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Nanocatalysts play a significant role to improve the thermal and physical properties of biodiesel. In the present work, the multi-
walled carbon nanotubes (MWCNTs) as an additive with the fraction of 30, 40, and 50 ppm are dispersed with the different
biodiesel–diesel blends of 10%, 30%, and 50% of waste cooking oil (WCO)-based biodiesel (B10, B30, B50) for the prediction of
four-stroke compression ignition (CI) engine emissions using multilayer neural network (MLNN) model. An MLNN model uses a
backpropagation algorithm to map input and output parameters. The input parameters to MLNN are load, blends, and MWCNTs
in ppm. On the other hand, the output parameters are HC, CO, and NOx. The results for the optimum topological structure of
3-10-3 denoted mean square error (MSE) equal to 0.095 that are capable of predicting the emissions for different operating
conditions. Thereafter, the developed MLNN model is tested on an experimental setup consisting of a single-cylinder four-stroke
CI engine and emission analyzer. The emission characteristics predicted by MLNN are called to be nearly experimental measure-
ments with reasonable accuracy as it depicts the good “R” values as 0.95, 0.96, and 0.976 for HC, CO, and NOx, respectively, and
also gives the reasonable average relative error values as 0.83%, 1.01%, and 1.05%, for HC, CO, and NOx, respectively. Further, the
developed model is suitable for predicting emissions of CI engines, thus minimizing the cost, time, and labor effort.

1. Introduction

The research on alternative fuels has received attention due
to growing demand and limited availability of petroleum; the
cost is rising. Because of that, there is a requirement to search
for alternate fuels for compression ignition (CI) engines [1].
In this connection, biodiesel from nonedible oils as feedstock
becomes of greater interest. However, the cost associated
with the production is high as compared with diesel. Due
to the aforesaid reason, biodiesel is not appropriate for com-
mercialization. In this context, there is a need for biodiesel
whose production cost should be less compared with
diesel. Further, waste cooking oil (WCO) is considered an

economical biodiesel feedstock as its price is considerably
lower than oil from other sources [2–5]. In the previous
works, investigation of CI-engine parameters has been car-
ried out via experiments [5–8]. Further, in recent advances,
nanotechnology proved that nanomaterial-dispersed fuel can
be used for better performance of engines due to its good
mechanical and thermophysical properties than traditional
materials [9–13]. The research work related to the experi-
mentation of CeO2 [14] and ZnO2 [15] influence on CI
engine operated with biodiesel is observed. Experimental
discussion on the influence of carbon nanotubes over the
diesel engine is reported by Tewari et al. [16] and by Basha
and Anand [17], the result of Al2O3 and CeO2 added in
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biodiesel (Jatropha) is given in a study by Prabhu [18], and the
influence of various concentrations of magnesium oxide in
WCO-based biodiesel is appeared in a study by Ranjan et al.
[19]. Even so, testing of engine for all operating conditions
needsmoremoney and time. As an alternative, the numerical/
mathematical approach and neural network (NN) approach
can be put to use for the investigation of engine variables
associated with thermos-physical properties, performance,
and emissions [20–25]. However, computational complexity
limits the use of mathematical models. Alternatively, NN can
be exploited for the same as it is advantageous over other
techniques, viz., generalization capability, huge data-handling
ability, mapping ability, etc. [20–25]. A NN model based on
a backpropagation algorithm is utilized to determine the
parameters/variables of the engine operated with blended
biodiesel that has appeared in a study by Yusaf et al. [22].
Additionally, several studies [23–26] emphasized on the inves-
tigation of emission constituents and performance of engines
operating on diesel, biodiesel, and nanoadditives biodiesel
through the artificial NN. The metallic and carbon nanotubes
(CNTs) become advantageous concerning emission reduction
and have remarkable mechanical properties [16]. As far as the
authors’ knowledge, limited work has highlighted the impact
of multiwalled carbon nanotubes (MWCNTs) on WCO bio-
diesel in diesel engines. Further, the gap in the literature on
engine emissions while adding CNTs to biodiesel fuel appears
to be addressed. Furthermore, the ability of NN to predict
emissions of engine runs on low-cost biodiesel (WCO) dis-
persed with MWCNTs has yet to be investigated in the previ-
ous works. Subsequently, this work has been implemented to
fill the gap available in the literature. Keeping this concept in
the mind, a multilayer NN has been constructed to predict the
emissions, viz., HC, CO, and nitrogen oxides (NOx) from the
CI engine run onWCO as biodiesel dispersed withMWCNTs.

