energetically favored with respect to the smaller particles, this
is known as Ostwald ripening [104].

The growth part concludes with the end size of silver
nanoparticles and with different shapes is obtained. The
shape will be conferred by the conditions of synthesis such
as temperature and pH, as well as rate and time of synthesis.
In different investigations, spherical, irregular, hexagonal,
and triangular shapes have been obtained and are shown
in Figure 4. Ravichandran et al. [105] reported silver nano-
particles of a spherical shape (Figure 4(a)). To obtain this
shape, the nanoparticles were reduced to AgNO3 by adding
1.5 mL of Atrocarpus altilis-leaf extracts to 1 mL of the 0.01
M AgNO3 solution, and the volume was raised 10 mL with
deionized water in a 25-mL volumetric flask at 25 ± 0.5 °C
for 24 h. Singh et al. [106] reported silver nanoparticles with
an irregular shape (Figure 4(b)). First, Symphytum officinale
aqueous extract was diluted in water at a ratio of 1:5 (v/v).
To this solution, the final concentration of 1 mM filter-

sterilized solution of AgNO3 was added and the reaction
mixture was maintained at 65 °C. On the other hand, Wang
et al. [107] reported silver nanoparticles with two shapes:
hexagonal and triangular (Figures 4(c) and 4(d)). For bio-
synthesis with these shapes, 5 mL of Dendropanax morbi-
fera-leaf extract was mixed with 45 mL of deionized water,
and AgNO3 solution was added at a final concentration of
1 mM to the reaction mixture, which was then incubated
at 80°C for 1 h.

2.3. Biomolecules as Capping Agents. During the synthesis
process, biomolecules of the extract, in addition to acting
as a reducing agent for silver ion, function as capping agents
[108]. The capping process refers to the incorporation of
biomolecules on the surface of silver nanoparticles. This
incorporation aids in stabilizing silver nanoparticles, avoid-
ing agglomeration [109, 110]. Ajitha et al. [102] note that
the biomolecules of Latana camara-leaf extracts comprise
lipids, proteins, and carbohydrates, also common secondary

Step 1: Reduction Step 2: Nucleation Step 3: Growth

Agrifood waste
extract

Plant extract
or

Ag+

Ag+

Ag+

Ag0

Ag0

Ag0

Ag
Ag

AgAg Np Np

Np
Np

Figure 3: Mechanism of the synthesis of silver nanoparticles by plant extract or agri-food waste extract.

Spherical
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Figure 4: Different shape of silver nanoparticles: (a) spherical [105], (b) irregular [106], and (c) and (d) hexagonal and triangular [107].
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metabolites (phenolics, flavonoids, terpenoids, and alkaloids,
and trace amounts of phytosterols, saponins, tannins, and
phycobatannin). Biomolecules carry out the capping process
and, specifically, the carbonyls groups of the amino acids pres-
ent in proteins and peptides possess a strong ability to bind
metal ions. This nanoencapsulation surrounding the nanopar-
ticles forms a protective coat-like membrane in order to avoid
agglomeration (Figure 2(d)). Edison et al. [103] reported that
the biomolecules of Terminalia cuneata-bark extract are of
the polyphenol-, tannin-, and gallic-acid type and contain a
high density of hydroxyl groups. They mention that the phe-
nolic compounds present in the extract subsequently undergo
oxidation and are converted into their quinone form. Thus,
the electrochemical potential difference between Ag+ and
phytoconstituents drives the reaction. The silver nanoparticles
formed were stabilized through the lone pair of electrons and
the pi electrons of the quinone structures (Figure 2(e)).

3. Sustainable Green Synthesis of Silver
Nanoparticles: Agri-Food Waste Extracts

The XXI century has been viewed as a turning point in the
history of humankind with regard to the awareness of the
environmental problem [111]. In this context, agricultural
and food wastes (agri-food waste) should be thought of as
sources of plentiful value-added products, and this should
be the path taken to achieve a zero-waste economy [112,
113]. These wastes are high in volume, with low-value mate-
rials, and are rather inexpensive [111, 112], Around 89 mil-
lion tons of food are wasted annually in the European Union
[114]. Therefore, agri-food waste can be used for the green
synthesis of silver nanoparticles. This new era of the green
synthesis of silver nanoparticles from agri-food waste extract
as reducing agents is known as sustainable green synthesis.
However, the valorization of waste biomass for the synthesis
of silver nanoparticles should include processes that generate
far less, or even zero, further waste; otherwise, a concept of
“sustainable” could not be substantiated [115]. Therefore,
the synthesis of silver nanoparticles from agri-food waste is
considered a sustainable green synthesis because of the fol-
lowing five points:

(1) It does not generate toxic waste for the environment
and health. Thus, it is considered an eco-friendly
system

(2) Easy to obtain and economically viable

(3) Extracts are obtained from agri-food waste, confer-
ring added value

(4) Use of agri-food waste promotes the reduction of
pollution

(5) The system of synthesis does not generate new waste

In this regard, different agri-food wastes are generated
each year that can be used for the sustainable green synthesis
of silver nanoparticles, as depicted in Figure 5, as follows: (1)
from fruits and vegetables, we find those that are cut, torn, or
bruised and that are not suitable for industrial processing,

and also residues of pulp or peel/skin generated from the
agri-food industry; (2) from cereal crops, there are crops with
low-quality food and that are of a low quality for export,
straw generated after the grain harvest, and by-products gen-
erated during grain processing, such as DDGS and GM; (3)
bagasse from different lignocellulosic sources; (4) oil cake
from the oil industry, and (5) individual biomolecules from
agri-food waste. These agri-food wastes for the sustainable
green synthesis of silver nanoparticles are discussed in the
following sections. Table 1 presents the agri-food waste
extracts employed for the sustainable green synthesis of silver
nanoparticles and particle size obtained.

3.1. Fruit- and Vegetable-Waste Extracts. Fresh fruits and
vegetables comprise the largest subgroup of retail food waste
[168]. These can range from pomace (leftovers after press-
ing) to cabbage cut-offs [169]. The total value of fruit and
vegetable losses at the retail and consumer levels in the
United States was $42.8 billion in 2008, or roughly $141
per person [170]. These can be generated in different steps
of the food supply chain, from farm to fork, thus including
both pre- and post-consumer stages, such as the processes
of harvesting, transportation, storage, marketing, and pro-
cessing [114, 171]. Fruits and vegetables comprise an abun-
dant source of polyphenols, dietary fibers, enzymes, and
proteins [170] that can function as reducing agents for the
sustainable green synthesis of silver nanoparticle. Examples
of such fruit waste include the citrus, banana, apple, and
pear waste remaining after industrial processing. Also, cit-
rus, which includes oranges, grapefruits, lemons, limes, and
mandarins, is the most abundant crop in the world [172].
Wine industry wastes, which consist mainly of solid by-
products, include marcs or pomace, and stems, and may
account on average for nearly 30% (w/w) of the grapes used
for wine production [40].

Mythili et al. [116] reported the use of vegetable waste
obtained from a market in India for the sustainable green
synthesis of silver nanoparticles. The vegetable-waste extract
was used in the reduction of AgNO3 into AgNP, and biore-
duction was visually confirmed by the color change in the
reaction mixture, ranging from colorless to brown. The crys-
talline nature of the synthesized AgNP was confirmed using
XRD analysis. TEM results showed that the AgNPs were
dispersed uniformly and were spherical in shape, with a size
range of 10-90 nm.

3.2. Fruit- and Vegetable-Peel Waste Extracts. Peels are the
major waste obtained during the processing of various fruits
and vegetables, and these were shown to be a good source of
various bioactive compounds. Significant quantities of fruit
peels (20-30% for banana and 30-50% for mango) are dis-
carded as waste by the processing industries, giving rise to
real environmental problems [173]; these peels can be used
for the sustainable green synthesis of silver nanoparticles.
Another peel waste generated includes those of apples, white
and red grapes, and red beets [174]. Examples of fruit and
vegetable peels are shown in Figure 6. On the other hand,
115 million tons of citrus fruits are produced annually, and
about 30 million tons are processed industrially for juice
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production. After industrial processing, citrus-peel waste
accounts for nearly 50% of the wet-fruit mass [172]. Orange
is the most important citrus fruit, with 50 million tons, with
its peel representing 44% as waste [175]. Some studies of
fruit- and vegetable-waste extracts have been reported.

