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The environmental, economic, and operational limits associated with the physical, chemical, and microbiological techniques for the
production of nanoparticles (NPs) are the principal obstructions to their rapid commercial applications in various fields including
food packaging and sensing to ensure food quality and safety. Over the years,many reports revealed that the nanotechnological (metal-
based NPs) application facilitates an alternate, interactive, reliable, as well as simple technology in the food industries and packaging
sector. In this review, we summarized the usage of plant extract for the biosynthesis of bimetallic (Au–Ag) and monometallic
counterpart NPs. Further, the impact of reaction conditions and identification of reactive phytochemicals with the reaction mecha-
nism of these nanoparticles was reviewed. The recent progress on the applications of Ag, Au, or Au–Ag NPs in food quality analysis
and food packaging was comprehensively discussed. The safety aspect of the nanoparticles for food sector use was also briefly stated.

1. Introduction

Food quality and safety are the prime areas of concern among
consumers. Food safety is a scientific topic that discusses how
food is processed, handled, and stored to protect food from
the external environment like foodborne illness. On the other
hand, food quality refers to the quality characteristics of food
such as appearance, chemistry, physics, flavor, freshness, tex-
ture, and micro-organisms. Public health is closely related to
food quality and food safety [1–3]. Unsafe food can cause
more than 200 diseases (ranging from diarrhea to cancer)
by harmful chemical substances or pathogens (bacteria, para-
sites, prions, viruses). The world health organization (WHO)
estimated that about one-tenth (near about 600 million peo-
ple) of the world’s population becomes ill after eating unsafe
food, and 4,20,000 die every year [4]. Currently, increasing
growth of customer demands for high-quality fresh food
and lifestyle variations poses challenges to produce fresh,

delicious, and ready-to-eat foods with guaranteed quality
and safety and growing preference for new materials in food
packaging techniques.

Traditional food preservation methods have an unavoid-
able and undesirable adverse effect on the healthy properties
of food and its quality. In the last 20 years, the use of green-
based synthesized nanoparticles (NPs) is one of the best tech-
nologies that maintained the quality of the food and at the
same time enhanceed safety, prolonged shelf-life, or sensory
applications [5, 6]. NPs have a wide range of improved and
unique physicochemical properties that set them apart from
their bulk counterparts. When material particles are in the
nanorange of 1–100 nm in size, they typically exhibit remark-
able and even surprising properties. Nanoscaled materials
have distinct properties due to their high surface energy, large
surface-to-volume ratios, large fraction of surface atoms, huge
number of active sites reduced flaws, strong electron transfer
abilities, and spatial confinement [7, 8]. Silver (Ag) and Gold
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(Au) are the most studied monometallic NPs with a broad
range of significant food packaging applications among dif-
ferent noble metals NPs [9, 10]. On the other hand, bimetallic
NPs overcome the inadequate properties of monometallic
NPs and often display greater catalytic activity than their
monometallic counterparts [11, 12].

Wet synthesis methods must be replaced by green chemis-
try processes that are nontoxic, clean, dependable, biocompati-
ble, benign, and environmentally beneficial [13]. As a result,
researchers have redirected their focus to “green” chemistry
methods for producing metallic nanoparticles. One such eco-
logically friendly technology that has received a lot of interest in
recent years is biofabrication of metallic nanoparticles using
various plant systems. Current research on the biofabrication
of metallic nanoparticles using plant extracts has convoyed in a
new era of renewable, fast, nontoxic, environmental friendly,
and biocompatible nanoparticle fabrication technologies. Plants
are the primary photosynthetic autotrophs and producers in the
food chain. These are incharge of producing a big amount of
biomass in their natural environment [14, 15].

Plants have an incredible ability to convert solar energy
to chemical energy. Plants and plant products can thus be
used to produce nanoparticles as renewable and sustainable
resources. Plants have a diverse range of antioxidant second-
ary metabolites [16]. Prokaryotic microbial systems exceed
plant resources. Microbial systems demand both expensive
culture care procedures and downstream processing [17].
Plant resources, as previously said, are a sustainable source
of renewable energy, and researchers are interested in fabri-
cating nanoparticles utilizing living plants, plant extracts, or
phytochemicals. The ability of plant systems to swallow, col-
lect, use, and recycle various mineral species is at the heart of
the plant-mediated synthesis technique for the production of
metallic nanoparticles. Plant-mediated synthesis is a fast and
low-cost method for manufacturing vast numbers of highly
stable nanoparticles [18, 19].

2. Synthesis of Nanoparticles

Several biological, chemical, and physical methods are avail-
able for the production ofmetallic NPs but eachmethod has its
own set of advantages and limitations. Some of the solvents,
reducing and capping agents, employed in chemical processes
have been shown to be unsafe to humans and pose risk to the
environment in general. Furthermore, these methods are
costly, and formation of toxic by-products may cause environ-
mental pollution [15, 16, 18]. However, physical synthesis
methods have limitations such as trained manpower is needed
to operate sophisticated instruments and large amounts of
energy are required to maintain the high pressure and temper-
ature conditions for synthesis [13, 14]. Therefore, it is neces-
sary to develop a simple, nontoxic, and inexpensivemethod for
the production of monometallic and bimetallic NPs.

