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Green silver nanoparticles (AgNPs) and crude ethanolic, methanolic, aqueous, and acetonic extracts from leaves of Agave
americana, Mentha spicata, and Mangifera indica were scrutinized for possible antineoplastic and cytotoxic efficacy. In this
study, all the synthesized AgNPs were characterized using UV-Vis spectroscopy, X-ray diffraction, SEM (scanning electron
microscopy), TEM (transmission electron microscopy), EDX-spectroscopy, and simultaneous thermogravimetric and
differential thermal analysis (TG-DTA). Results of various characterization analyses performed in this study revealed that
synthesized AgNPs had the highest absorption at 410-430 nm, polycrystalline structure with sizes ranging from 23 to 38 nm,
and were thermally stable up to 350°C. Furthermore, it was manifested that phytoproduced AgNPs from A. americana revealed
good antineoplastic activity (69%). M. indica- and M. spicata-based AgNPs displayed moderate activity against PC-3 (prostate
cancer cell line). Similarly, good cytotoxic aptitude was demonstrated by A. americana- and M. indica-based AgNPs at the
highest sample concentration (1000 μL). Excellent cytotoxicity was revealed by ethanol (100%), methanol (100%), and aqueous
extracts (100%) of A. americana and methanol extract (83%) of M. spicata at 1000μL.

1. Introduction

Traditionally, medicinal plants have been used for the treat-
ment of various human diseases and nowadays are being
promoted as an alternative for health care systems. Further-

more, plant natural products are being used in food, phar-
maceutics, and cosmetic industries owing to the beneficial
properties associated with their respective biomolecules.
Biomolecules like terpenoids and phenolics have been
extracted, isolated, and characterized to increase awareness
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regarding the mode of action underlying the bioactivities of
plant extracts [1]. Nevertheless, a few limitations like poor
bioavailability and solubility are associated with the use of
plant metabolites [2]. Hence, researchers are focused on
developing novel drug delivery systems to enhance the drug
bioavailability and minimize toxic effects linked to the high
dosage that is essential for optimal responses [3]. Purposely,
metallic nanoparticles (NPs) are acquiring noteworthy
consideration in the field of biomedicine and pharmaceuti-
cals [4]. Nowadays, for the synthesis of green nanoparticles,
various biological components like microbes, algae,
enzymes, and plant extracts are being employed effectively.
In recent times, the synthesis of nanoparticles via a green
approach using plant extracts is being used as an innovative
approach for the formulation of metallic nanoparticles due
to their rapid, economical, eco-friendly, and safe nature [1,
4]. Various factors such as substrate concentration, fluctua-
tion in pH and temperature, variable physiognomies of
plant biomolecules, and type of metallic salt utilized may
affect the morphological characteristics of nanoparticles.
Therefore, synthesized green nanoparticles having specific
morphological characteristics, stability, and size remain
under development [5]. Plant extract-based green synthe-
sized nanoparticles are considered a novel approach to
treating different ailments such as cancer [6].

Cancers are globally recognized as a colossal family of
afflictions that account for the atypical proliferation of living
cells. It is commonly diagnosed due to the presence of a
tumour (neoplasm) that often forms a mass or a lump which
can be diffused metastatically [7]. Annually, mortality rates
due to cancers are estimated at 13% worldwide in which
breast, colorectal, lung, liver, and stomach cancers are pre-
dominant ones [8]. As cancer is a cluster of indisposition,
therefore, its treatment by any solo therapy is impossible.
Many anticancer treatments are currently under clinical
in vivo and in vitro investigation to probe the fruitful rem-
edy with minimal side effects [9]. Researchers are nowadays
promoting the application of green silver nanoparticles
(AgNPs) in multiple sectors of medicine due to their ease
of production, purification, and least toxicity. The therapeu-
tic effectiveness of these AgNPs has promoted their use as a
promising nanotool in antineoplastic therapies. Earlier
investigations on cancerous cell lines like MCF-7 (human
breast cancer) and H-1299 (lung cancer) demonstrated the
potentiality of biogenic AgNPs in the induction of cellular
damage to tumours mainly by an inhibitory effect on NF-
κB activity, reduction of bcl-2 expression, and elevation of
caspase-3 and surviving expressions. Apoptosis is induced
due to altered membrane integrity, followed by increased
oxidative stress. The discussed mechanism of action might
be helpful in the fabrication of potent nanodrugs [10, 11].

