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Supercapacitor electrodes synthesized from activated carbon (AC) has high energy and power capabilities as they have larger
surface area, greater conductivity, and also AC has the ability to optimize the properties of supercapacitors. Supercapacitor has
gained its attention due to its fast charging/discharging speed and long-term stability than the normal batteries. In this work,
GO/PPy/AC composite electrodes was synthesized to increase the specific capacitance and the energy storage capability of
supercapacitor through modified hummers’ method, sacrificial template polymerization method, and hydrothermal method.
Here, the AC was derived from seeds of Ziziphus jujuba and shells of Prunus dulcis. The performances of GO, GO/PPy, GO/
PPy/ACZJ, and GO/PPy/ACPD electrodes were evaluated using 6M KOH electrolyte at different current densities and scan
rates. The electrochemical properties of the electrodes were characterized by CV, GCD, and EIS analysis to study the suitability
of the electrode material. GO/PPy/ACPD electrode exhibited the specific capacitance of 1217.1, 456.67, 270.44, and 90.88 F g-1

with current densities of 1, 2, 4, and 10 A g-1, respectively. GO/PPy/ACPD has high specific capacitance of 1217.1 F g-1 at 1 A g-1.
The enhanced electrochemical performance is due to better surface area and higher specific capacitance.

1. Introduction

In outlook, energy is the major concern for all the works.
Simultaneously, energy demand and depletion are the seri-

ous factors. To minimize the environmental effects and the
cost constraints, the waste obtained from green products
may provide a substitute to the electrode material. To
reach the quickly increasing worldwide demand of energy
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without destroying the environment, it is significant to lessen
dependence of fossil fuel sources. Activated carbon can be pre-
pared from any agricultural waste. In this regard, to support
the renewable energy, the uses of energy storage devices are
inevitable. Among the energy storage devices such as battery,
capacitor, and supercapacitor, supercapacitor holds a great
position. So researchers are producing electrode materials for
supercapacitor. So several types of electrode materials were
synthesized and tested for energy storage in terms of power
density, energy density, and specific capacitance. EDLC, pseu-
docapacitor, and hybrid are the classification of supercapaci-
tor. Here, EDLC can be achieved through the carbonaceous
materials and pseudocapacitors achieved through conducting
polymers and metal oxides [1]. Hybrid is done through com-
posite materials based symmetric or combination of carbona-
ceous electrode in one side and conducting polymer electrodes
in another side [1]. Application of the supercapacitor includes
in the range of high power devices to low power devices.

From the carbonaceous materials, graphene oxide (GO)
is mainly considered for its conductivity, and also it acted
as a substrate for the better growth of conducting polymer
[1]. Similarly, activated carbon developed from biomaterial
is having a considerable effect [2, 3]. Microwave-treated gra-
phene is also considered as candidate for electrochemical
devices because of its porous nature [4]. Conducting polymer
polyaniline [5] is one of the materials used in supercapacitors.
Currently, researchers are working on the electrode materials
for supercapacitor using composites such as graphene/metal
oxide composite [6] and graphene/conducting polymer com-
posite [7–10]. Guo Y. et al. [11] produced porous carbon from
almond shell with the surface area of 3249.68m2g-1. Pseudo-
capacitance and wettability can be achieved from the presence
of heteroatoms andmicropores used to reduce the thickness of
EDLC. Li et al. [12] prepared jujube-derived carbon with hier-
archical porous structure and abundant heteroatom groups.
Through one-pot approach, Sun et al. [13] prepared perme-
able carbon with rich oxygen-containing groups and intercon-
nected meso-, micro-, and macropores. The porous carbon
obtained from jujube fruits exhibited more than 90% of capac-
itance even after 130000 cycles and also displayed 324Fg-1 at
100 A g-1 in 6M KOH [14]. Theophil et al. synthesized ZnO
nanoparticles from almond shell and used it for supercapaci-
tor [15]. Jiménez et al. [16] synthesized microporous carbon
materials from grape seeds through cyclic oxidation. By non-
destructive activation of sawdust, reduction of defects and
improvements of surface area and conductivity can be
achieved [17] using KOH.