2.1. Biosynthesis of Nanoparticles. Among different noble
NPs, AgNPs and AuNPs are widely used in fast-growing con-
sumer products which directly come into close contact with
the human body, so it is imperative to develop NPs with
sustainable and eco-friendly approach that poses no risks to

workers and consumers. In recent time, biosynthesis methods
have received significant attention with major advantages like
being eco-friendly, applicable at room temperature and pres-
sure, and formation of biocompatible by-products; in addi-
tion, there are no needs for external reducing and stabilizing
agent [10, 20]. Of late, biosynthesis methods for NPs utilizes
many biological sources existing in nature such as viruses,
bacteria, algae, fungi, and several plant extracts/biomasses.
As an alternative to conventional methods, biosynthesis
methods in the case of using micro-organisms (like viruses,
bacteria, algae, fungi, etc.) have some shortcomings such as
adherence of organisms on the surface of NPs may cause
infection, inexpensive media requires microbial growth,
tedious process of isolation technique, and maintenance of
microbial culture [15–17, 21].

2.2. Biosynthesis of Nanoparticles using Biopolymer. Many
researchers (both academic- and industry-based) have contin-
ued to improve the biosynthesis process of nanoparticles using
polymer materials. Based on several aspects such as production,
transport, interaction with food, and storage, we need an effec-
tive method for biosynthesis of nanoparticles using biodegrad-
able polymers in terms of safety of both consumer and
environment [22, 23]. Biopolymers are one kind of polymeric
material, which are degraded by naturally occurring organisms
(virus, fungi, bacteria, etc.) under suitable conditions of temper-
ature, oxygen, andmoisture [24]. Polymers’ usage in food pack-
aging material has risen tremendously due to advantages such
as strength, stiffness, moisture and oxygen barrier, and flexibil-
ity over earlier materials. Polymers are most commonly applied
in the food sector for food packaging to keep food fresh under
atmospheric conditions; however, it is very important to select
the suitable polymer [25, 26]. Biopolymers can be divided
mainly into synthetic biodegradable polymers, natural biopoly-
mers, and microbial polyesters. Naturally occurring biopoly-
mers such as agar, alginate, cellulose, chitosan, and starch
(starch-polycaprolactone, starch-polylactide, blends of different
biopolymers) are from plant carbohydrates and proteins like
soy protein, corn zein, casein, collagen, gelatin, wheat gluten,
whey protein, and polysaccharides [27–30]. These polymers
have unique qualities such as thermal stability, biocompatibility,
and flexibility and barrier properties with respect to soil, water,
and air. To improve the thermal and mechanical properties of
food packaging materials, bio-based nanocomposites are made
by embeddingmetal nanocomposites with biopolymers. In food
industries, the use of NPs which is biosynthesized by naturally
occurring biopolymers can be safe for human s well as the
environment [31, 32].

2.3. Biosynthesis of Nanoparticles using Plant Extract. It is
beneficial to employ the plant extracts toward the production
of NPs as compared with other biological (micro-organism
based) methods due to ecologically sound, less, or no chances
of contamination, cost-effectiveness, and very simple labora-
tory requirement for NPs synthesis. Also, plant-mediated bio-
synthesis are simple, safe to handle, single-step, unique, faster,
improved stability, and suitable for large-scale production
[16, 18, 33]. This method can also be utilized to generate
metallic nanoparticles on an industrial scale by utilizing tissue
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culture and downstream process optimization methods. In
contrast to traditional synthesis approaches, plant-mediated
synthesis procedures primarily use aqueous (water) extract
for manufacture and require normal temperature and air
pressure, resulting in significant energy savings [34]. All of
the criteria for more ecologically friendly synthesis are met by
plant-based techniques. Plant-mediated synthesis has become
a viable alternative to traditional physical, chemical, and even
microbiological techniques as a result of these improvements.
In addition, the plant extracts possessing a number of second-
ary metabolites such as carbohydrates, phenols, flavonoids,
alkaloids, proteins, steroids, sugars, tannins, and terpenoids
may also impart many functional properties like antioxidant
and antifungal activities to the biosynthesized NPs. These
secondary metabolites also play a vital role in the reduction
and stabilization of NPs. Several plant parts, such as plant
leaves, bark, flowers, fruits, roots, seeds, stems, or whole plants
are used for the biosynthesis of NPs [15, 35–37]. Some of the
reports pertaining to monometallic (Au and Ag) and bime-
tallic (Au−Ag) NPs biosynthesis mediated by various plant
extracts are summarized in Table 1.