Extracts of experimented plants such as Agave ameri-
cana, Mentha spicata, and Mangifera indica have been
investigated earlier to validate their unique antineoplastic
potentials. According to earlier studies, ethanol extract
(10μgmL-1) from Agave americana leaves exhibited eminent
inhibitory activity against the human ovarian terato-
carcinoma (PA-1) cell line [12]. Similarly, extract (methanol)
from Mentha spicata leaves revealed significant antiprolifer-

ative activity against breast (MCF-7), colon (COLO-205),
lung (NCI-H322), and hematopoietic (THP-1) cancer cell
lines [13]. Methanolic leaf extracts (200μgmL-1) from Man-
gifera indica have shown exceptional anticancer activity
against bronchogenic (Chago K-1), ductal (BT-474), and gas-
tric (Kato-III) carcinomas along with liver hepatoblastoma
(Hep-G2) and colon adenocarcinoma (SW-620) [14]. Our
research previously documented the synthesis, characteriza-
tion, and biological evaluation of AgNPs using Agave ameri-
cana, Mentha spicata, and Mangifera indica aqueous leaf
extract which comprised of the method of green synthesis,
characterization via spectroscopic instruments, and antibac-
terial, antifungal, antioxidant, hemagglutination, and phyto-
toxic investigations. In contrast, this study comprises green
synthesis along with a purification method for the precise
synthesis of AgNPs. The characterization via spectroscopy
is more reformed and precise in this study. Finally, this article
consists of antineoplastic and cytotoxic investigations of
AgNPs against prostate cancer cell line (PC3) and normal
cells (Artemia salina). Previously, we reported the antimicro-
bial and antioxidant activities of prepared nanoparticles
using Agave americana, Mentha spicata, and Mangifera
indica leaf extract [15]. Hence, this article is advanced and
an extension of a previously documented study [15]. Nano-
technology is an important field that is based on the applica-
tion and design of nanomaterials. Nanoparticles are normally
in the range of 1-100nm. The main interest in the field of
nanoparticles is due to their different size, morphophonology
area volume relation, and properties which are utilized in
various fields including food, medical, and health [16–18].
Herewith, we designed the study to investigate the antineo-
plastic prospects and cellular toxicity of AgNPs and crude
extracts (ethanol, methanol, aqueous, and acetone) from
aerial parts (leaves) of Mangifera indica, Agave americana,
and Mentha spicata.

2. Methodology

2.1. Plant Materials. Aerial parts (leaves) of Agave ameri-
cana, Mentha spicata, and Mangifera indica were collected
from various areas of District Peshawar, KPK (Pakistan),
which was further discerned by a botanist Ghulam Jelani at
Department of Botany, University of Peshawar.

2.2. Extraction. The collected leaves were cleaned, washed,
and dried in the shade. After drying, leaves were subjected
to the electric grinder to convert them into fine powder. Fur-
ther, it was soaked in ethanol, methanol, and acetone for 2
weeks. For the preparation of aqueous leaf extract, powdered
leaves (25 g) were boiled in distilled water (500mL) for
30min. Finally, all the filtrates were collected and concen-
trated through a rotary evaporator.

2.3. Phytosynthesis of Silver Nanoparticles (AgNPs). For the
phytosynthesis of silver nanoparticles, prepared aqueous
extract (10mL) was mixed with a 1mM solution of silver
nitrate (90mL). The resultant mixture was incubated for
60min at 75°C in a shaking water bath (SWB-A, BIOBASE,
China). Ag+ ions were converted to Ago nanoparticles, and
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this reduction was confirmed by the colour transformation
of the solution from yellow to dark brownish-black. This
solution was finally subjected to rotary evaporation (40°C)
for the collection of concentrated AgNPs.