2. Experimental Procedure, Setup, and
Investigations

2.1. Experimental Procedure. The study involves the prepara-
tion of biodiesel using WCO as feedstock, and then different
blends (10%, 30%, and 50%) of WCO-based biodiesel (B10,
B30, B50) and diesel have been prepared. Further, the
dispersion of MWCNTs is carried out with the different
dosing levels of 30, 40, and 50 ppm in WCO blends through
ultrasonicator (Figure 1), which mixes the nanoparticles into
the diesel+WCO biodiesel fuel, as it helps agglomerate
particles’ restoration to nanometer range. The resulted
MWCNTs-blended WCO biodiesel is placed in beaker

under static condition to assure the stability. Further, the
MWCNTs are obtained from “Platonic Nanotech Private
Limited,” Mahagama, India. Further, some of the properties
of MWCNTs are shown in Table 1. Thereafter, the scanning
electron microscope (SEM) picture is shown in Figure 2 and
transmission electron microscope (TEM) picture is shown
in Figure 3. As shown in Figures 2 and 3, it is revealed that
CNTsmaterial are having tube-like structure and the width of
4–22 nm and length of about 60–150 nm. Figure 4 represents
X-ray diffraction (XRD) pattern of MWCNTs, and they are
not crystalline in nature.

2.2. Properties of Pure Diesel and WCO Biodiesel Blends with
MWCNTs. Testing of the prepared samples dispersed with
MWCNTs has been carried out to obtain the values of
density in kg/m3, viscosity in cSt, calorific value in kJ/kg,
and flash and fire point in °C. Further, the properties of
pure diesel and WCO biodiesel blends with MWCNTs for
30, 40, and 50 ppm are shown in Tables 2–4, respectively.

2.3. Engine Setup. The direct injection (DI), four-stroke sin-
gle cylinder CI engine is shown in Figure 5 and its instru-
mentation part is shown in Figure 6(a). It comprises of a bed,
engine connected to eddy dynamometer. The dynamometer
has been used to load the engine. To circulate the water to
the calorimeter and dynamometer, pump is provided. A tank
for fuel is placed into control panel accompanied by fuel unit
for measurement. The test engine runs at steady speed of

FIGURE 1: Dispersion of nanoparticles with biodiesel.

TABLE 1: Properties of multiwalled carbon nanotubes.

S. No. Particulars Range/value

1. Electric conductivity 108 S/m
2. Modulus 7 time metal
3. Thermal conductivity 6× 103W/mK
4. Tensile strength 30–80GPa

FIGURE 2: SEM picture of MWCNTs.

FIGURE 3: TEM picture of MWCNTs.
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1,500 rpm at rated power, which make use of B10, B30,
and B50 blends. The emission characteristics for each test
condition and blend are measured using emission analyzer,
as shown in Figure 6(b). The fuel tank is made completely
empty for every time, and then new WCO-blend-dispersed
MWCNTs are poured into tank and engine emissions are
measured. Further, the specification of engine and emission
analyzer is shown in Tables 5 and 6, respectively.

2.4. Uncertainty Analysis. Uncertainty analysis of the various
parameters has been carried out to overcome the errors
involved in the instruments. The error and uncertainty
of instruments depend upon the working and natural con-
ditions and instrument’s accuracy [25]. In this, tests are

performed many a time and mean values are utilized for
further analysis (Table 7).

2.5. Experimental Investigations of Emissions

2.5.1. Hydrocarbons. Figures 7–9 show the effect of hydro-
carbons (HC) with respect to load for B0, B10, B30, and B50
mixed with MWCNTs of 30, 40, and 50 ppm, respectively. It
is distinguished from Figures 7–9 that HC emissions are
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FIGURE 4: XRD analysis of MWCNTs.

TABLE 2: Properties of pure diesel and WCO biodiesel blends with
MWCNTs (30 ppm).

S. No. Particulars Pure diesel (B0)
WCO biodiesel
+MWCNTs

B10 B30 B50

1. Calorific value 44,000 42,700 41,541 40,100
2. Density 832 799 838 860
3. Viscosity 2.27 2.8 3.87 4.9
4. Flashpoint 69 52 96.8 105.4
5. Firepoint 53.4 58 100.9 129.2

TABLE 3: Properties of pure diesel and WCO biodiesel blends with
MWCNTs (40 ppm).

S. No. Particulars Pure diesel (B0)
WCO biodiesel
+MWCNTs

B10 B30 B50

1. Calorific value 44,000 42,800 40,955 40,000
2. Density 832 800 848 870
3. Viscosity 2.27 2.7 3.7 5.2
4. Flashpoint 69 60 90 107
5. Firepoint 53.4 63 98 119

TABLE 4: Properties of pure diesel and WCO biodiesel blends with
MWCNTs (50 ppm).