The key advantages of plant-mediated synthesis are as
follows [15, 16, 18]:

(a) This is a fast process
(b) Use of aqueous solvents
(c) The easy availability of plant
(d) Biocompatible plant extracts (suitable for medicinal

use)
(e) This plant extract is suitable for large scale production
(f) Contamination is either negligible or nonexistent

(eco-friendly and safe for medicinal use)
(g) This is a simple process that necessitates adequate

pressure and temperature (economical)
(h) The combined activity of phytochemicals as a reduc-

ing and stabilizing agent (cost-effective)

2.4. Factors Influencing the Plant-Extract-Mediated Synthesis.
The optimization process is important in order to customize
and control the monodispersity, stability, morphology, large-
scale production, and rate of synthesized NPs in plant-
extract-mediated synthesis process. Indeed, extracts of plant
parts are enriched with phytochemical such as amino acids,
carboxylic acids, polyphenols, polysaccharides, proteins, and
terpenoids vitamins [21, 56]. The phytochemical present in
aqueous extract is believed to serve dual roles successfully
participating in the NPs formation (as reducing and capping
or stabilizing agents) methods and control the characteristics
(morphology and composition) of the biosynthesized NPs.
Apart from the characteristics, the stability and quantity of
the biosynthesized NPs could be controled not only by phy-
tochemical (reducing and capping or stabilizing agents) but
also by varying some other several physicochemical parame-
ters (Table S1) such as metal salt concentrations or propor-
tions, concentration of plant extract, temperature, contact
time, and the pH [1, 59, 60]. So, the optimization of operating

conditions is very essential in plant-mediated NPs synthesis
to accomplish the smaller-sized and large-scale production of
NPs along with the reduction of the excess use of precursor
materials and laboratory trials. Generally, only one factor at a
time was chosen by researchers to investigate the probable
optimum level of different parameters as an overall investiga-
tion becomes complicated, several variable conditions are
there and have interrelationship with them, time-consuming
and cumbersome task [61–64]. Monometallic (like Au and
Ag) and bimetallic (like Au–Ag) NPs have a distinctive SPR
peak depending upon the type of NPs, morphology, and com-
position of the particle. The SPR peak response of metallic
NPs is modulated by changes in the size, shape, and compo-
sition of the NPs with respect to one another.

3. Characterization Techniques of Nanoparticles

The diverse applications of NPs primarily depend on their mor-
phology and size. So, it is therefore very important for the
chemist to control their properties, that is, the size andmorphol-
ogy of single NP for application in various fields [65]. After
synthesis of NPs, characterization of NPs can be performed by
several instruments like UV–vis spectroscopy, atomic force
microscope (AFM), fourier transform infrared spectroscopy
(FTIR), dynamic light scattering (DLS), zeta potentials, mass
spectroscopy (MS), transmission electron microscopy (TEM),
energy dispersive X-ray spectroscopy (EDX), and other charac-
terization techniques with their functions are shown in Table S2.
To understand the various properties of NPs such as morphol-
ogy, size distribution, composition, surface area, aqueous stabil-
ity, homogeneity, dispersity, and net charge on the surface are
generally determined using these different characterization tech-
niques. The resulting information provides answers to distin-
guish whether specific NPs can be used as a catalyst or for
biological applications, or else to develop their synthesis meth-
ods, and in miscellaneous fields [66, 67].

3.1. Bioactive Compounds Involved in Biosynthesis of
Nanoparticles. The nature of the active components adsorbed
on the NPs’ surface has been investigated by various researchers
using various techniques such as gas chromatographic–mass
spectrometric and FTIR analysis [68, 69]. Plants contain enor-
mous active chemical components belonging to various second-
ary plant metabolites such as steroids, alkaloid, phenolic acid,
enzyme, and terpenoid containing various functional groups
(–NH, –CHO, –OH, –COOH, and –COOR). These biomole-
cules are mainly involved in the biosynthesis of metallic NPs.
Previously, various reports suggested that biosynthesis of mono-
metallic (Ag and Au) NPs and their bimetallic (Au–Ag) alloy
NPs using plant extract as suitable reducing and stabilizing
agents [10, 70, 71].

3.2. Possible Mechanism for Biosynthesis of Nanoparticles
using Leaf Extract. Figure 1 displays a possible biosynthetic
approach for mono- and bimetallic (Au–Ag) nanoparticles
[63, 73, 74]. The biosynthesis of NPs is often categorized into
three stages: activation, growth, and termination. Metal ions
are reduced when a salt solution is injected into a plant-leaf
extract during the activation step, resulting in the formation
of metal nuclei, with the plant extract functioning as the
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TABLE 1: Recent progress in green synthesis of mono- (Au and Ag) and bimetallic (Au–Ag) nanoparticles based on a single-plant extract
during the last two decades (2000–2020).