Activated carbon is obtained from Syzygium cumini
and Chrysopogon zizanioides by physical activation with
excellent rate capability [18]. Mesoporous volume can be
increased because of the presence of silica before the acti-
vation [19]. Similarly, by hydrothermal method, Jeniffer
and Vimala [20] prepared activated carbon from Eucalyptus
globulus seed with 150Fg-1. Composite made up of rGO and
NiCo2S4 through microwave method exhibited 1320Fg-1

[21]. To avoid the problems such as toxicity and harmful
nature associated with the reducing agent, green tea polyphe-
nols were used, and also the composite exhibited good electro-
chemical performance for covalent bond [22]. With respect to

the electrochemical impedance spectroscopy analysis, the
charge transfer resistance of conducting polyaniline can be
minimized with the help of azobenzene units [23]. The ternary
composite exhibited higher specific capacitance [9]. Using an
in situ polymerization, Wang et al. [24] synthesized graphene
oxide/PANI composite electrode with 531F g−1 specific capac-
itance. Similarly, use chronoamperometry PANI/GO which
has been coated on stainless steel [25] with a specific capaci-
tance of 1140Fg−1. PANI has been crafted on RGO using
chemical oxidative polymerization with a specific capacitance
of 250F g−1 [26]. Senthil Kumar et al. [27] synthesized acti-
vated carbon from biomass wastes such as banana peels,
orange peels, and potato starch.

Vinay et al. [28] used agricultural waste to extract
porous nanocarbon for supercapacitors with 174 F g-1 at
0.1 A g-1 in 4.0M KOH. Bhimanaboina et al. [29] used
waste tissue papers with highly porous Mn3O4 hollow
microtubes for pseudocapacitor applications to increase
the porosity. Yuhao et al. [30] used longan shell as a pre-
cursor and synthesized 3D carbon with copious consistent
pores and reasonable heteroatoms by means of carboniza-
tion and activation to obtain specific capacitance 359 F g-1.
Yan Lei and Zhi Shu [31] obtained carbon through Salvia
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Figure 1: XRD pattern of as prepared samples.
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Figure 2: FTIR spectra of as prepared samples.
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miltiorrhiza with specific surface area (SSA) of 1715.3m2 g-
1. Sofia and Vimala [32] prepared activated carbon (AC)
from Eucalyptus globulus seed by a simple hydrothermal
method followed by chemical activation. Kenny et al.
[33] extracted waste from jackfruit and durian to make
carbon aerogel and nitrogen doping with increased surface
area and specific capacitance.

Dawei et al. [34] used walnut shell for the preparation
of AC with KOH activation to increase the specific surface
area. Le et al. [35] used Areca palm leaves to derive
porous carbon as the electrode using a fast carbonization
method followed by in situ chemical activation. Murugan
et al. [36] used Syzygium cumini and Chrysopogon ziza-
nioides to extract porous activated carbon for high-energy
density symmetric super capacitors using carbonization and
CO2 activation. Karnan et al. [37] used Thespesia populnea
to derive AC for supercapacitor. Khodary et al. [38] prepared
PPy adorned MnO2/rGO with 295.83 F g-1. Supercapacitor
electrodes developed from GO/metal oxide [39], GO/PANI
[40], were having high specific capacitance. Activated carbon
can be obtained from various sources with high carbon con-
tent; Acacia leucophloea wood sawdust [41], black liquor
[42], and cotton yarn were also used [43].

In this work, activated carbon was separately obtained
from activation of Jujube seeds and Prunus dulcis shell.
Graphene oxide was obtained from modified hummers’
method. GO/PPY composite was obtained through sacrifi-
cial template polymerization [44]. Finally, ternary compos-
ite made up of activated carbon, GO, and PPy was
obtained through hydrothermal method[27]. Then all the

as-prepared samples were electrochemically analyzed to
understand the electrochemical properties of the elec-
trodes. The electrochemical analyses were performed at
an OrigaLys electrochemical workstation using 6M KOH.
The three-electrode system comprises the working elec-
trode, a platinum counter electrode, and an Ag/AgCl refer-
ence electrode.

2. Experimental Section

2.1. Materials Used. Graphite, polypyrrole, potassium per-
manganate, potassium persulfate, sodium nitrate, hydrogen
peroxide, concentrated H2SO4, and ethanol were purchased.
Jujube seeds and Prunus dulcis shells were obtained from the
local factory located at erode.