.
Ibrahim [117] reported the use of banana-peel extracts

for the sustainable green synthesis of silver nanoparticles.
Bananas are consumed all over the world. After consumption
of the pulp, banana peels are generally discarded. Banana
peels are rich in biomolecules such as lignin, cellulose, hemi-
cellulose, and pectins. Results showed that, at 1.75 mM of salt
and 3.0 mL of extract, highest intensity peaks were observed
by UV-vis. The TEM image showed monodispersed silver
nanoparticles with a spherical shape, and the average particle
size by DLS was 23.7 nm. Ibrahim concludes that banana
peels as agricultural waste material were successfully utilized
for the consistent and quick synthesis of silver nanoparticles.
Sharma et al. [118] reported the sustainable green synthesis
of silver nanoparticles from different vegetable-peel extracts,
including the vegetable-peel waste of Lagenaria siceraria,
Luffa cylindrica, Solanum lycopersicum, Solanum melongena,
and Cannabis sativus was collected from kitchen waste. The
result demonstrated maximal absorbance at 430 nm, which
confirmed the synthesis of AgNP UV-vis. Also, spherically
shaped AgNP had sizes up to 20 nm as revealed by TEM
analysis. These authors concluded with the use of vegetable
waste in the synthesis of silver nanoparticles, depicting an
eco-friendly method.

Joshi et al. [119] reported the sustainable green synthesis
of silver nanoparticles from pomegranate-peel extract as a
reducing agent. Sixty percent of the weight of pomegranate
fruit comprises peel waste. The biomolecules present in
pomegranate-peel extract include vitamins, phenolics, flavo-
noids, and antioxidants. The results suggest that AgNPs are

crystalline in nature. Particle size ranged from 57.7 to 142.4
nm and exhibited a spherical shape by SEM. The authors
conclude that silver nanoparticles could be synthesized rap-
idly and successfully, within 5 min using pomegranate-peel
extract environmental conditions. Soto et al. [120] reported
the sustainable green synthesis of silver nanoparticles utiliz-
ing different fruit-peel (grape and orange) waste extracts.
The results demonstrated that shape was nearly spherical
by SEM and TEM. Diameters ranging from 3 to 14 nm
and from 5 to 50 nm for silver nanoparticles were obtained
from the grape and orange extract, respectively. The authors
concluded that aqueous extracts from orange peel and grape
pomace were used to synthesize AgNP through the reduc-
tion of Ag+ ions and the stabilization of silver nanoparticles
by their secondary metabolites.

3.3. Cereal Waste Extracts. Cereal wastes are generated dur-
ing the harvesting of the grain, as well as during the process-
ing of same. The main waste generated during harvest
comprises straw, stover, peelings, cobs, stalks, bagasse, and
other lignocellulosic residues. The annual lignocellulosic
biomass generated by the primary agricultural sector has
been evaluated at approximately 200 billion tons worldwide
[41]. In addition, during the processing of grain, by-
products such as Gluten Meal (GM) and Dried Distillers'
Grains and Solubles (DDGS) are generated. The U.S. gener-
ated around 44 million tons of DDGS in 2018, being the
main generator of these [176]. Also, over 840,000 tons of
corn GM are produced in China every year, mainly being
used as feedstuff or discarded [177]. Therefore, due to their
high production, the waste from cereals obtained added
value as reducing agents for the synthesis of silver nanopar-
ticles. Figure 7 illustrates agri-food waste from wheat, corn,
and rice cereals for the potential obtaining of extracts as
reducing agents. Straw and husk waste are composed of
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Table 1: Agri-food waste extracts used for the sustainable green synthesis of silver nanoparticles.

Resource Agri-food waste Size (nm) Shape Reference

Vegetable Fresh skins and fresh/damaged leaves 10–90 Spherical [116]

Banana Peel 23.7 Spherical [117]

Vegetable Peel Up to 20 Spherical [118]

Pomegranate Peel 60-150 Spherical and agglomeration [119]

Grape
Orange

Peel
Peel

3-14
5–50

Nearly spherical [120]

Wheat Bran xylan 20-45 Spherical [121]

Corn Straw ≈20 Spherical [122]

Rice Straw 30 Mainly spherical [123]

Rice Husk <20 NS [124]

Wheat Straw ≈20 Spherical [125]

Sugarcane Bagasse ≈22 Spherical [126]

Sugarcane Bagasse 8-30 Semi-spherical [127]

Coconut Oil cake 10–70 Spherical [128]

Cottonseed Oil cake 10-90 Spherical [129]

Sesame Oil cake 6.6-14.80 Spherical [130]

Annona squamosa Peel 20-60 Irregular, spherical [131]

Mandarin Peel 5-20 Spherical [132]

Cocoa Pod husk 4-32 Spherical [133]

Neem Cake 30-50 Spherical [134]

Vigna mungo Seed hull 28.21-91.28 Agglomeration [135]

Rambutan Peel 100-200 Triangle and hexagonal [136]

Lansium fruit Peel NS NS [137]

Cavendish banana Peel 23–30 Spherical [138]

Orange Peel 10-135 Nanowires, irregular, spherical, and aggregates [139]

Arachis hypogaea Peel 20-50 Spherical [140]

Pomegranate Peel 5-45 Irregular and spherical [141]

Dragon fruit Peel 25.3-26.2 Spherical [142]

Carica papaya Peel 10–35 Spherical [143]

Banana Peel ≈10 Spherical [144]

Kinnow mandarian Peel NS NS [145]

Carica papaya Peel 15-20 Spherical and a few agglomerated [146]

Punica granatum Peel 20-40 Spherical [147]

Citrus limon
Citrus sinensis
Citrus limetta

Peel 9–46 Spherical [148]

Citrus × clementina Peel 5-25 Spherical and small agglomeration [149]

Pomegranate Peel 3–13 Spherical [150]

Pomegranate Peel 89 Different [151]

Citrus sinensis Peel 3–12 Spherical [152]

Pomegranate Peel NS Spherical [153]

Parkia speciosa Hassk pods 20–50 Mainly spherical [154]

Citrus sinensis Soda lignin bagasse 19.1 Spherical [155]

Wheat Straw 9-24 Nearly spherical [156]

Rice Straw NS NS [157]

Peach Kernel shell <20 Spherical [158]

Sal Deoiled seed cake 35–70 Polygonal and irregular [159]

Tea Stalks and dust 45 Torispherical [160]

Grape Seed 25-35 Spherical and polygonal [161]
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Table 1: Continued.

Resource Agri-food waste Size (nm) Shape Reference

Grape Stalk 9-55.8 Spherical [162]

Orange Hesperidin and nanocellulose peel 25.4 Spherical [163]

Sapota Pomace powder 8-16 Isotropic [164]

Coconut Shell 14.20–22.96 Spherical [165]

Pineapple Peel 11-26 Spherical [166]

Banana Blossom peel NS NS [167]

Orange peel Banana peel Potato peel

Carrot peelLemon peelApple peel

Pineapple peel Watermelon peel Pea peel

Figure 6: Examples of fruit- and vegetable-peel waste as potential reducing agents for the sustainable green synthesis of silver nanoparticles
[117–120].
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Figure 7: Cereal waste: straw, GM, and DDGS as potential reducing agents for the sustainable green synthesis of silver nanoparticles.
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cellulose, hemicellulose, and lignin [178, 179], and GM and
DDGS are composed mainly of protein [180, 181]. Some
studies have reported the use of straw, husk, and bran
extracts as reducing agents.

Harish et al. [121] reported the use of wheat-bran xylan
extracts as a reducing agent for the sustainable green synthe-
sis of silver nanoparticles. Wheat bran obtained through
food processing is considered a waste biomass. Xylan is a
heteropolysaccharide composed of β(1–4) and/or β(1–3)
xylose residues and may contain substitutions such as galac-
topyranosyl, glucuronosyl, arabinosyl, and acetyl residues.
The presence of the reducing sugar xylose and free hydroxyl
groups renders it a promising biopolymer for use in the syn-
thesis of silver nanoparticles. The silver nanoparticles
obtained by means of wheat-bran xylan were spherical in
shape with size ranging from 20 to 45 nm. In conclusion,
the authors reported a simple, safe, cost-effective, and eco-
friendly method for the preparation of silver nanoparticles
using xylan and more economical on a large industrial scale.