Plant
Type of

nanoparticles
Size (nm) Morphology and nature Applications References

Azadirachta indica
Au – Triangular and hexagonal

Not reported [38]Ag 5–35 Spherical
Au–Ag 50–100 Spherical; core–shell

Volvariella volvacea
Au 20–150 Triangular nanoprisms

Not reported [39]Ag ∼15 Spherical
Au–Ag – Alloy

Swietenia mahogany
JACQ

Au – Spherical
Not reported [40]Ag – Spherical

Au–Ag – Spherical; alloy

Anacardium occidentale
Au 6.5 Spherical

Not reported [41]Ag 5 spherical
Au–Ag 8 Spherical; alloy and core–shell

Brassica oleacea var.
capitata

Au 20� 3 Spherical and triangular
Not reported [11]Ag – –

Au–Ag 25–200 Spherical; alloy and core/shell

Dalbergia sissoo Roxb.

Au 16–25 Spheroids with triangles& hexagons

[42]
Ag 17–31 Predominantly spherical

Au–Ag –

Predominantly spherical; alloy and
core/shell

Potamogeton
pectinatus L.

Au 8.4 Spherical, few nanotriangles
Not reported [33]Ag 50.4 Spherical

Au–Ag 6.6 Spherical; alloy

Piper pedicellatum
C. DC

Au 2–40
Triangular, hexagonal, and

pentagonal
Not reported [43]Ag 2–30 Spherical

Au–Ag 3–45
Spherical, triangular, pentagonal,

and hexagonal; alloy

Plumbago zeylanica
Au 20–30 Nanospheres and nanotriangles

Biofilm inhibition [44]Ag 60 Nanospheres
Au–Ag 90 Hexagonal blunt-ended

Lansium domesticum
Au 20–40 Triangular and hexagonal

Biocompatibility, and antimicrobial
activity

[45]Ag 10–30 Spherical
Au–Ag 150–300 Branched spherical; alloy

Catharanthus roseus
Linn

Au 25–65
Spherical, triangles, hexagonals, and

rods Antibacterial and anticandidal
activity

[46]
Ag 11–26 Spherical

Au-Ag 20–25 Spherical; core-shell

Jasminum sambac
Au 20–50 Spherical

Antimicrobial activity [47]Ag Spherical
Au–Ag Spherical; alloy

Rivea hypocrateriformis
Au 20–30 Spherical

Antimicrobial, antioxidant, and
anticancer activities

[48]Ag Spherical
Au–Ag Spherical; alloy

Gloriosa superba
Au Avg. 20 Triangular and spherical

Antibacterial and antibiofilm
activity

[49]Ag Avg. 20 Triangular and spherical
Au–Ag 10 Spherical

Guazuma ulmifolia L.
Au 20–25 Spherical DNA/protein interactions,

photocatalytic, antimicrobial, and
anticancer agents

[50]Ag 10–15 Spherical
Au–Ag 10–20 Spherical; alloy

(continued)
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reducing agent. The adjacent metal nuclei consolidate fur-
ther throughout the growth stage to create the final NPs.

4. Nanoparticles

Nanotechnology has evolved so exponentially in the last
decade that we cannot imagine any field without nanoparti-
cle material. In general, nanoparticles are defined as small
particles that behave as a whole unit in terms of their char-
acteristics and transport. It can be quantitatively defined as a

small object with at least one-dimension size (a single unit
small size) and diameter between 1 and 100 nm (nanoscale
range) [75]. Nanoparticles exhibit a unique and wide range
of improved properties compared with larger particles of
bulk material due to the variation in characteristics such as
size distribution, ionic state, phase, and morphology of the
particles [76]. Their uniqueness arises from their bulk coun-
terpart which is mainly due to a higher surface-to-volume
ratio with a reduction in the particle size. These NPs can be
metallic, organic, mineral, polymer-based, or a combination

TABLE 1: Continued.

Plant
Type of

nanoparticles
Size (nm) Morphology and nature Applications References

Cannabis sativa
Au – Triangular and spherical

Antibacterial and antileishmanial
activity

[51]Ag –

Au–Ag – Triangular and spherical; alloy

Cetraria islandica (L.)
Ach.