2.2. Synthesis of GO. Graphene oxide was produced from
graphite by modified hummers method by slowly adding
16 g of graphite in a beaker containing 184ml of conc.
H2SO4. After 10 minutes, 9 g of NaNO3 was added. After
constant magnetic stirring for an hour, 12 g of KMnO4 was
further added. Then it was stirred for 14 hours at 10° C,
and the concentration was reduced by adding 168ml of dis-
tilled water. After 1 hour, 33ml of H2O2 is mixed and stir-
red for 1 hour. Finally, it was filtered using Whatman
paper. The residue was taken alone and washed by ethanol
and distilled water for 3 times. Then it was kept in an oven
at 90° C for 1 day. Finally, powdered form of graphene
oxide was obtained.
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Figure 3: SEM images of GO, GO/PPy, GO/PPy/ACZJ, and GO/PPy/ACPD composite.
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2.3. Preparation of Activated Carbon. Activated carbon was
obtained from Ziziphus jujuba seed and Prunus dulcis shell
using carbonization and chemical activation process. Ini-
tially, they were kept in muffle furnace separately at 450° C
for 6 hours [41]. The carbonized form of Ziziphus jujuba
seed and Prunus dulcis was obtained. The activator used
was KOH/H2SO4 to increase the pores in activated carbon

for more absorption of ions in electrolyte. They were
mixed and kept in muffle furnace at appropriate tempera-
ture and time. The activated carbon (AC) was washed and
filtered using filter. It was then dried using an oven to
remove the wetness in the substance for a day at 80° C,
and powered activated carbon was obtained using pestle
mortar.
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Figure 4: EDX spectra of GO, GO/PPy, GO/PPy/ACZJ, and GO/PPy/ACPD composite.
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2.4. Synthesis of GO/PPy Composite. GO/PPy composite was
made by sacrificial template polymerization method. Initially,
1 g of GO/MnO2 and 60ml of distilled water were added and
stirred for 10m at 500 rpm. Here MnO2 nanoslices were used
as template for deposition of polypyrrole. 12ml of concen-
trated HCl and 12ml of pyrrole monomer were added and
stirred for 60m at 800 rpm using magnetic stirrer. Then it
was filtered using Whatman filter paper and kept in oven for
6 hours at 80° C. Thus the graphene oxide/polypyrrole com-
posite was obtained.

2.5. Preparation of GO/PPy/ACPD and GO/PPy/ACZJ
Composite. All the ternary composites were prepared by
hydrothermal method. It is a solution reaction-based
approach. The preparation procedure of the composite is as
follows. GO/PPy/AC composite was prepared using hydro-

thermal process. Initially, 0.1 g of GO/PPy and 1g of activated
carbon from Ziziphus jujuba (ACZJ) seed was weighed. Then
it was kept in the autoclave, and 100ml of distilled water was
added. 150° C was maintained at 250 rpm for 180 minutes.
Then it was allowed to cool for few minutes. The mixture
was continually washed using ethanol and DD water and then
filtered using Whatman filter paper and kept in an oven to
remove wetness at 85°C for 24 hours. Thus the GO/PPy/ACZJ
composite was obtained. The same hydrothermal process was
repeated using 0.1 g of GO/PPy and 1g of activated carbon
from Prunus dulcis shell (ACPD), 100ml of distilled water at
150° C maintained at 250 rpm for 180 minutes. Thus the
GO/PPy/ACPD composite was obtained.

2.6. Structural and Electrochemical Measurements. All the
samples were structurally analyzed using XRD. All the

0.007

0.006

0.005

0.004

0.003

0.002Cu
rr

en
t (

A
)

0.001

0.000

–0.001

0.0 0.2 0.4 0.6
Potential (mV)

0.8 1.0

5 mV s–1

10 mV s–1

25 mV s–1

50 mV s–1

100 mV s–1

(a)

0.0018
0.0016
0.0014
0.0012
0.0010

0.0006
0.0008

Cu
rr

en
t (

A
)

0.0004
0.0002
0.0000

–0.0002

0 200 400 600
Potential (mV)

800 1000

25 mV s–1

50 mV s–1
5 mV s–1

10 mV s–1

(b)

Cu
rr

en
t (

m
A

)

0.0 0.2 0.4 0.6
Potential (mV)

0.8 1.0

2.4
2.2
2.0
1.8
1.6
1.4
1.2
1.0
0.8
0.6
0.4
0.2
0.0

–0.2

25 mV s–1

50 mV s–1

100 mV s–1

(c)

Cu
rr

en
t (

m
A

)

5 mV s–1

10 mV s–1

25 mV s–1

50 mV s–1

100 mV s–1

18
16
14
12
10

8
6
4
2
0

0 200 400 600 800 1000

–2

Potential (mV)

(d)

Figure 5: CV curves of (a) GO, (b) GO/PPY, (c) GO/PPy/ACZJ, and (d) GO/PPy/ACPD.
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Figure 6: GCD curve of (a) GO, (b) GO/PPY, (c) GO/PPy/ACZJ, and (d) GO/PPy/ACPD.