Chen et al. [122] reported the sustainable green synthesis
of silver nanoparticles from corn straw extract. Corn straw is
the waste from corn after the corn cob is removed. The main
biomolecules in corn straw are alcohols, phenols, and aro-
matic compounds. These components are all reducible for
the synthesis of silver nanoparticles. Results showed silver
nanoparticles with an almost spherical shape and size was
around 20 nm. They conclude that corn straw is a good
reducing agent for the synthesis of silver nanoparticles. Chen
et al. [123] reported the sustainable green synthesis of silver
nanoparticles using rice-straw extract as reducing agent. Rice
straw is one of the most abundant agricultural wastes in
China, with an average annual production of 1.8× 108 tons.
Synthesis was carried out and the silver nanoparticles were
mainly spherical in shape with average diameter of 30 nm.
In conclusion, the synthesis of silver nanoparticles using
rice-straw extract as a reducing agent was obtained.

Lieu et al. [124] reported the use of rice-husk extracts
as a reducing agent for the sustainable green synthesis of
silver nanoparticles. Phenolic acids are the major biomole-
cules in rice husk, and include gallic acid, protocatechuic
acid, 4-hydroxybenzoic acid, 3-hydroxybenzoic acid, vanil-
lic acid, caffeic acid, syringic acid, p-coumaric acid, and
ferulic acid. The phenolic acids of rich rice-husk extract
might be used as safe reducing agents for the synthesis
of silver nanoparticles. Size according to the XRD of the
silver nanoparticles synthesized was less than 20 nm. Also,
these silver nanoparticles can be inferred as being sur-
rounded by phenolic acids, which that formed negatively
charged layers and presented a space hindrance to prevent
the aggregation of silver nanoparticles by electrostatic repul-
sion. In conclusion, the abundant phenolic acids in rice
extract were considered reducing agents and protective
agents that enabled the stable dispersion of the sustainable
green synthesis of silver nanoparticles.

Saratale et al. [125] reported the sustainable green syn-
thesis of silver nanoparticles from wheat straw-extracted
lignin. Lignin is the most renewable, non-toxic, highly
branched natural aromatic biopolymer. Lignin is a valuable
by-product of the pulp and paper industries and is pro-

duced at a rate of nearly 50-70 million tons per annum.
Results showed that lignin acts as a reducing agent of silver
ion. Also, pH 8.0, 50 °C, and 1 mM of AgNO3 are the opti-
mal conditions for maximal silver-nanoparticle production.
HR-TEM revealed uniformly monodispersed silver nano-
particles and that are spherical in shape with a size around
20 nm. These authors concluded that the wheat straw-
extracted, lignin-mediated, one-step process of silver nano-
particles was developed and is simple, eco-friendly, and
follows the principles of green chemistry.

3.4. Bagasse-Waste Extracts. Other agri-food waste extracts
are those obtained from bagasse generated by the food
industry and can be used in nanotechnology for the produc-
tion of metal nanoparticles. Worldwide, the main bagasses
generated include sugarcane bagasse and sweet sorghum
bagasse [182–184]. Global sugarcane production is around
1.9 billion tons annually; however, this is around 570 million
tons of wet bagasse, or one-half of this amount if dried [185].
Sugarcane bagasse contains cellulose (40–50%), hemicellu-
loses (25–35%, predominantly xylans), and lignin (20–
30%) [185]. Also, in Mexico, the main bagasses generated
derive from the alcohol industries of tequila, bacanora, mes-
cal, and stool [186]. In 2017, 956,000 tons of Agave tequilana
were consumed in terms of tequila production and around
40% of these are discarded as bagasse [187]. The agaves are
also a source of lignocellulosic material [188]. Therefore,
these examples of bagasse, among others generated in the
food industry, comprise the source of biomolecules as reduc-
ing agents for the sustainable green synthesis of silver
nanoparticles.

Shen et al. [126] reported the sustainable green synthesis
of silver nanoparticles from sugarcane bagasse. Bagasse is a
polymer complex mainly containing cellulose, hemicellulose,
and lignin, is abundant in nature, and has gradually been
attracting the interest of scientists due to its low value.
Mainly hemicelluloses and lignin of bagasse can be used as
green reducing and stabilizing agents to prepare silver nano-
particles. Results have demonstrated that the optimal condi-
tion for this experiment was the ratio of 20 mL bagasse
extract, 0.1 g AgNO3, a temperature of 90 °C, and a time
of 40 min. Also by TEM images, it was observed that the
particles were nearly spherical in shape and their size was
about 22 nm.

Aguilar et al. [127] reported the use of sugarcane-waste
extracts as a reducing agent for the sustainable green synthe-
sis of silver nanoparticles. In Mexico, the sugarcane industry
produces more than 49 million tons per year. Around 30%
of the processed cane is transformed into bagasse. The latter
is composed of lignin (20%) found in sugarcane support
tissue, hemicellulose (25%), and cellulose (45%). Results
showed that a silver plasmon band was observed for pH7
and 12. The size of silver nanoparticles synthesized at pH 7
ranged from 8 to 30nm with semi-spherical shape. The
authors concluded that a green, rapid, inexpensive, and reli-
able additive-free method was developed for the synthesis of
silver nanoparticles using sugarcane bagasse as a reducing
and capping reagent in a Soxhlet system.
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3.5. Oil-Cake Waste Extracts. The extraction of edible oil
from oilseeds is one of the main food industries worldwide.
However, this importance is reflected in the large production
of waste generated. The most important waste generated
from the oil extraction of the seed is oil cake [189]. Of the
total oil-cake production increase of 23 million tons, 17 mil-
lion tons derives from developing countries including India,
Brazil, and Argentina [189]. The main sources of oil plants
from this oil cake that is obtained are sunflower [190], saf-
flower [191], canola [192], ,and sesame [193, 194] among
others. The oil cake consists of highly lignified husk lignocel-
lulosic fibers (40%), protein (35%), and phenolic compounds
(5.7%) [195, 196]. These biomolecules present in oil cake
possess the ability to reduce the silver ion.

Govarthanan et al. [128] reported the sustainable green
synthesis of silver nanoparticles from the coconut-oil cake
extract. The authors mention that in India, various types of
oil cakes are produced on a large scale, as a by-product of
the oil manufacturing industry. A by-product obtained after
oil extraction from dried copra is coconut-oil cake. It con-
tains starch, soluble sugars, proteins, lipids, and a trace
amount of nitrogen. In this work, coconut-oil cake was eval-
uated for the synthesis of silver nanoparticles. Results dem-
onstrated that the intensity of the color increased after 12 h
of incubation, indicating the reduction of Ag ions. Also, the
EDS quantitative analysis revealed the presence of silver. Sil-
ver nanoparticles were spherical in shape and mostly present
in aggregates. The size of the particles ranged from 10 to 70
nm. In conclusion, this study reported this simple and cost-
effective method for the synthesis of silver nanoparticles.

Govarthanan et al. [129] reported the use of cottonseed-
oil cake extract as a reducing agent for the sustainable green
synthesis of silver nanoparticles. Cotton is an economical
plant from which cottonseed oil is a cooking oil extracted
from the seeds of the cotton plant. Cottonseed-oil cake is
generated as a by-product of the cottonseed-oil manufactur-
ing industry. Its by-product is rich in protein, which was
used to reduce silver ion. Results showed that a clear dark
brown color formed within 4 h when the cottonseed-oil cake
extract was added to the 1 mM AgNO3. This color change
was attributed to excitation of Surface Plasmon vibrations

within the synthesized silver nanoparticles. SEM-EDS exhib-
ited the presence of silver atoms in nanoparticles. TEM
images revealed that the particles were spherical in shape
with an average size of 10 to 90 nm. This study reported
the simple, cost-effective, and eco-friendly agroindustrial
waste-mediated synthesis of silver nanoparticles using
cottonseed-oil cake extract.