2.4. Purification of Silver Nanoparticles. Prepared AgNPs
were purified from free biomolecules by adopting the
methods described by Forough and Farhad [19]. Initially,
prepared green AgNPs were mixed with water and subjected
to centrifugation at 12,000g for 15min (Merck, 5800 Centri-
fuge, USA). Resultant supernatants were separated and
discarded, followed by a collection of purified AgNP pellets.
The purified AgNPs were dried by spreading them onto ster-
ilized Petri plates and kept at room temperature (≤50°C)
until desired dried product is achieved.

2.5. Characterization of Silver Nanoparticles

2.5.1. UV-VIS Spectroscopy. Greenly synthesized nanoparti-
cles were probed for their optical properties concerning
ƛmax. The proposed UV-Vis spectrophotometer (Shimadzu
UV-1601) was utilized by adjusting the resolution of 10 nm
in a standard range of 350nm and 500nm [20].

2.5.2. X-Ray Diffraction Measurements (XRD). The crystal-
linity of the fabricated AgNP pellets was evaluated by using
an X-ray diffractometer (JDX-3532) with radiation of
1.54187 nm wavelength and a power setting of 30 kV/
30mA [21]. The diffractogram was then analyzed using soft-
ware Origin 6.1, to calculate the average crystalline size by
following Beer-Lambert Law, i.e., A = εbc, where “A” is the
absorbance, “ε” is the molar absorptivity of the nanostruc-
tures, “b” is the path length of light, and “c” is the concentra-
tion of the sample.

2.5.3. Scanning Electron Microscopy (SEM). The green
AgNPs were also morphologically scanned using SEM
(JEOL-JSM-5910) model. Carbon-coated copper grids were
loaded with thin films of test AgNPs, which were further
dried by subjecting them in a mercuric vapor lamp for five
minutes. Finally, the grids with loaded test AgNPs were

microscopically investigated at 150x, 500x, and 1000x mag-
nification [22].

2.5.4. Transmission Electron Microscopy (TEM). The size of
green AgNPs was analyzed via TEM (Techni-G2-300 kV).
Similar to SEM, a thin film of test AgNP solution was pre-
pared on the carbon-coated copper grid, which was then
vaporized using a mercuric vapor lamp for 5 minutes.
Finally, a 2D micrograph of test AgNPs manifesting the size
was observed [23].

2.5.5. Energy-Dispersive X-Ray Spectroscopy (EDX). For the
elemental analysis of prepared AgNPs, energy-dispersive
X-ray spectroscopy (INCA-200) model was employed. The
generated observations will affirm that AgNPs are precisely
bioreduced by phytochemicals present in utilized aqueous
leaf extracts.

2.5.6. Simultaneous Thermogravimetric and Differential
Thermal Analysis (TG-DTA). The physical and chemical sta-
bility to variable high temperatures of the fabricated AgNPs
was analyzed by the simultaneous thermo-gravimetric and
differential thermal analysis (Shimadzu DTG-60/DTG-
60A) model. Gain and loss of mass of AgNPs were recorded
in the range of 0 to 900°C [24].