Table 1: Specific capacitance of prepared samples.

Samples 1 A g-1 2 A g-1 4 A g-1 10 A g-1

GO 144.3 102 53.2 32.8

GO/MnO2 87.3 45.3 25.5 14.4

GO/PPy 47.93 24.38 12.43 0.11

ACZJ 264.75 102 25.25 25.5

ACPD 434.78 237.55 105.9 50.5

GO/PPy/ACZJ 13.1 6.85 3.42 1.14

GO/PPy/ACPD 1217.1 456.67 270.44 90.88

Table 2: Energy and power density of prepared samples.

Samples Energy density, Wh g-1 Power density, W g-1

GO 0.47 160

GO/MnO2 0.98 350

GO/PPy 1.11 402.02

ACZJ 0.57 200

ACPD 0.28 100

GO/PPy/ACZJ 0.15 489

GO/PPy/ACPD 0.15 55.02
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prepared samples were coated on a graphite lead of 2-mm
thickness using a puncture sealant as binding material. The
electrochemical analysis was performed in an electrochemi-
cal workstation.

3. Result and Discussion

Figure 1shows the XRD of GO, GO/PPy, GO/PPy/ACZJ, and
GO/PPy/ACPD composite. Weak and broad diffraction peak
is observed at 20° and 19°, for GO/PPY/ACZJ and GO/PPY/
ACPD, respectively, with d-spacing 0.467 and 0.492nm.

Also some of the weak peak is at 27° for GO/PPY/ACZJ
composite. Similarly, weak peak is observed at 36° for GO/
PPY/ACPD composite. Here, increased d-spacing is observed
at GO/PPY/ACPD, due to the introduction of O2 containing
groups than GO/PPY/ACZJ composite.

The FTIR spectra of GO, GO/PPy, GO/PPy/ACZJ, and
GO/PPy/ACPD is shown in Figure 2. From this, the oxygen
functional groups of GO are identified from the peaks 702.09
and 2978.08 cm-1, corresponding to C=C bending and C-H
stretching, respectively. The peaks of GO/PPy at 786.96,
1165, 1535, 1734, and 2978 cm-1 correspond to C=C bending,
C-N stretching wagging vibration, C=C stretching, C=O band
stretching, and C-H stretching, respectively.

For the ternary composite (GO/PPy/ACZJ), the peaks
observed at 786.96, 1214, 1486, and 2978.09 cm-1 corresponds
to C=C bending, C-N stretching wagging vibration, C=C
stretching, and C-H stretching, respectively. Finally, the peaks
observed at 786.96, 1265, 1502, and 2978cm-1 correspond to
C=C bending, C-N stretching wagging vibration, C=C stretch-
ing, and C-H stretching, respectively.

The SEM images of GO is shown in Figure 3(a) at 5 k ×
magnifications at a voltage of about 20 kV. From the image,
it is observed that GO has stacked layers with porosity. Sim-

ilarly, sphere-like morphology is observed for the GO/PPy
composite shown in Figure 3(b). From Figure 3(c), sheet-
like morphology is observed for GO/PPy/ACZJ with limited
pores. Figure 3(d) shows more pores than ternary composite
made from graphene oxide, polypyrrole, and activated car-
bon obtained from the seeds of Ziziphus jujuba.

From the EDX analysis shown in Figure 4, higher
amount of carbon content is observed for the binary com-
posite. Similarly, it is observed for the ternary composite.
The performance of the electrode was analyzed by cyclic
voltammetry, galvanostatic charge and discharge measure-
ments, and electrochemical impedance spectroscopy using
OrigaLys electrochemical workstation, and the results are
shown below.

CV analysis was carried out to investigate the reduction
and oxidation processes of the materials. The CV curves of
the electrodes are collected in the range of 0 to 1V. The elec-
trochemical activity of the GO/PPy/AC composites such as
GO/PPy/ACZJ and GO/PPy/ACPD electrodes is shown in
Figure 5. It is observed that GO/PPy/ACPD composite illus-
trates the better nature than GO/PPy/ACZJ. Similarly, GO/
PPy/ACPD showed better area. The increased area of GO/
PPy/ACPD helps in improving the specific capacitance.