Alfuraydi et al. [130] reported the sustainable green syn-
thesis of silver nanoparticles from sesame-oil cake extract.
Sesame (Sesamumindicum L.) is one of the most important
crops throughout the world. Sesame oil contains nutritive
constituents such as polyunsaturated fatty acids, proteins,
carbohydrates, sesamin, sesamolin tocopherol, phytosterols,
vitamins, and minerals. Results showed that the process of
the synthesis of silver nanoparticles from AgNO3 was traced
after incubating with the extract of sesame-oil cake. The
colorless solution change to dark brown in color is due to
surface plasmon resonance (SPR) at room temperature.
The TEM study revealed that the synthesized silver nanopar-
ticles were spherical in shape with a particle size ranging
from 6.6 nm to 14.80 nm. The authors concluded that the
oil cake was final product of oil process, which contains
more nutritional values with low fat. Silver nanoparticles
were successfully synthesized utilizing the sesame-oil cake.

Figure 8 demonstrates other agri-food wastes that have
been employed to obtain extracts as reducing agents, waste
including peel, bagasse, oil cake, and husk. Also, its shows
the morphology and size of silver nanoparticles by TEM
and SEM equipment, depending on the investigation being
conducted.

3.6. Recovery of Individual Biomolecules from Agri-Food
Waste. In addition to sustainable green synthesis from
agri-food waste extracts containing multiple biomolecules
as reducing agents, individual biomolecules can be recov-
ered. These individual biomolecules can be obtained from
agri-food waste extracts and function as reducing agents.
Banerjee et al. [197] reported that biomolecules are essen-
tially primary and secondary metabolites of agri-food waste.
Phenolics, alkaloids, glycosides, volatile oils, mucilage, gums,
and oleoresins are some of the examples of secondary

Annona squamosa
peel

(b) (c) (d) (e) (f)(a)

Mandarin (Citrus unshiu)
peel

Cocoa pod
husk

Sugarcane (Saccharum
officinaum) bagasse

Vigna mungo
peel

Neem (Azadirachta indica)
cake

50 nm

Figure 8: Agri-food wastes that have been used for the sustainable green synthesis of silver nanoparticles and their respective shape and
particle size. From (a) Annona squamosa-peel waste, [131] (b) mandarin (Citrus unshiu)-peel waste, [132] (c) cocoa-pod husk, [133] (d)
sugarcane (Saccharum officinarum) bagasse, [126] (e) Vigna mungo peel, [134] and (f) Neem (Azadirachta indica) cake. [135].
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metabolites. Also, fruit-peel waste, straw, and bagasse com-
prise an important source for the recovery of cellulose,
hemicellulose, and lignin [198–200]. Fruit and vegetable
waste contains vitamins A, C, and E, minerals, glucosino-
lates, isothiocyanates, polyphenols, and pigments such as
carotenes, among others, which can be recovered [201].

Figure 9 presents some agri-food waste for the possible
recovery of individual biomolecules. Also, different studies
have recovered individual biomolecules from agri-food
waste. de Andrade Lima [202] recovered carotenoids from
vegetable waste. Angelov et al. [203] recovered trans-
resveratrol from grapevine stems. Munde et al. [204] recov-
ered lycopene from tomato-waste peels. Hassan et al. [205]
recovered quercetin from onion solid waste. Choi et al.
[206] recovered quercetin from onion-skin waste. Muhia
et al. [207] recovered kafirin from DDGS. Gupta et al. [208]
recovered zein from DDGS. Santana et al. [209] recovered
starch from turmeric wastes. All of the individual biomole-
cules recovered in the investigations described previously,

among others, are potential reducing agents for the sustain-
able green synthesis of silver nanoparticles.

4. Mechanistic Aspects of Green
Synthesis of Nanoparticles

Currently, the mechanistic aspect by which the green synthe-
sis of silver nanoparticles is carried out is still unknown; how-
ever, several investigations already mention the potential
elucidation of certain compounds of plant extracts and
currently of extracts from agri-food waste, mainly of those
that contain phenolic compounds (phenolic acids and flavo-
noids), terpenoids, organic acids, proteins, and polysaccha-
rides and in general of lignocellulosic materials. Some
mechanistic aspects as solvent medium, environment, and
stability material among others are reported below.

4.1. Phenolic Compounds. Phenolic compounds are second-
ary metabolites more abundant in nature (more than 8000
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known structures) and formed in the pentose phosphate,
shikimate, and phenylpropanoid pathways in plants, and
further play major roles in plant growth and reproduction;
also, they provide protection against pathogens and preda-
tors [210, 211]. Phenolic compounds are further divided into
two groups, phenolic acids and flavonoids. Phenolic acids
are aromatic carboxylic acids, which can be further distin-
guished into two sub-classes based on their C1−C6 and C3
−C6 backbones: (1) hydroxybenzoic acids as vanillic, gallic,
ellagic acid; and (2) hydroxycinnamic acids as p-coumaric,
ferulic, caffeic, chlorogenic acids [212]. Flavonoids have a
similar structure as they consist of two aromatic rings which
include A and B attached to 3C atoms to give an oxygenated
heterocycle such as ring C, and are divided into 6 sub-classes
according to the type of heterocycle involved: flavanones,
anthocyanidins, flavonols, flavones, flavanols, and isofla-
vones [211].

The mechanistic aspects by which phenolic compounds
reduce the silver ion to zero silver and its subsequent growth,
stabilization, and capping have recently been elucidated.
This is given by the chemical structure of each compound;
however, they can be generalized for phenolic acids and
flavonoids.

Flavonoids. This group of molecules can reduce the sil-
ver ion (donating hydrogen or electrons) to zero silver. This
ability is due to the flavonoids, has oxygen scavenging
potential, that is, as antioxidant or reducing, and is directly
related to their electron or hydrogen atoms donation prop-
erty [213]. These hydrogens can be easily released from the

molecule into the medium by the action of the driving force
exerted by the solvent. In turn, free hydrogens can collide or
be close to silver ions and bioreduction occurs. Del-Toro-
Sánchez et al. [214] reported the antioxidant capacity of saf-
flower waste extracts (leaf, stem, and mixture). Observed in
their study is that the compounds present mainly in the leaf
extract have a high capacity to donate the electron or hydro-
gen atom derived from the biomolecules present in the
extract, mainly flavonoids such as quercetin, lutein, and their
derivatives (Figure. 10). Both, this was corroborated by
Rodríguez-Félix et al. [215] where report that safflower waste
extract (leaf-stem) reduced silver ion for the formation of sil-
ver nanoparticles from the flavonoids present, with sizes less
than 50 nanometers and spherical shape. The reactive
hydrogen atom is released due to tautomeric transforma-
tions into flavonoids causing the enol form to convert to
the keto form. Also, other authors report that the number
and position of the hydroxy groups in the catechol B-ring
and their position on the pyran C-ring influence the free
radical scavenging ability. The functional hydroxy group of
the structure can donate an electron and hydrogen to a rad-
ical through resonance, stabilize them, and originate a rela-
tively stable flavonoid radical (Figure 10) [216].

Phenolic acid. The biological activity of phenolic acid is
mainly influenced by the presence of hydroxyl groups in their
rings and in polyhydroxylated phenolic esters by length of
ester moiety [217]. The mechanisms by which phenolic acids
can reduce the silver ion are similar to their antioxidant activ-
ity and are (1) reduging hydrogen atom transfer (HAT), (2)
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single-electron transfer—proton transfer (SET-PT), and (3)
sequential-proton-loss-electron-transfer (SPLET). Enthalpy
of O-H bond dissociation decreases with the increase in the
number of introduced methoxy groups and corresponds to
the experimental increase in antioxidant properties [218].
Therefore, it can be concluded that a similar process occurs
during the bioreduction process for the highest efficiency of
metal nanoparticle formation, depending on the type of phe-
nolic acid present in the extract. Omran [219] reported the
green synthesis of silver nanoparticles using mandarin peel
extract, which contains phenolic acids among other com-
pounds that reduce the silver ion for the formation of silver
nanoparticles. They observed the preliminary indication for
the formation of AgNPs was the change in coloration from
yellow to dark brown and report that the color change is
due to excitation of AgNPs’ free electrons, which in turn
results in phase fluctuation and refers to surface plasmon
resonance (SPR). El-Desouky et al. [220] reported the use
of coffee waste extract for the green synthesis of silver nano-
particles. Firstly, in this study, the presence of phenolic acids
such as caffeic and chlorogenic acid was demonstrated from
the phytochemical analysis by HPLC. The synthesis of silver

nanoparticles was carried out and corroborated by UV-vis,
attributed to the accumulated oscillations of free electrons
located at the surface of metallic nanoparticulate validated
the development of AgNPs, see Figure 11.