2.5.7. MTT Cell Proliferation Bioassay. For analyzing the
antineoplastic activity of fabricated phyto-AgNPs and crude
extracts of plants, MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-
diphenyl tetrazolium bromide) cell proliferation procedure
was carried out according to Mosmann [25]. Prostate cancer
cell line (PC-3) was cultured in sterilized Petri plates using
the requisite medium along with supplementation of fetal
bovine serum (15%) and penicillin (1%) (Invitrogen). It
was then incubated at 37°C for 24h in the presence of CO2
(5%). Trypsin/EDTA solution (0.25%) was used for the pro-
liferation of tumour cells. PC-3 cell line (prostate cancer)
was cultured on a sterilized 96-well microtiter plate. Metha-
nol (50%) was used for the preparation of a stock solution
(10mgmL-1) followed by the preparation of a working solu-
tion (1mgmL-1) using diluting the stock solution with cul-
ture broth. The cultured PC-3 cells (1 × 104 cells/well)
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Figure 1: UV-Vis spectroscopic analysis of green AgNPs from A. americana, M. spicata, and M. indica.
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subjected to microtiter plates were treated with a prepared
working solution for 24 h. After incubation, MTT reagent
(10μL) was added to each reacting microtiter well and left
for 3 h in the incubator. The culture medium having MTT
reagent was washed, and DMSO (200μL) was added to it
before reincubation (20min). A synergy microplate reader
was used for analyzing the optical absorbance at 550nm.
In this experiment, doxorubicin, a standard chemotherapy
drug, acted was used as a positive control [26]. Percent anti-
cancer was calculated using the optical density formula:

Percent anticancer activity = 100 – ODof test well
ODof control well

× 10:

ð1Þ

2.5.8. Cytotoxic Bioassay. In this assay, the brine shrimp
(Artemia salina) lethality procedure was adopted to analyze
the cell toxicity of biosynthesized AgNPs and crude extracts
[27]. A saline environment was provided to brine shrimp
eggs to facilitate the hatching process. Eggs weighing 50mg
were placed in a dark chamber of apparatus, where they were
hatched at room temperature (48 h). A Pasteur pipette was
used to collect nauplii from the apparatus. Stock solution
(10mgmL-1) was prepared from methanol, followed by dilu-
tions (10, 100, and 1000μL) to sterilized flasks. Methanol
was evaporated at room temperature by placing the flasks
in the laminar flow hood for 30min. Flasks were added with

brine (1mL) solution, and a Pasteur pipette was used to
place shrimp larvae (10) on the flasks. The final volume
was adjusted to 5mL using brine solution followed by incu-
bation at 28°C for 24 h. For this assay, etoposide, a standard
chemotherapy drug, was used as a positive control, and
methanol acted as a negative control. Cytotoxicity against
brine shrimps was calculated by observing the number of
dead larvae via a magnifying glass. Percent lethality was
calculated using the formula:

Percent cytotoxicity =
No:of dead

Total no:of shrimps
× 100: ð2Þ

2.5.9. Statistical Analysis. In this study, a comparison among
different groups was done using an unpaired t-test. A p <
0:05 was considered to be significant [28, 29].

3. Results and Discussions

3.1. Characterization of Silver Nanoparticles

3.1.1. UV-VIS Spectroscopy. From the UV-Vis analysis, it
was observed that the highest ƛmax for the test AgNPs from
A. americana and M. indica was observed at 430nm while
the ƛmax for the test AgNPs from M. spicata was observed
at 410nm. The results are depicted in Figure 1, which alludes
to the precise composition of bioreduced AgNPs. The vari-
ability in sample absorbance is due to the presence of
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Figure 2: (a–c) XRD analysis of green AgNPs from A. americana, M. spicata, and M. indica.
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phytoingredients that are present in leaf extracts which
actively reduce Ag+1 to Ago. The profuse presence of poly-
phenols provides a ƛmax peak at higher intensities. The peak
absorbance at a higher intensity may also account for
increased particle shape and size due to the excitation of
particle surface plasmon resonance. Ahmad et al. reviewed
various spectroscopic aspects of greenly fabricated AgNPs.
From the documented data, it was analyzed that the highest
peak absorbance, i.e., ƛmax for green AgNPs, lies in the range
of 350-500 nm. The ƛmax peak observed between 400 and
450 intensity corresponds to the presence of active polyphe-
nols in plant extracts and excitation of reduced silver upon
absorbance of UV-Vis rays [30].