To further confirm the CV analysis, GCD measurements
for the GO, GO/PPy, GO/PPy/ACZJ, and GO/PPy/ACPD
composites were done for different current density. Figure 6
shows the GCD curves of GO, GO/PPy, GO/PPy/ACZJ, and
GO/PPy/ACPD electrodes. Specific capacitance values for all
the samples are listed in Table 1. It was observed from the
quasi triangular curve that the GO/PPy/ACPD composite
owns capacitive properties and electrochemical reversibility
in support of the progress of a supercapacitor. When com-
pared to GO alone, the GO/PPy composite exhibited lowest
specific capacitance. This may be due to the sacrificial
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template, and the presence of PPy blocks the pores presented
in GO. Similarly, ACZJ alone exhibited 264.75F g-1 at 1 Ag-1.
But, when it is composited, the GO/PPy has been changed as
GO/PPy/ACZJ electrode with specific capacitence of 13.1F g-
1. Finally, GO/PPY/ACPD exhibited the specific capacitance
of 1217.1F g-1 at 1 A g-1. Similarly, due to the instability of
PPy, the specific capacitance reached to the lowest level at 10
A g-1. Energy and power density of the samples are listed in
Table 2. From the GCD measurements, high power density
is observed for GO/PPy/ACZJ.

For GO, at 0.46Whg-1 energy density, the power density
of 160Wg-1 is obtained. In supercapacitor-based energy stor-
age, the researchers were tried to improve the power density.
In this research, the highest power density is observed. It
may be a breakthrough for the further research. From the
GCD measurements, high power density is observed for GO/
PPy/ACZJ. EIS analysis of GO, GO/PPy, GO/PPy/ACZJ, and
GO/PPy/ACPD electrodes was done in the frequency of
100kHz to 0.01Hz as shown in Figure 7. In OrigaLys electro-
chemical workstation, the supported frequency is 100 kHz
(high frequency) to 0.01Hz (low frequency).

The semicircle at high-frequency and a straight line in the
low-frequency indicates an electrical conductivity and ions
diffusion behavior. From the Nyquist plot, it is observed that
the series resistance (Rs) exhibited 30Ω, for the sample GO.
Similarly, the charge-transfer resistance (Rct) of 16Ω was
obtained for GO. But GO/PPy samples exhibited very higher
series and charge transfer resistance due to the addition of
polypyrrole.

At the same time, series resistance of GO/PPy/ACZJ was
smaller than GO/PPy binary composite. Almost Warburg
resistance is observed for both the ternary composites. Com-
pared to GO/PPy/ACZJ, the GO/PPy/ACPD composite elec-
trode demonstrated lower resistances which led to higher
conductivity. From the Figure 7, Rs and Rct of GO/PPy/
ACZJ were computed as 160Ω and 15Ω, respectively. In
the same way, Rs and Rct of GO/PPy/ACPD electrode were
measured as 20Ω and 30Ω, respectively. These resistances
contributed higher specific capacitance as described in
GCD measurements.

4. Conclusion

In this research, the ternary composites of graphene oxide,
activated carbon, and polypyrrole were synthesized through
modified hummers’method, sacrificial template polymeriza-
tion method, and hydrothermal method. Because of the
larger surface area, greater conductivity and also ability to
optimization of activated carbon leads to enhanced electro-
chemical supercapacitor. Initially AC was derived from bio-
materials such as seeds of Ziziphus jujuba and shells of
Prunus dulcis. The electrochemical performances of GO,
GO/PPy, GO/PPy/ACZJ, and GO/PPy/ACPD electrodes
were evaluated using 6M KOH. From the GCD curves, the
GO/PPy/ACPD showed an enhanced electrochemical per-
formance and high stability. In GO/PPy/ACZJ electrode,
the specific capacitances are 13.1, 6.85, 3.42 F g-1, and
1.14 F g-1at 1, 2, 4, and 10 A g-1, respectively. Surprisingly,
the GO/PPy/ACPD electrode exhibited the specific capaci-

tance of 1217.1, 456.67, 270.44, and 90.88 F g-1 at the same
current density. GO/PPy/ACPD composite revealed the
highest specific capacitance of 1217.1 F g-1 at 1 A g-1 in 6M
KOH. High electrochemical performances were attributed
for GO/PPy/ACPD. Overall, GO/PPy/ACPD composite
exhibited the highest specific capacitance, and this ternary
composite may fill the potential drawbacks of existing flexi-
ble supercapacitor.
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