Au 6–19 Spherical
Catalytic reduction of 4-NP [35]Ag 6–19 Spherical

Au–Ag 6–21 Spherical and polygonal; alloy

Solidago canadensis

Au 238.2
Spherical, few are triangular, and

rod-like shapes

– [36]Ag 180.6
Spherical, few are triangular, and

rod-like

Au–Ag 186.3
Spherical, few are triangular, and

rod-like

Stigmaphyllon ovatum
Au 80 Triangular

Cytotoxicity [52]Ag 24 –

Au–Ag 15 Alloy

Solidago canadensis

Au 21.3 Spherical

– [53]
Ag 32.2 Spherical

Au–Ag 25.9
Spherical, few are triangular, and

rodlike

Madhuca longifolia
Au 36–60 Spherical

Wound healing bioefficacy [54]Ag 35–50 Spherical
Au–Ag 34–66 Spherical

Asparagus racemosus
Au 10–50 Spherical

Antibacterial and
immunomodulatory potentials

[55]Ag 10–50 Spherical
Au–Ag 10–50 Spherical; alloy

Polyalthia longifolia
Au 5–20 Spherical Catalytic activity for dye (methylene

blue, methyl violet, and methyl
orange) degradation

[56]Ag 5–20 Spherical
Au–Ag 5–20 Spherical; alloy

Moringa oleifera

Au 96 nm –

Anticancer activities [57]
Ag 129 nm –

Au–Ag 11–25 nm
Hexagonal, triangular, and spherical

shape

Pulicaria undulata
Au – Irregular or anisotropic

Catalytic activity for the reduction
of 4-nitrophenol

[58]Ag – Irregular or anisotropic
Au–Ag 5–12 anisotropic with attached spherical

Syzygium aromaticum

Au
Avg.
27.12

Hexagons and polyhedral
antioxidant and catalytic reduction

of p-NP, methyl orange, and
mrthylene blue

[37]Ag
Avg.
17.94

FCC type of crystal structure

Au–Ag
Avg.
16.04

Hexagonal and polygonal; alloy
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of two or more materials (nanocomposite). The NPs exist in
different shapes viz. rod, spherical, triangular, cubic, hexag-
onal, star-like or other chain-like structures. One can simply
identify the distinct infected targets, and treatment of partic-
ular cells or tissues rather than whole-body treatment with-
out side effects is possible with NPs [77]. Over the last few
decades, NPs are the most explored research area that
improves every aspect of human life, science, and the econ-
omy as well as executes the growing needs of society and
directly deals with environmental challenges. Among all
the NPs, AuNPs and AgNPs are widely applied in cosmetic

products, detergents, shoes, shampoos, soaps, and tooth-
paste, besides their applications in food, pharmaceutical,
and medical commodities (Figure 2) [78].

4.1. Metallic Nanoparticles. In the last 20 years, continuous
spreading of nanotechnology has been observed by develop-
ment of various synthesis routes and stabilization methods of
metallic NPs. Metallic NPs belong to a type of inorganic NPs
(like AuNPs, AgNPs, etc.) that comprise the base composition
of pure metal. Specifically, they are divided into monometal-
lic, bimetallic, trimetallic, and polymetallic NPs depending
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FIGURE 1: Schematic representation of the possible mechanism for biosynthesis of nanoparticles using leaf extract (source: [72]).
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FIGURE 2: Various size of nanoparticles used in food science (reproduced with permission from [66]).
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upon the number of base metals. The bimetallic, trimetallic,
and polymetallic NPs possess two, three, and more than three
metal compositions in the NPs structure while monometallic
NPs possess single-metal composition throughout the struc-
ture [79–81]. The high reactivity, high stability, paramagnetic
behavior, unique optical characteristics, plasmonic properties,
and quantum size effect of metallic NPs make them suitable
for various potential applications in therapeutic procedures
and bioimage diagnostic techniques [82–87]. However, the
toxicity risk associated with the usage of metallic NPs in mul-
tidisciplinary applications is a major source of concern. So,
this must be addressed by producing nontoxic NPs using
particular methodologies involving synthesis methods and
factors in order to improve quality of life. Figure 1 represents
the many nanomaterials that are often employed is provided
based on their size in relation to microorganisms or biomo-
lecules that are similar in size to a nanomaterial.

4.1.1. Monometallic Nanoparticles. The monometallic NPs
have fascinated scientists for last few decades due to its easy
synthesis process, wide range of applications, as well as quite
stable even in an adverse environment. As the name suggests,
monometallic NPs contain only one metal atom that deter-
mines the properties of such type of NPs. Monometallic NPs
are classified as metallic, transition, or magnetic NPs depend-
ing on the type of metal atom present [88, 89]. AuNPs and
AgNPs are the most explored NPs among all monometallic
NPs used in nanotechnology field, and they have broad range
of significant applications such as in electronic, optical, anti-
microbial activity, biomedical sciences, and as catalysts in
overcoming environmental pollution [90, 91].

4.1.2. Gold Nanoparticles. The history and even the uses of
gold (Au) have been well-known for several thousands of
years, and gold is one of the oldest metals that has been
discovered by humans. Although there are no definite evi-
dence for the discovery of gold, the earliest use of gold in
ornaments comes from the Indus Valley (Mohenjadaro,
3,000 BC), the Sumer civilization (southern Iraq, 3,000 BC),
the tomb of King Tutankhamun (Egypt, 1,300 BC), and royal
crowns from the Tilliatepe treasure (Scythian, 100 BC). In
ancient India, the use of gold started during Vedic (1,000 BC–
600 BC) period under the name of “Swarnabhasma” (means,
gold ash), as ayurvedic medicine for revitalization and reju-
venation. Gold is the most precious metal across human civi-
lizations for its attractiveness, inherent shiny property, and
long-lasting glow for a long time made. It was suggested that
gold has always been associated with the gods, eternity, wealth,
and the sun (tears of the sun) [92–94]. The bulk-scaled matter
of gold has usually been found to be an inactive matter, but
nanosize of gold exhibits excellent activities. Among the vari-
ous monometallic NPs, AuNPs possess some notable novel
properties such as being chemically inert, surface plasmon
resonance effect, and unique catalytic properties that leads to
a key area of nanoresearch [95, 96]. Now a days, AuNPs are
of great interest due to their exceptional biocompatibility
and exclusive property to conjugate with proteins. AuNPs are
expensive but they are widely used in material sciences due