3.1.2. X-Ray Diffraction Measurements (XRD). From XRD
analysis, the observed 2θ values in the range of 10°–80°

for the green test AgNPs showed intense peaks at variable
intensities. All three greenly synthesized AgNPs were
observed to possess polycrystalline structures. According
to Beer-Lambert Law X-ray, the estimated size of each fab-
ricated AgNPs may be 32 nm for A. americana, 38 nm for
M. indica, and 23 nm for M. spicata, respectively. The
results are summarized in Figures 2(a)–2(c).

3.1.3. Scanning Electron Microscopy (SEM). From the mor-
phological analysis of green test AgNPs, it was manifested

that all of the three test samples have affirmed polycrystal-
line nature having variable morphologies, i.e., mostly spher-
ical but few triangular, rods, and cubic were also observed.
The results are shown in Figures 3(a)–3(c). The variations
in the morphologies occur due to multifarious factors pecu-
liarly storage time, pH, temperature, and type of plant or
plant part utilized. In the current study, the variability may
occur due to the leaves utilized, which possess different
quantities and quality of phytochemicals which trigger the
variation to produce stable AgNPs. The other factors that
account for variation are that storage time and exposure to
environmental conditions such as light and temperature
may shrink or maximize the size of AgNPs, thus changing
their morphologies. The precise nature of shape disparity is
still unclear, but it can be manifested that nanoparticles
can transform their shape easily at various reaction condi-
tions. The energy used for synthesis may define the shape
and nature of nanoparticles. The size of nanoparticles may
increase when it is stored for extended periods, because phy-
tocompounds present in plant extracts may coat the struc-
ture up to multiple layers to provide stable conformation.
It is also reported that reaction environments such as alter-
ation from wet to dry conditions and the presence of stabi-
lizing agents such as peroxides and hydroxides greatly
influence the size of nanoparticles, thus altering their physi-
cochemical and functional properties.

(a) A. americana (b) M. spicata

(c) M. indica

Figure 3: (a–c) SEM analysis of green AgNPs from A. americana, M. spicata, and M. indica.
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3.1.4. Transmission Electron Microscopy (TEM). From TEM
analysis, it was manifested that the size of most of the green
AgNPs lies in the range of 30-100 nm. Environment Protec-
tion Agency (US) and World Health Organization (WHO)
classify the particles as ultrafine AgNPs because it mostly lies
in a size range ≤ 100nm. Results are shown in Figures 4(a)–
4(c). The size range is desirable to their pharmacological
value, i.e., ≥20nm, because it can easily penetrate the biolog-
ical barriers to reach the target sites for therapeutic purposes.
Although the size of fabricated nanoparticles is small enough
to evade the biological barriers but large enough, i.e.,
≥20 nm, to evade the meningeal barrier of the brain, hence,
it provides a safer therapeutic option to treat many ailments
[31]. These AgNPs are plied in the least doses to remediate
the affliction, as these desirable nanostructures have a higher
surface area and can reach the targeted site more precisely
than larger sizes. The least therapeutic dose not reduce the
chances of side effects but also aids to manufacture cost-
effective drugs having proficient outcomes.

3.1.5. Energy-Dispersive X-Ray Spectroscopy (EDX). From
EDX analysis, it was manifested that AgNPs from A. ameri-
cana, M. spicata, and M. indica possess metallic silver in the
bioreduced form in the amount of 34.91%, 9.96%, and
9.93%, respectively. Some other organic elements were also
observed such as carbon, oxygen, chlorine, calcium, magne-
sium, silicon, sulphur, and potassium. Results are shown in

Figures 5(a)–5(c). The percentage of bioreduced silver is
more than that of organic elements because the phytochem-
icals present in the plant extracts actively reduce the silver
ion, and by itself, it gets oxidized. Some of the phytochemi-
cals/organic elements are utilized by these AgNPs as stabiliz-
ing and capping agents to coat the surface of the AgNPs,
which are displayed graphically. Some of the uncharged
and surplus organic compounds are omitted in the purifica-
tion step of AgNP fabrication.