S. No. Particulars Pure diesel (B0)
WCO biodiesel
+MWCNTs

B10 B30 B50

1. Calorific value 44,000 43,000 40,912 38,099
2. Density 832 843 859 839
3. Viscosity 2.27 2.6 3.88 5.0
4. Flashpoint 69 66 87 101
5. Firepoint 53.4 76 111 152

Control panelEngine

Fuel injector

Encoder

Engine water circulating pipe

Encoder

Dynamometer

Base frame

FIGURE 5: Four-stroke diesel engine setup.
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increasing with the increase in the load for all the blends; this
is because, for small loads, fuel consumption is less, resulting
in less emissions, whereas for higher loads, fuel consumption
is high as a result of higher emissions [11, 13, 18]. HC

emissions are diminished by applying 30, 40, and 50 ppm
of MWCNTs. Nanoparticles act as oxidation catalysts, which
improve the oxidation and, as a result, lower the HC emissions
[13, 18]. This is due to increase in the surface-to-volume ratio
and good fuel–air-mixing rate.

2.5.2. Carbon Monoxide. Figures 10–12 show the effect of
carbon monoxide (CO) with load B0, B10, B30, and B50
mixed with MWCNTs of 30, 40, and 50 ppm, respectively.
It is noticed from Figures 10–12 that the CO emissions are
decreasing with the increase in the load for all the blends, this
is due to improved combustion; it is also seen that CO
emission for the WCO biodiesel mixed with MWCNTs is
marginally less in comparison with that of B0. This is because
the increasing content of oxygen with MWCNTs in the
blends and higher surface-to-volume ratio of nanoparticles
[13, 18].

2.5.3. Nitrogen Oxides. Figures 13–15 show the effect of NOx

with load B0, B10, B30, and B50 mixed with MWCNTs
of 30, 40, and 50 ppm, respectively. It is noticed from
Figures 13–15 that NOx emissions are increasing with the
increment in the load for all the blends; this is because of

TABLE 5: Some main specifications of engine.

Particulars Specifications

Type of engine Four stroke
Fuel used Diesel
Type of cooling Water cooled
Range of speed 1,200–1,800 rpm
Power 3.5 KW at 1,500 rpm
Displacement volume 661 cc
Bore of cylinder 87.5mm
Stoke 110mm
Compression ratio 12–18
Dynamometer Eddy current with loading unit

TABLE 6: Charecteristics of emission analyzer.

Particulars Measurement

Range of HC 0–20,000 ppm vol.
Range of CO 0%–15% vol.
NOx 0–5,000 ppm vol.
CO2 0%–20% vol.
O2 0%–25% vol.
Display LCD
Interface USB
Operating voltage 100–300VAC
Dimensions (w × h × l) 270× 85× 320mm
Type AVL DIGAS 444N

TABLE 7: Uncertainty analysis.

Particulars Resolution

HC range 1 ppm
CO range 0.001% vol.
NOx 1 ppm vol.
O2 0.01% vol.
CO2 0.1% vol.
Load indicator 0.2 bar
Crank angle sensor 1°

Fuel pipe

Dashboard panel

Piezo
powering unit 

Load indicator

ðaÞ

AVL emission analyzer

ðbÞ
FIGURE 6: Photograph of (a) instrumentation part; (b) emission analyzer.
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improvement in combustible temperature, oxygen quantity
in higher value, and fast reaction rate [27]. The addition of
MWCNTs into fuel leads to complete combustion as it
works as an oxygen-donating catalyst inside the combustion
chamber [13, 18].

3. Multilayer Neural Network

In this work, the feed-forward backpropagation multilayer
neural network (MLNN), as shown in Figure 16, is applied
to map each parameter because it is called as universal

approximator and highly appropriate for nonlinear plants
[24, 25]. The superiority of MLNN compared with other
approaches is that it could be utilized to model the nonlinear
plant and can come up with input–output/target mapping,
adaptive, and fault tolerance [28, 29]. MLNN is used to model
the variables and the output/target is depicted by Equation (1).

E wð Þ ¼ f l1; l2; l3;w½ �; ð1Þ

where E wð Þ is the target of MLNN. The tangent hyperbolic
(tanh) function and linear function are utilized for unseen
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FIGURE 8: Effect of HC versus load for biodiesel mixed with
MWCNTs (40 ppm).
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FIGURE 7: Effect of HC versus load for biodiesel mixed with
MWCNTs (30 ppm).
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FIGURE 9: Effect of HC versus load for biodiesel mixed with
MWCNTs (50 ppm).
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(hidden) and output layers, using Equations (2) and (3),
respectively [28, 29].