to easy production, solubility, low- or no-toxicity effect against
human beings, and stability under atmospheric circumstances
[97–100]. The effective application properties led to more
research in modern science uses of gold NPs. Nanosensors
based on AuNPs have been extensively utilized in the detection
of metal contaminants (lead, mercury, chromium), pesticides,
antibiotics, and dyes to ensure the quality of food products
[101]. Apart from nonbiological adulteration, the AuNPs
have been found to detect numerous food pathogens in the
food. Because of their therapeutic potential, inert and non-
toxic nature, and oxidative catalytic properties, AuNPs have
piqued the interest of both the medical and food packaging
sectors [102]. The colorimetric sensors based on AuNPs are
simple, highly sensitive, and cheap and have been widely used
in rapid testing and real-time on-site monitoring of food
quality and safety [7].

4.1.3. Silver Nanoparticles. Since the ancient times, silver (Ag)
has been equally well-known for domestic use, and it is exten-
sively used in food storage, water storage, and wound healing
(Greeks, Egyptians, Romans, and other ancient civilizations in
1,000 BC) due to their intrinsic antimicrobial properties and
association with the moon due to their white and shining prop-
erties. Silver is still used for treating various diseases (respiratory
disorders, memory enhancement, neuropsychological disor-
ders) in the form of “RoupyaBhasma” (meaning silver ash) in
the Indian ayurvedic and Unani medicine [21, 94]. Silver par-
ticles of nanoscale size tend to exhibit diverse physical and
chemical properties than their bulk-scaled counterparts, though
they are made from the same materials. AgNPs has created a
center of concentration over the last few decades due to their
antimicrobial properties in the protection of beverages and food
for many years. They have enormous industrial applications
due to their nontoxicity to human cells at low concentrations
but are lethal for the majority of pathogenic bacteria and viruses
[14, 103]. These properties make them suitable for a wide range
of potential applications such as air sanitizer sprays, coatings of
refrigerators, cosmetics, detergents, drug delivery, electronics,
food packaging, management of insects in agriculture, medical
devices, shampoos, soaps, textiles, toothpastes, vacuum cleaners,
washing machines, wet wipes, water purification, and wound
dressings [50, 94]. They have enormous industrial applications
due to their well-recognized effective antimicrobial properties
against pathogens and also it is nontoxic to human cells at low
concentrations [104, 105]. Now a days, silver is used more than
any other nanoscale materials for manufacturing consumer pro-
ducts. Biosynthesizing AgNPs using plant extracts has gained
huge attention in recent decades due to the low cost of synthesis,
environment-friendliness, and effective applications as food
packaging materials. AgNPs have created a center of attention
due to their impressive antimicrobial properties against a wide
range of micro-organisms such as bacteria, viruses, yeasts, and
fungi [106, 107]. Many studies have reported about the potential
application of AgNPs in food packaging science for the protec-
tion of bread, beverage, orange juice, fish and meat, and fruits
and vegetables. Besides shelf-life improvement of food, AgNPs
cause no alteration in food’s physical (freshness, color, odor,
taste) appearances [106, 108].
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4.1.4. Bimetallic Nanoparticles. The invention of hybrid NPs
synthesis is a revolutionary stage in the nanoscience and nano-
technology field. As the name suggests, bimetallic NPs can be
formed by incorporating two different metal elements in a
single particle. Generally, bimetallic NPs can be classified
into two types depending upon the mixing patterns between
two different metal elements: first, there is a homogeneously
mixed Alloy type structure where two different metal elements
are mixed in either a statistical distribution pattern or atom-
ically ordered into a common particle. Second, there is a core-
shell type structure where one metal (core position) atom is
encapsulated by a shell of another metal atom [20, 54, 109].
Bimetallic NPs attract more attention than corresponding
monometallic NPs which overcome the limited properties of
monometallic NPs. They are important because they usually
show enhanced stability, selectivity, and activity compared
with monometallic ones. The catalytic, electronic, optical,
and thermal properties of the bimetallic NPs can be modified
by simply varying the two metals’ ratio as well as the geomet-
rical structure of bimetallic NPs. Bimetallic NPs are more
significant than monometallic NPs due to the existence of
additional degrees of freedom. The new synergistic and bifunc-
tional effects of two metal elements exhibit certain remarkable
new properties which enhance their function and application
in several different fields [12, 110, 111]. Amongmono- and
bimetallic NPs, the bimetallic NPs composites consisting of
both Au and Ag have recently become the focus of attraction
of researchers as reported in the literature.