3.1.6. Simultaneous Thermogravimetric and Differential
Thermal Analysis (TG-DTA). From the TG-DTA analysis,
it was manifested that green AgNPs from A. americana, M.
spicata, and M. indica were thermally stable up to 350°C,
while the mass loss was recorded between 350 and 800°C.
Hence, this suggests that green AgNPs can function in high
temperatures because of their thermally stable conforma-
tion. The results are shown in Figures 6(a)–6(c).

3.1.7. MTT Cell Proliferation Bioassay. It is evident from the
results of the MTT cell proliferation bioassay against a PC-3
cell line that phytosynthesized AgNPs and acetone extract
(A.E.) from leaves of Agave americana exhibited satisfactory
69% antineoplastic capacity (IC50: 14.02μgmL-1) and 78%
(IC50: 10.96μgmL1), respectively. A crude fraction from A.
americana was inactive against the tested tumour cell line.
Moderate antiproliferative activity was demonstrated by

50 nm

(a) A. americana

50 nm

(b) M. spicata

50 nm

(c) M. indica

Figure 4: (a–c) TEM analysis of green AgNPs from A. americana, M. spicata, and M. indica.
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acetonic extract (A.E.), ethanol extract (E.E.), and AgNPs
from M. spicata leaves accounting for 55, 48, and 42%,
respectively, owing to computed median lethal dose (IC50)
values of 225.14, 201.54, and 188.09μg/mL. On the other
hand, average anticancer competence (44%) was exhibited
by green AgNPs prepared from M. indica leaves. The rest
of the crude extracts from M. indica leaves remained inactive
against the PC-3 cell line as they manifested a lower inhibi-
tory percentile as compared to AgNPs. Anticancer effects of

AgNPs, ethanol extract (E.E.), methanol extract (M.E.),
aqueous extract (Aq.E), and acetone extracts (A.E.) from
leaves of Agave americana, M. indica, and M. spicata,
respectively, are presented in Figures 7–9.

Preliminary in vitro studies on the antineoplastic capac-
ity of biogenic AgNPs document that monodispersed parti-
cles (10.09 nm) displayed high therapeutic properties
against various cancer cell lines (breast and lung cancer)
owing LD50 value of 100μg/mL [32, 33]. Accordingly,

0 2
Full scale 1039 cts cursor: 20:194 keV (0 cts)

4

CaClMg
Si

P
S

O

K

C

Ca

Cl Ag

K

6 8 10 12 14 16 18 20

Spectrum 7

keV

(a) A. americana

0 2
Full scale 1690 cts cursor: 20:194 keV (0 cts)

4 6 8 10 12 14 16 18 20
keV

Spectrum 6

CaCl
Mg

Si
P

O
K
C

Ca
Cl

Ag

K

(b) M. spicata

0 2
Full scale 1155 cts cursor: 20:194 keV (0 cts)

4 6 8 10 12 14 16 18 20
keV

Ca

Cl

Ag

Mg
Si

P
S

Na

K
C

Ca
O

C

K

Spectrum 3

(c) M. indica

Figure 5: (a–c) EDX analysis of green AgNPs from A. americana, M. spicata, and M. indica.
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phytoingredients such as phenolic and flavonoids present in
various parts of M. spicata and M. indica plants exhibited
unique anticancer activity against experimented prostate
(PC-3), lung (A-549), and breast (MCF-7) cancer cell lines
owing LD50 values in the range of 0.010-0.030 [34, 35]. Sim-
ilarly, in a study conducted earlier by Bardaweel et al. [36], it
was exhibited that the essential oil from the aerial parts ofM.

spicata had meaningful anticancer activity against the three
examined human cancer cell lines, i.e., T47D (324μgmL-1),
HCT-116 (279μgmL-1), and MCF-7 (975μgmL-1).

3.1.8. Cytotoxic Bioassay. Results regarding a cytotoxic assay
for AgNPs, ethanol extract (E.E.), methanol extract (M.E.),
aqueous extract (Aq.E.), and acetone extract (A.E.) from

(a) A. americana (b) M. spicata

(c) M. indica

Figure 6: (a–c) TG-DTA analysis of green AgNPs from A. americana, M. spicata, and M. indica.
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leaves of Agave americana, M. indica, and M. spicata,
respectively, are presented in Figures 10–12.