Therefore, in flavonoids and phenolic acid present in
agri-food waste extracts, the presence of strongest constitu-
ents has antioxidant activity and is able to reduce Ag+ to
Ag0 and these contents perform capping and stabilizing
agent as well owing to the reduction affinity accompanied
with the electron-donating capability of such as phenol
hydroxyl. Primarily responsible for preserving and reducing
ability are the structure of phenolic hydroxyl groups and the
position and chemical number [221].

4.2. Terpenoids. Terpenoids, also known as polyisoprenes,
are of major class of natural compounds, with several thou-
sand known compounds (more than 50 000 structures),
with diverse molecular architectures and biological func-
tions [222, 223]. According to the number of isoprene units,
terpenoids can be classified as hemiterpenes, monoterpenes,
sesquiterpenes, diterpenes, sesterterpenes, triterpenes, and
carotenoids [223, 224]. Terpenoids, being a very wide
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classification of molecules, the mechanism by which the green
synthesis can occur, is very varied and unknown to many of
them; however, it can be generalized for the main groups
and present in agri-food waste and plants, such as carotenoids
(α-carotene, β-carotene, lycopene, lutein, zeaxanthin, and
among others) [225]. C10-skeletal monoterpenes are grouped
in acyclic (p-menthane, pinane, bornane/camphane, thujane,
and carane types) and the C15-skeletal sesquiterpenes are
arranged as acyclic (cadinane, caryophyllene, eudesmane,
germacrane, aromadendrene, and bisabolane types) [226]
and triterpenes (maslinic, oleanolic, and ursolic acids and ery-
throdiol) [227].

Carotenoids. This group is an important phytoconstitu-
ent that is considered responsible for the protective effects
of health by fruits and vegetables. There are different by-
products for obtaining carotenoids, among which are the
tomato (peel and pomace which is a mixture of skins,
crushed seeds, and residual pulp), 5–15% of the fruit [227].
In this sense, the use of tomato skin for the synthesis of silver
nanoparticles has been promising and some mechanisms of
the carotenoids involved have been proposed. Carbone et al.
[227] synthesized silver nanoparticles from tomato skin
extract. The results obtained, mainly by FT-IR, predict that
the compounds reduce silver ions through functional groups
–CO, –OH, and –NH present in molecules constituting the
waste and that played a crucial role in the nanoparticle
formation and stabilization. Carbone et al. [228] synthesized
nanoparticles from the extract of Mimusops coriacea, which
was mainly attributed to the chlorophyll and carotenoids
present in the extract. They predict that the formation of
silver nanoparticles was carried out by a redox process,
where the donor species of electrons is oxidized in the pres-
ence of the metallic salts in the solution. Also, the neutral
atoms collide forming a stable nucleus, plus ions are reduced
leading to particle growth, step that can be controlled by illu-
mination, temperature, pH, and reagent concentration. The
stabilization is due to depletion of the metal ions in the solu-
tion or by the coating of the particle by substances present in
the extract.

Sowani et al. [229] proposed a mechanism involved in
the synthesis of silver nanoparticles by the carotenoids. Both,
1′-OH-4-keto-γ-carotene (Carotenoid K) and 1′-OH-γ-car-
otene (Carotenoid B) contain a tertiary hydroxyl group (red
circles in the figure). Then, under alkaline conditions (prev-
alent during nanoparticle synthesis), these OH groups were
eliminated and oxidized forms of the carotenoids (4-keto-
γ-carotene and γ-carotene) were formed. They mentioned
that carotenoids promoted the reduction of silver ions to
their elemental form as nanostructures. Also, all nanoparti-
cles were stable for six months at room temperature, indicat-
ing that the carotenoids were acting as reducing and
stabilizing agents (Figure 12).

Terpenes. Monoterpenes consist of two linked isoprene
units and are classified as acyclic (e.g., geraniol), monocyclic
(e.g., thymol), and bicyclic (e.g., myrtenal and pinene) [230].
Synthesis of silver nanoparticles from monoterpene mole-
cules in food waste is mainly due to color change by the
surface plasmon resonance (SPR) phenomenon of silver
nanoparticles in the reaction mixture. Donga and Chanda

[231] mention that seeds from fruits and vegetables are
thrown away into the environment causing pollution; their
disposal is also problematic. These seeds are rich in terpenes
and other compounds, that can be used to reduce the silver
ion to zero silver. Rasaee et al. [232] studied Satureja horten-
sis as a starting material for the formation of silver nanopar-
ticles, from the aqueous extract that mainly contains
compounds such as carvacrol, terpinene cymene, and caryo-
phyllene. Results showed that color change was indicative of
the formation of silver nanoparticles, where color change was
yellow to brownish-red after addition of AgNO3 and stirring
at room temperature was due to excitation of the surface
plasmon resonance.

4.3. Organic Acid. Organic acids are important targeted che-
micals worldwide due to their variety of functionalities in
various fields, as in the chemical, food, cosmetic, pharma-
ceutical, and beverage industries owing to their various func-
tional properties and are also used for their nematicidal
effect [232, 233]. Also, it can be produced through chemical
processes of fossil raw materials as well as by the microbial
fermentation of natural occurring biomass [233]. Carboxylic
acids are the organic acids categorized by the existence of a
carboxyl group in which a carbonyl group bonded to a
hydroxyl group. Depending on the attached carboxyl group,
they can be (1) monocarboxylic acid, with a single carboxyl
group such as formic-, acetic-, propionic-, butyric-, ben-
zoic-, benzene acetic acid; (2) dicarboxylic acids, with two
carboxyl groups as oxalic-, malonic-, succinic-, adipic-, ita-
conic acid; and (3) tricarboxylic acid, with three carboxyl
groups such as citric acid [234].

Tricarboxylic acid. The residues that are frequently gener-
ated in industry and in homes and that are a source of a large
amount of organic acids are the poop of citrus fruits such as
lemon, tangerine, orange, and grapefruit, among others, and
that can be used for the synthesis green of silver nanoparticles
from the reduction of silver ions [235–237]. Dauthal and
Mukhopadhyay [238] synthesize silver nanoparticles from
Citrus aurantifolia peel extract. They report that green synthe-
sis was mediated by compounds present in citrus peel such as
citric acid and ascorbic acid along with different polyphenolic
compounds (flavonoid and phenolic acid), with excellent
reducing properties. The result of FT-IR showed that C. aur-
antifolia peel extract at around 3,411 cm−1 indicated the
involvement of O-H functional group of phenols and carbox-
ylic acids for the synthesis of NPs and the peak shift in 2,920
cm−1 stretching vibration was attributed to the possible
involvement of C-H stretching vibration of aliphatic acids in
NP synthesis. Also, -OH and C=O groups of these bio-
organic compounds (mainly citric acid) showed strong ability
to bind metal ions. This is related to its antioxidant potential,
where these compounds have the ability to donate electron/
hydrogen atom. This reactive hydrogen is responsible for bior-
eduction of metal ions to zero valent form and number of bio-
organic compounds acts synergistically in bioreduction reac-
tion and produces corresponding oxidized compounds.