4.1.5. Gold–Silver Nanoparticles. Recently, the bimetallic
gold–silver (Au–Ag) alloy NPs have drawn most interest
than single-metal (monometallic) NPs due to their more
effective nature. Apart from the monometallic particles, the
use of bimetallic (Au–Ag) alloy NPs could be evidenced from
the history when Lydian merchants invented the first coins
called “electrum” through the use of (Au–Ag) alloys around
800 BC and also the famous Lycurgus cup (containing 30%
Au and 70% Ag) of the fourth century Roman Empire [25].
Bimetallic (Au–Ag) alloy NPs have attracted astonishing
attention from researchers for the control of its activity by
variations in their molar ratio. In general, bimetallic NPs
belong to two categories: alloy NPs (two kinds of metals
are homogeneously mixed at atomic level) and core-shell
structure NPs (two kinds of metals are heterogeneously
mixed at atomic level). Indeed, it is well known that the
surface plasmon resonance (SPR) band position and inten-
sity for bimetallic NPs controlled by the ratio of precursor
composition or shell thickness. Bimetallic (Au–Ag) alloy NPs
exhibit a single SPR with an intermediate position among the
SPR band position of monometallic Ag and Au NPs but
bimetallic (Au@Ag) core-shell structure NPs show two dis-
tinct SPR bands at the position of monometallic Ag and Au
NPs [112, 113]. Particularly, in the catalytic reaction process,
bimetallic NPs often exhibit higher catalytic activity and
selectivity than their monometallic counterparts due to com-
bining advantages (complex structure) of two individual
metals [42, 58]. Bimetallic (Au–Ag) alloy NPs has received
extensive progress in the field of food safety, biomolecular

recognition, biosensing, optical studies, molecular imaging,
delivery of drug, medical diagnostics, catalytic studies, etc.
The bimetallic Au–Ag NPs provide versatility with respect to
their functional properties which is attributed to the combin-
ing synergistic effects of two distinct metal atoms [48, 49]. In
this regard, it is extremely interesting to take advantage of
both (Au and Ag) metals and to produce bimetallic Au–Ag
NPs. With the help of nanotechnology, the shelf life of foods
can be increased and the extent of food spoilage can be
decreased, as finally healthy food can reach the masses and
eventually it will improve the health of the people and can
aid in reducing the problem of food shortage [114]. Several
forms of “nanosystems” such as solid nanoparticles, nanofibers,
nanocapsules, nanotubes, nanocomposites, nanosensors, and
nanobarcodes are a few of the major nanomaterials that find
their use in food processing, packaging, and preservation sec-
tors [115, 116].

5. Applications of Nanoparticles in Food
Packaging and Food Quality Analysis

The rapid growth of nanotechnology in recent years has piqued
the interest of researchers in a variety of sectors, particularly in
food science. Due to increased customer demand for higher food
quality without compromising the nutritious element of the
foods, nanotechnology has a complete food solution from food
manufacturing, processing, and packaging as well as food quality
sensing and safety. In particular, nanotechnology has a total food
science solution from foodmanufacturing to processing to pack-
aging [117, 118]. In this context, the use of nanotechnology in
the food sector can be summarized mainly in two groups: food
quality sensing and food nanostructured ingredients. The former
uses as a biosensor or sensing the contaminants (i.e., heavy
metals, pesticides, antibiotics, microorganisms, allergenic com-
pounds, food additives, detection of genetically modified foods,
and toxins) to evaluate food safety and achieve better food qual-
ity. While the latter includes food manufacturing, processing,
and packaging by inserting nanomaterials into the packaging
structure [119, 120]. In food science, nanomaterials can be
employed as food additives, anticaking agents, antimicrobial
agents, carriers for smart delivery of nutrients, the durability of
packaging materials, fillers for improving mechanical strength,
etc. [7, 121]. Indeed, Au and Ag are the most stable and reliable
metals that are extensively used due to their lack of reactivity
[122, 123]. In this section, our focus is on food quality analysis
and packaging applications relevant to food quality and safety
monitoring (Figure 3).