From Figure 10, it could also be inferred that the crude
extracts possessed significant cytotoxicity at 100μL, while
moderate cytotoxicity was noted at 10μL concentration.
Among the varied experimented concentrations (10, 100,

and 1000μL) of E.E., M.E., and Aq.E. from A. americana
leaves manifested significant cytotoxic capacity, i.e., 100%
at 1000μL, against Artemia salina. Their LD50 values were
noticed as 17.20, 5.76, and 10.52μgmL-1, respectively. In
contrast to this, green synthesized AgNPs from A. ameri-
cana proved good activity (LD50: 0.312μgmL-1) at varying
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Figure 10: Cytotoxic assay for AgNPs and crude extracts from Agave americana leaves.
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Figure 11: Cytotoxic assay for AgNPs and crude extracts from Mangifera indica leaves.
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Figure 12: Cytotoxic assay for AgNPs and crude extracts from Mentha spicata leaves.
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concentrations. At 1000μL and 100μL concentrations,
AgNPs and all the experimented crude extracts from leaves
of M. indica exhibited good to moderate cytotoxic potentials
having LD50 values of 42.76μgmL-1 and 225.63μgmL-1. M.
indica ethanol extract manifested low cytotoxic potential at
all concentrations. Similarly, AgNPs and aqueous extract of
M. spicata leaves demonstrated less cytotoxic capacity while
significant activity (LD50: 161.85μgmL-1) was demonstrated
by methanol extract at 1000μL concentration. Earlier
in vitro cytotoxic investigations have revealed that biofabri-
cated AgNPs own tremendous cytotoxic effects on organism
cysts mainly due to abrupt genetic modifications, induction
of apoptosis, viscera aggregation, and suspension of nauplii
hatching. Induction of acute cell toxicity (LD50: 2.40 and
8.9mgmL-1) at maximum concentrations has been reported
from bark extracts of M. indica and M. spicata [15, 37]. A
cytotoxic investigation conducted by Navarro et al. [38] doc-
umented the effect of methanol extracts from M. indica
(flesh and skin) on various cancerous cell lines like AGS
(gastric adenocarcinoma), HepG2 (hepatocarcinoma), and
SW620 (colon adenocarcinoma). Besides, M. indica skin
methanol extract revealed IC50 value to be in the range of
138-175 gmL-1.

4. Conclusion

The present study concluded that AgNPs fabricated using
aqueous leaf extracts of Agave americana, Mangifera indica,
and Mentha spicata manifest maximum UV-Vis absorbance
in the range of 400–450nm, showing that the plant extract
utilized has effective bioreducing and biocapping capacity
to produce green AgNPs in an economic and eco-friendly
manner due to profuse presence of phenolic compounds.
These AgNPs were characterized as mostly spherical, stable,
polycrystalline having a size range of 30–100nm in diame-
ter, which is considered ultrafine particles by WHO and
EPA. The desirable size range of AgNPs showed moderate
to useful antineoplastic potencies at various concentrations.
Among all AgNPs, A. americana-based nanoparticles pos-
sess good antineoplastic potential, i.e., 69%. An increase in
sample concentration can bestow preeminent antiprolifera-
tive activity, which can be utilized in advanced chemother-
apies for tumour management. In contemplation of
anticancer aptitude, cell toxicity was observed at relatively
higher concentrations that aided to restrain the growth of
the PC-3 cancer cell line. Explicitly, good cytotoxic aptitude
was observed in the case of A. americana- and M. indica-
based AgNPs at the highest sample concentration
(1000μL). Excellent cytotoxicity was revealed by ethanol
(100%), methanol (100%), and aqueous extracts (100%) of
A. americana and methanol extract (83%) of M. spicata at
1000μL. Hence, validating the use of these compounds is
less risky and secure for therapeutic purposes.
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