ϕtanh ið Þ ¼ tanh ið Þ; ð2Þ

ϕlin ið Þ ¼ i: ð3Þ

In Equations (1)–(3), i is the input to the input neurons,
w is the weight vector, to be calculated over the entire training
process, and l1; l2; l3 are the input variables to the network.

The engine load, WCO biodiesel blends, and MWCNTs
ppm are the inputs to the MLNN. One can calculate the

weights w by minimizing the cost function ξ wð Þ defined
by Equation (4).

ξ wð Þ ¼ 1
2Nq

×∑ε × wð Þ2 þ 1
Nq

×wT × D ×w; ð4Þ

where ε wð Þ ¼ y − ŷ and the weight decay matrix is desig-
nated as D.

To acquire the outline, data points on the network struc-
ture are segregated into first subset 70%, second subset 15%,
and third subset 15% of data. The first subset data are utilized
for training process, whereas second and third subsets are
used for validation and cross-validation (testing), respectively.
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FIGURE 11: Effect of CO versus load for biodiesel mixed with
MWCNTs (40 ppm).
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The best epoch can be selected by observing early stopping
technique (Figure 17). Several MLNN architectures/topologies
are trained by varying neuron numbers from 2 to 12 in hidden
layer. For this, MATLAB® 2014(b) is used. The architecture/
topology that describes the minimal mean square error (MSE)
corresponds to validation data is opted as the optimum net-
work to predict the target parameters. The validation data
MSE for various topologies are given in Table 8. The optimum
architectures seem to be suitable for predicting emissions over
any test conditions of engine.

4. Results and Discussion

In this manuscript, the results acquired with MLNN predict
the emissions of four-stroke CI engine operated on biodiesel
produced from WCO added with MWCNTs are blended
with neat diesel that is discussed in this section. In the pres-
ent research, biodiesel produced from WCO added with a
different fraction of MWCNTs. Further, the model’s accu-
racy is evaluated via regression analysis. The correlation

coefficient (R) criterion is employed for the measurement of
model’s accuracy. The “R” indicates the correlation between
predicted and experimental values. The experimental and
predicted emissions are compared for all test conditions.
The experimental and MLNN-model-predicted emission
characteristics are shown in Figures 18–20. These figures
indicate the MLNN model accurately as its “R” values are
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TABLE 8: MSE values for different hidden neurons.

S. No. Outputs/targets Topology MSE validation

1. HC, CO, and NOx 3_2 Hidden_3 0.175
2. HC, CO, and NOx 3_4 Hidden_3 0.135
3. HC, CO, and NOx 3_6 Hidden_3 0.113
4. HC, CO, and NOx 3_8 Hidden_3 0.102
5. HC, CO, and NOx 3_10 Hidden_3 0.095
6. HC, CO and NOx 3_12 Hidden_3 0.243
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FIGURE 18: Experimental and predicted hydrocarbons values for all
test conditions.
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0.96, 0.95, and 0.98 for HC, CO, and NOx, respectively. It
further shows that the MLNN model is efficient in predicting
emissions of tested engine with reasonable accuracy. Further,
the relative error RE between experimental and predicted
values is described using Equation (5).

RE¼ jYpredicted − Yexperimentalj
Yexperimental

× 100; ð5Þ

where Yexperinental and Ypredicted are experimental and pre-
dicted values, respectively.

Thereafter, the values of RE are average of all test condi-
tions. The prediction ability of the model for all test condi-
tions of the engine is measured using averaged RE and R
between experimental and predicted HC, CO, and NOx

values for all test conditions (Table 9).

5. Conclusions

In this manuscript, the use of the MLNN model for the
prediction of HC, CO, and NOx from a four-stroke single-
cylinder CI engine runs on WCO biodiesel added with
MWCNTs has been investigated. The MLNN model devel-
oped in this work uses a backpropagation algorithm. The
optimum structure 3-10-3 is chosen for emission prediction
at any given test conditions of engine as it denotes the MSE
equal to 0.095. Further, the prediction ability of the model for
all test conditions of the engine is measured using averaged
RE and correlation coefficient (R). The average RE between
experimental and predicted HC, CO, and NOx values is
found to be 0.83%, 1.01%, and 1.05%, respectively. The “R”
between experimental and predicted HC, CO, and NOx are
also given in Figures 18–20, and are found to be 0.96, 0.95,
and 0.976, respectively. The results indicate that values pre-
dicted from MLNN and the experiments are close to one
another. Furthermore, the comparison of experimental results
and MLNN predicts shows that CI/diesel engines run on
WCO biodiesel dispersed with MWCNTs can be correctly
modeled through MLNN. Therefore, the use of MLNN is
appropriate for predicting the emissions of the CI engine,
minimizing the cost, time, and labor effort. Additionally, the
model can also be fit into the controller.
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