4.4. Protein. The food industry generates a large amount of
protein-rich waste that can be used as silver ion reducing
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agents. The main industries that generate this type of waste
are the starch, oil, and ethanol industries, among others.
The wastes from the industries are called cake and meal
waste. Nayak et al. [239] Obtained silver nanoparticles using
Jatropha curcas seed cake extract. The conditions were as
follows: 2.5 mL of Jatropha curcas seed cake extract was
added to 22.5 mL of 1 mM aqueous AgNO3 prepared in
deionized water and mixed thoroughly. Color change in
the resulting solution was measured using UV-vis spectro-
photometer at 360–700 nm range at regular intervals. The
spectroscopic properties showed color change in the reaction
mixture from light yellow to brown that indicated the syn-
thesis of silver and FT-IR results confirmed the reduction
in the intensity of the peak at 3338 cm−1 in nanoparticles
synthesized from Jatropha curcas seed cake extract, and the
peak was present in the extract also, which confirms the fact
that the primary amines are involved in reducing the metal
salts to nanoparticles. C-N stretching vibrations of aliphatic
and aromatic amines at 1318 cm−1 and C-O stretching
vibration and C-H stretching of methylene groups of pro-
teins at 2924 cm−1 were seen both on the surface of nanopar-
ticles as well as in the extract which confirms the capping of
plant phytochemicals on the surface of the nanoparticles
thereby stabilizing them.

Al-Thabaiti et al. [240] propose a mechanism for the for-
mation of nanoparticles from the amino acids present in
proteins. The study was based on the reduction of silver
ion from bovine serum albumin rich in the amino acid tryp-

tophan. In this sense, it is known that tryptophan partici-
pates in the acid-base equilibria and cationic, zwitter ionic,
and anionic species exist in an aqueous due to the presence
of pH sensitive groups such as –COOH and NH2. Firstly,
the rate-determining step is a one-step, one electron
oxidation-reduction (equation 6) and this reaction results
in the formation of Ag0 and radical, then, the slow electron
transfer step, radical reacts with Ag+ (equations 7 to 9)
may follow and finally, the resulting Ag0 under goes fast
complex formation and adsorption, which leads to the for-
mation of the stable species of AgNP. Figure 13 shows the
mechanism of formation and capping of silver nanoparticles
from proteins and proposed by Al-Thabaiti.

4.5. Polysaccharides. Currently, 37 million tons of agricul-
tural waste are generated worldwide, causing serious prob-
lems (economic and environmental). The main waste
generated is skin and seed fruits. An alternative of this type
of waste is the use for the extraction of macromolecules,
mainly polysaccharides to be used as reducing agents of
metallic nanoparticles. Also, polysaccharides from agro-
food industry waste constitute one of the most important
renewable resources [241]. Polysaccharides from waste are
mainly lignin, cellulose, hemicelluloses, pectins, gums (galac-
tomannan), stach, and other non-starch polysaccharides,
such as inulin and oligosaccharides. Polysaccharides contain
several important functional groups (hydroxyl and carboxyl
groups), that can reduce the silver ion and the subsequent

HauCl4
Or
AgNO3

1’ - OH- 4 keto 𝛾 carotene

4 keto 𝛾 carotene

𝛾 carotene

1+ - OH 𝛾 carotene

pH 9.0
AuNPs
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AgNPs

1+
1+

OH

Figure 12: Synthesis mechanism of silver nanoparticles from carotenoids. Obtained of Sowani et al. [229].
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formation of nanoparticles. The synthesis mechanisms are
based on the quantity and ability of these functional groups
to donate the hydrogen atom and electrons.

Pectins. These polysaccharides are regarded as the fruit
waste where the extraction is done from the citrus fruit peels
(Figure 14). Pectin consists of α-1,4-D-galacturonic acid
units linked by α-glycosidic bonds. Advantages of pectin
are non-toxic and stability throughout the gastrointestinal
tract and it is feasible as a carrier to contain drugs. Therefore,

functions both as a capping agent and a stabilizing agent for sil-
ver nanoparticles [242]. The pectin schematic structure consists
of a homogalacturonan (HG) backbone and xylogalacturonan
(XGA), rhamnogalacturonan I (RG-I), and rhamnogalacturo-
nan II (RG-II) regions (Figure 14(b)). The RG-I region (20–
35% of pectin) is composed of arabinan and galactan side
chains, which contain hydroxyl groups. Due to the shift of the
tautomeric equilibrium (cyclo-oxo-tautomerism), the free
hemiacetal hydroxyl groups may be converted to free aldehyde
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groups in an alkaline medium, which are responsible for the
reducing property of pectin. RG-1 reduces metal salts to metal
nanoparticles (Figure 14(c)) [243]. Another study ofWang et al.
[244] synthesizes silver nanoparticles using pectin extracted
from citrus peel. Silver nanoparticles capped by pectin macro-
molecules were fabricated by a “green” approach via chemical
reduction of Ag+ cations under ultrasonic condition. Therefore,
pectin acted as a reducing and stabilizing agent. Free hemiacetal
hydroxy groups in pectin determine its reducing properties in
an alkaline medium; also, the arabinans and galactans contain
hydroxyl groups capable of exhibiting the reducing properties.

Gums. There are different plants and their waste from
which gum-type polysaccharides can be extracted. Leucaena
leucocephala (Lam.) is a tropical tree that grows in Egypt
(perennial thornless, with a height of around 8m, and
belongs to the subfamily Mimosoideae), with bulk volumes
of solid wastes (leaves, ripened fruits, pods, and sedes).
Galactomannan gum (structure of linear chains of β-(1-4)-
d-mannose units substituted by single α-d-galactose units
at O-6) is the predominant constituent in the seeds of L. leu-
cocephala with insignificant levels of tannins, organic acids,
oils, and the amino acid of mimosine [245]. Taher et al.
[245] developed a well-stabilized AgNP solution and was
prepared using the extracted polysaccharides from L. leuco-
cephala seed wastes as reducing agents for silver ions to pro-
duce AgNPs. The confirmation of the synthesis was from the
color change, which shows brownish color in an aqueous
solution due to excitation of surface plasmon vibration of
AgNPs. FT-IR analysis confirmed the synthesis and capping,
where the presence of a peak at 3422 cm-1 in AgNP is
assigned for hydroxyl stretching, offering the capping effi-
cacy of galactomannan gum.

5. Applications of Silver Nanoparticles

5.1. Antibacterial Activity. Silver nanoparticles, due to their
antibacterial properties, have been used widely in the
health industry, in food storage, textile coatings, and in a
number of environmental applications [23, 246]. The anti-
bacterial action of silver nanoparticles can be categorized

into two types: (1) those with inhibitory action, and (2)
those with bactericidal action. In the former strategy, bac-
terial cells are not killed, but their division is prevented,
whereas in the latter, bacterial cells will die due to the
action of silver nanoparticles [247]. Also, the antibacterial
activity of silver nanoparticles exerted on Gram-negative
and Gram-positive bacteria is not similar, but competes
one against the other [247]. Silver nanoparticles inhibit
Gram-positive growth such as Bacillus subtilis, Bacillus
cereus, Lactococcus lactis, Listeria monocytogenes, Strepto-
coccus pyogenes, and Staphylococcus aureus [248–251].
Also, silver inhibit nanoparticles Gram-negative growth
such as Pseudomonas fluorescens, Pseudomonas aeruginosa,
Escherichia coli, and [248, 250, 252].

Moodley et al. [253] used silver nanoparticles synthe-
sized by Moringa oleifera leaf extract to inhibit the growth
of bacteria such as Klebsiella pneumoniae, Pseudomonas aer-
uginosa, Staphylococcus aureus, Escherichia coli, and Entero-
coccus faecalis. Results showed a Minimum Inhibitory
Concentration (MIC) of 25 μg mL-1 for K. pneumoniae, P.
aeruginosa, and S. aureus, and an MIC of 12.5 μg mL-1 for
E. coli and E. faecalis. Also, the authors note that the effective
inhibition of both Gram-negative and Gram-positive bacte-
ria by silver nanoparticles derived from M. oleifera leaf
extracts is of great significance, in that it demonstrates their
broad-spectrum antibacterial activity. Perveen et al. [254]
reported the use of silver nanoparticles synthesized from
lychee-peel extract to inhibit the growth of bacteria such as
Gram-negative strains (Alcaligenes faecalis KJB33793 and
Klebsiella pneumoniae KJ833791) and two Gram-positive
strains (Enterococcus faecium ORGIF and Microbacterium
oxydans KJ729148). Results for TEM showed silver nanopar-
ticles with a spherical shape. Antibacterial activity revealed
that Streptomycin-conjugated silver nanoparticles obtained
a greater inhibition zone in Gram-positive strains, with
53.00± 1.414 mm for Enterococcus faecium and 53.50±
4.242 mm for Microbacterium oxydans. For Gram-negative
strains, Amoxicillin- and Cefixim-conjugated silver nano-
particles exhibited a more effective inhibition zone, with
48.25± 5.656 and 91.50± 1.414 mm for Alcaligenes faecalis

(d1) (d2)

(d)

Figure 14: Development of silver nanoparticles from pectin waste extract: (a) pectin extraction from citrus peel and obtaining of AgNp, (b)
base structure of pectin and its individual components, (c) synthesis mechanism of silver nanoparticles, and (d) (d1–d2) TEM and SEM of
silver nanoaparticles. Adapted from Devasvaran et al. [243] Wang et al. [244].
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and 36.25± 1.414 and 55.25± 2.828 mm for Klebsiella pneu-
moniae. When the antibiotics conjugated with silver nano-
particles, then, along with the inhibition of cell-wall
synthesis, they also caused the generation of Reactive Oxy-
gen Species (ROS) as a result of damage to genetic material
and the cell wall, followed by cell death.

On the other hand, different mechanisms have been pro-
posed of how silver nanoparticles can cause cell damage and
death in bacteria. Furthermore, smaller-sized silver nanopar-
ticles that present a larger available surface area provide bet-
ter contact with microorganisms. These particles are capable
of penetrating the cell membrane or attaching to the bacte-

rial surface based on their size [255–257]. The mechanisms
proposed are presented below and in Figure 15 [23, 256,
258, 259].

(i) Cell-wall/membrane damage: cell-wall/membrane
disruption and leakage of its cellular contents

(ii) Interaction with proteins: bonding to functional
groups of enzymes causing protein denaturation
and cell death

(iii) Interaction with enzymes: important enzymes of
metabolism

Free radical
formation

Ag Np

Ag Np
Ag Np

Interaction with
enzymes

Mitochondria damage
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Bacteria

Cellular wall

Plasme membrane

Release of

cell content

and death

Interruption in
electron transport

Ag Np

FR

Ag Np

Ag Np

Ag Np Ag Np
Ag Np

Ag Np

Ag NpAg Np

Ag Np
Ag Np

Ag Np

Ag Np

(a)

(b)

Figure 15: (a) Possible mechanisms of silver nanoparticles in causing cause cell damage and death in Gram-positive and Gram-negative
bacteria. (b)-(A) TEM micrograph of E. coli without Ag Np and (b)-(B1–F) TEM micrograph of E. coli at different times of incubation
with Ag Np [258].
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Table 2: Effect of size and shape on the antibacterial activity mechanisms of silver nanoparticles synthesized from agri-food waste.

Waste
Size (nm)
and shape

Bacteria
Concentration effect
or inhibition halo

Antibacterial mechanism Reference

Leaf-stem waste
of Carthamus
tictorious

8.67 ±4.7,
and spherical

S. aureus, P. fluorescens
1.9 μg/mL S. aureus and
15.6 μg/mL P. fluorescens

Generation of ROS, such as
radicals OH, hydrogen

peroxide. Silver can interact
with these components inside
and outside the cell membrane,

resulting in bacterial
inactivation. Silver ion interacts
with the phosphorus present in
DNA and proteins, causing the

inhibition of enzymatic
activities. Oxidative stress in
the bacteria and attack the

lipids of the outer membrane,
causing lipid oxidation, as well
as damage to proteins, RNA,

and DNA

[215]

Non-edible part
of fruit of Cynara
scolymus L.

Around 10.59,
and spherical

S. aureus, B. Subtilis, E.
Coli, P. aeruginosa

0.12 and 0.25 μg/mL were
effective on Gram-positive

S. aureus and B. subtilis. 0.07
and 0.13μ/mL were effective on
P. aeruginosa and E. coli in

Gram-negative

Silver ions interact with the
negatively charged cell

membranes of microorganisms
cause an increase in reactive
ROS and cell-wall structure is

disrupted

[262]

Onion peels Not shown
S. typhimurium,

S. aureus
Zone of inhibition of 8 mm

and 9 mm respectively

Metal nanoparticles show good
activity against both the strains

studied
[263]

Raphanus sativus
L. waste

10-14,
spherical and
agglomeration

E. coli, P. aeruginosa, S.
typhimurium, S. aureus

65.67 ± 0.91 mm P. aeruginosa
of inhibition halo

Antimicrobial effect of
phenolics products in Np can
involve various modes of action
such as enzyme inhibition by
the oxidized products, maybe

through reaction with
sulfhydryl groups or through
more nonspecific interactions

with the proteins

[264]

Waste banana
stem

<20 and
spherical

B. subtilis (Gram
positive) and E. coli
(Gram negative)

Strong bioactivity against both
microorganisms. The highest
zone of inhibition against B.
subtilis (14.2 mm) and E. coli

(9.3 mm) is found at
concentrations of 4.0 ppm and

2.0 ppm, respectively

Not shown [265]

Crushed, wasted,
and spent
Humulus lupulus

92.42 ± 2.41
DLS and
17.40 ± 2.4

nm TEM, and
spherical

Gram-positive S. aureus
(ATCC 29213) and
Gram-negative E. coli

(ATCC 25922)

Inhibition zone of 12 ± 0.81
mm against S. aureus and
15.33 ± 0.94 mm for E. coli
with 500 μg/mL AgNPs

Disruption of the cell
membrane leading to cell lysis,
interaction with the genetic
materials leading to DNA

damage, and formation of ROS
causing cellular stress and,

finally, death. AgNPs are also
known to damage protein

synthesis and interfere with the;
synthesis of capsular

polysaccharides, other cellular
functions

[260]
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(iv) DNA damage: blocking the DNA of replication,
interaction with DNA bases

(v) Free radical formation: Reactive Oxygen Species
(ROS) in the cell membrane

(vi) Interruption in electron transport

(vii) Mitochondria damage

(viii) Ribosome destabilization

(ix) Silver ions released from the surface of the nano-
particle are potent oxidants of cellular structures

(x) The inhibition of cell–wall synthesis, as well as
protein synthesis by accumulation of the
envelope-protein precursor or destabilization of
the outer membrane, finally leads to ATP leaking.

5.2. Effect of Size and Shape. Table 2 shows the relationship
of size and morphology of silver nanoparticles and their
antibacterial activity mechanism synthesized from agri-
food waste. The toxicity of silver nanoparticles toward bacte-
rial cells is dependent on several parameters such as nano-
particle size, surface charge, nanoparticle composition, the
chemical nature of nanoparticle surface, and agglomeration
state. The hydrodynamic size of silver nanoparticles is quite
smaller than that of the bacterial membrane pore. Thus, it
can easily pass through the pores and can interact with the
genomic material [260]. Previous studies mention that the
antibacterial activity is influenced by the particle size,
namely, particles smaller than 50 nm, specifically between
1 and 10 nm, exhibit better antioxidant activity than aggre-
gates of silver nanoparticles larger than 50 nm. AgNPs found
inside the cells have similar sizes (1 to 10 nm) to those NPs
attached to the cell membrane, indicating that only the
AgNPs bound to the membrane are able to get into the bac-
teria. The properties in this size range are highly reactive
facets, electronic effects, and a larger surface to volume ratio,
all of which make silver NPs with smaller size more efficient
for direct interaction with bacterial, and finally causing the
death of the cell [261].

The shape is related to the high production of silver ions
(Ag+). There are different shapes that have been studied such
as spheres, cubes, rods, and platelets. Helmlinger et al. [267]

synthesized and studied different morphologies for the syn-
thesis of silver nanoparticles and mention that nanoparticles
in the form of spheres have greater antimicrobial potential
because they have a greater amount of silver ions that can
cross the membrane or disrupt its permeability. Also, spher-
ical shape contains higher concentration of particles than
other shapes, e.g., spherical shape with 8.43 × 1010 mL−1

and platelet shape with 5.06 × 1011/mL−1. Another parame-
ter is the surface area/volume per particle, where spherical
shape has about 0.100 nm−1 and platelets, cube, and road
0.234, 0.038, and 0.040 nm-1, respectively. An advantage of
using agri-food waste is that most of the time during the
synthesis the spherical shape and very small sizes predomi-
nate; therefore, a better antimicrobial activity is favored than
by other chemical or physical methods where silver nano-
particles have multiple shapes.

5.3. Anticancer Activity. Currently, cancer is one of the most
serious problems and health subjects worldwide. Based on
their origin, a variety of cancers exist, such as thyroid, pros-
tate, bladder, kidney, pancreatic, breast, melanoma, leuke-
mias of all types, oral cancer, and colon-rectal combined
cancer, among others [268]. Cancer is the most lethal disease
at present; it involves the uncontrolled proliferation and
growth of the cell and becomes more dangerous when found
under a metastatic condition and is very difficult to control
using conventional therapies [269]. One strategy to combat
these types of cancer is the use of silver nanoparticles syn-
thesized by sustainable green chemistry [270, 271]. Several
investigations have focused on the evaluation of the antican-
cer activity of silver nanoparticles such as A549 lung cancer
cells [272], MG-63 osteosarcoma cells [273], skin stromal
cells and colon cancer cells [274], Hep-G2 liver cancer cells
[275], and MCF-7 breast cancer cells [276] among others.

Majeed et al. [269] evaluated the anticancer activity of
silver nanoparticles in the treatment of the MG-63 human
osteoblastoma cell and the MCF-7 human breast cancer
cell. The synthesis of silver nanoparticles was conducted
by means of the Artocarpus integer-leaf extract. Results
showed the change of color of the aqueous extract to
brown upon the addition of silver nitrate, indicating the
biosynthesis of silver nanoparticles. The silver nanoparti-
cles ranged from 5.76 to 19 nm in size and were spherical
in shape. The result of anticancer activity showed, for

Table 2: Continued.

Waste
Size (nm)
and shape

Bacteria
Concentration effect
or inhibition halo

Antibacterial mechanism Reference

Coconut (Cocos
nucifera) outer
shell fiber

E. coli O157: H7 ATCC
23514, E. faecium DB01,
P. acnes ATCC 6919,
and L. monocytogenes

ATCC 33090

Among the five tested
pathogens, the CS-AgNPs

were more active against the
L. monocytogenes with 13.07
mm diameter and MIC of

100 μg/mL

A possible mode of action of
the CS-AgNPs is due to the
existence of Ag+ ions, which

inhibits the bacterial
progression through the

destruction of the respiratory
enzyme and the electron

transport mechanisms and also
through the interfering with the

DNA function

[266]
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MCF-7, an IC50 value of 90μg mL-1 but for MG-63, an IC50
value of 70μg mL-1 after 24h of incubation. These silver nano-
particles produce the ROS that cause membrane blabbing and
damage. They concluded that the silver nanoparticles exhib-
ited good anticancer activity against MCF-7 and MG-63 cell
lines. Saravanakumar et al. [277] reported the use of silver
nanoparticles synthesized from bark derived from Toxicoden-
drum vernicifluum as treatment in A549 human lung carci-
noma cells. Results showed that silver nanoparticles were
synthesized and confirmed by APR ranged from 400 to
450nm by UV-vis spectrophotometry. The shapes of the
nanoparticles were spherical and oval, and they ranged in size
from 2 to 40nm. Silver nanoparticles induced the death of
human lung cancer cells in the A549 cell line in a
concentration-dependent manner. The Annexin V FITC/P-
based apoptosis assay also demonstrated about 95% cell death
with treatment of silver nanoparticles at 320μg mL-1. Also,

AO/EB and DCFH-DA staining results revealed cell damage
and ROS generation to exposure at 320μg mL-1. The mecha-
nism derives from increase of ROS-mediated apoptosis in
human lung cancer cells, the induction of oxidative stress,
and the reduction of the generation of ATP required for cellu-
lar energy.

On the other hand, for the majority of cells, the uptake
of AgNP, mainly through endocytosis, depends on time,
dose, and energy, and the major target organelles include
endosomes and lysosomes. The silver nanoparticles can
induce toxicity in cancer cells by means of several proposed
mechanisms and are presented below and in Figure 16
[278–280]

(i) Induction of the production of ROS directly once
they are exposed to the acidic environment of the
lysosomes

Cell leakage

Cell membrane
ROS

increase

Lipid peroxidation
Endocytosis

Lysosomal damage

Cancerous
human cell

Enzyme disruption

Apoptosis
Caspase mediated signal

DNA damage

Mitochondrial
damage

(a)

MCF7

Control 1.56 𝜇g/mL 12.5 𝜇g/mL

MDA-
MB-231

(b)

Figure 16: (a) Possible mechanisms of silver nanoparticles in the cancer cell. (b) Morphological changes in MCF7 and MDA-MB-231
cancer cells after treatment with silver nanoparticles synthesized from Mentha arvensis [278].
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(ii) ROS are highly reactive, result in oxidative damage
to proteins and DNA, and induce mitochondrial
dysfunction

(iii) Silver nanoparticles and silver ions interact with
the thiol groups of the different molecules present
in the cytoplasm, cell membrane, and inner mem-
brane of mitochondria, which might release lipid
peroxide and increase the permeation of the cell
membrane and mitochondrial systems

(iv) Damage to the cell membrane results in leakage of
cytoplasmic contents and eventual necrosis

(v) Rupture of lysosomal membranes activates lysosome-
mediated apoptosis

(vi) Damage to mitochondria impairs electron trans-
fer, thereby activating mitochondrion-dependent
apoptosis

(vii) Silver nanoparticles could readily diffuse into, and
translocate to, the nucleus through nuclear pore
complexes, thereby leading to the formation of
ROS, which directly trigger DNA damage and
chromosomal abnormalities

(viii) DNA damage by silver ions

6. Conclusion and Future Perspectives

Currently, a great number of investigations have been pub-
lished that demonstrate the green synthesis of silver nano-
particles from plant extracts. However, the new trend is
obtaining silver nanoparticles from agri-food waste extracts.
These wastes are abundant and generate environmental pol-
lution. Therefore, by enhancing their use in the synthesis of
silver nanoparticles, their impact decreases. Synthesis from
agri-food waste is known as sustainable green synthesis.
Waste that is generated, to the greatest extent, is from fruits
and vegetables, includes the following: bruised fruits or parts
of these and their peel; cereal waste such as straw, husk, GM,
and DDGS; bagasse from the food industry and alcoholic
beverages; and oil cake from the oil industry, among others.
The main compounds of the extracts obtained from these
residues comprise phenolic compounds, alkaloids, terpenes,
cellulose, hemicellulose, lignin, and proteins, which function
as reducing agents of the silver ion. Therefore, the silver
nanoparticles synthesized from agri-food waste extracts are
easy to manage, extremely low energy-based, eco-friendly,
and sustainable, and it is an economic process with potential
use in health with antimicrobial and anticancer activity.

The future perspectives on this topic are that more
research is carried out in this line of knowledge generation,
that is, in using more waste and by-products generated in
the field during agriculture, in the industry during food pro-
cessing and in homes (statistically it is the place where the
largest amount of waste is generated) and to be able to min-
imize negative aspects such as pollution. The mechanisms by
which the compounds present in agri-food waste (proteins,
polysaccharides, organic acids, and phenolic compounds,

terpenoid compounds, among others) promote the green
synthesis of metallic nanoparticles and the engineering con-
ditions to be able to synthesize them as a solvent must be
thoroughly studied, also of pH of synthesis, silver nitrate
and extract concentration. In addition, the toxicological
effects of nanoparticles synthesized from waste should be
studied, as well as their size and shape, and correlate it with
their biological activity. There is a lack of economic studies
on the cost-benefit of nanoparticles synthesized by different
methods and even more so from agri-food waste, which, at a
glance, shows that the cost decreases considerably with
respect to other methods (physical and chemical). Therefore,
it is an upcoming challenge that must be done to change the
new way of making green synthesis and give added value to
waste and make more friendly and less expensive methods
for the reach of society.
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