5.1. Nanoparticles in Food Packaging. Nanomaterials of vari-
ous dimensions and sizes offer enormous potential for use in the
food manufacturing, processing, packing, and safety of high-
quality agrifood. The usage of nanocomposites as an activemate-
rial for coating and packaging can also be utilized to improve
protective packaging. Nanomaterials-based “active” (having
antioxidative, antibacterial, and UV absorption properties) and
“smart” (having controlled/monitored food conditions) food
packaging [126, 127]. It has several advantages over traditional
packaging materials, including antimicrobial protection, barrier
properties, improvedmechanical and thermal strength, aswell as
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protection from oxygen and other environmental factors. More-
over, it increases the shelf-life of food items by slowing down or
preventing deterioration until the product is delivered to the
target place [128, 129]. Furthermore, edible nanocoatings on
various food components could prevent gas exchange andmois-
ture to keep their original colors, textures, antioxidants, tastes,
antibrowning agents, and enzymes activity, as well as increase
the shelf-life of produced meals even after the packaging is
opened [130, 131]. Many scientists were keen to explore the
antimicrobial capabilities of organic materials such as organic
acids, essential oils, and bacteriocins, as well as their usage in
polymeric materials as antimicrobial packaging. Though, these
substances do not fit into the various food processing procedures
that demand high pressures and temperatures since they are very
sensitive to these environmental conditions [132–135]. Inor-
ganicNPs are capable of providing significant antibacterial activ-
ity in low concentrations, mechanical improvement, and also
greater stability under harsh circumstances [136, 137]. As a
result, there has been a surge of interest in employing these
inorganic NPs in food packaging in recent years. Many nano-
particles have been found to exhibit antibacterial properties,
including Ag, Au, and its bimetallic Au–Ag metal NPs. The
use of Ag, Au, and Au–Ag nanomaterials has shown exciting
potential in food packaging of food industry [138, 139], some of
them are summarized in Table 2.

5.2. Nanoparticles for Food Quality Analysis. Nantechnology
is emerging innovative methods for use in the construction of
sensors assuring food safety, extending the shelf life of food, and

maintaining food quality. In food science, nanobiosensors or
nanosensors are applied for the quantification of existing food
constituents, detection of pathogens in processing in food mate-
rial or plants, and indicatingwhether the food isfit to consume or
not [152, 153]. The functions of nanosensor as an indicator that
responds to changes by different environmental reasons such as
chemical or microbial contamination, temperature or humidity
in storage rooms, pH, or product deterioration [154, 155]. Several
nanostructures, including thin films, NPs, nanorods, nanofibers,
and nanotubes have been investigated for potential applications
as biosensors. Thin film-based optical immunosensors are one of
the rapid and highly sensitive detection systems for the determi-
nation of cells or micro-organisms [154, 155]. Specific proteins,
antibodies, or antigen substances are immobilized on thin nano-
films or sensor chips in these immunosensors that emit signals
when target molecules are detected [156]. Nanotechnology can
also help to identify heavy metals, pesticides, antibiotics, aller-
genic compounds, food additives, detection of genetically modi-
fied foods, and toxins in the food quality [157]. Among all NPs,
AgNPs are one of the most commercially produced NPs due to
their antimicrobial activity, whereas AuNPs are extensively stud-
ied as a detector/sensor [158, 159]. The recent progress ofAg, Au,
and Au–Ag nanomaterials has been briefly discussed in Table 2.

6. Safety Aspects

It is increasingly clear that nanotechnology has a wide range
of benefits and has the potential to revolutionize the food
industry. The use of nanomaterials in the food industry,

Freshness Spoilage
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Kill
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FIGURE 3: Application of nanomaterials in food packaging (a) and nanosensors for food analysis (b). This figure was modified and adopted
with permission from [124, 125].
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farming, cosmetics, and personal healthcare systems could
lead to the migration of nanomaterials to the environment
and subsequent human exposure through inhalation and
skin penetration [160, 161]. The possible routes of exposure
could occur that includes: (i) ingestion from intake of nano-
food, (ii) leaching of nanomaterials from sensing elements or
packaging materials into the food, and (iii) disposal of nano-
sensors, nanofood, packaging or buried in landfills; further
release into the air, water, and soil and reach humans, plants,
or wildlife (Figure 4). Ultimately, there is a high chance of
risk that nanomaterials residues will end up in the human
food chain. Several scientists explored the risks associated
with nanomaterials, with particular emphasis on the chance
of NPs migrating from packaging material into food and
their effect on consumers’ body [163–165]. For example,
the European Food Safety Authority (EFSA) published a

scientific opinion in May 2021 declaring that TiO2 can no
longer be considered safe when used as a safe food additive
[166]. However, Garcia et al. [167] reviewed the applications
and migration of NPs such as aluminum oxide (AlOx), sili-
con dioxide/silica (SiO2), titanium dioxide (TiO2), and zinc
oxide (ZnO) used in food packaging to improve antimicro-
bial, light-blocking, gas barrier, thermal, and mechanical
properties of nanocomposite. Based on existing literature,
it was concluded that only a minute number of nanomater-
ials migrate from food packaging materials into food pro-
ducts and risk of migration could be minimized by applying
an extra barrier between the food and the nanocomposite
[168–171]. Several researchers studied the toxicity of dietary
titanium dioxide (TiO2; E171) and they raised some concerns
about its possible tumor-promoting action [172–174]. Before
the use of any nanomaterial in food industries, its toxicity must

TABLE 2: Applications of nanomaterials in food packaging and food-quality sensing.

Nanomaterials
Nanocomposites/package

materials
Function Food tested Application References

AgNPs
Cellulose films with amino
terminated hyperbranched

polyamic
Antibacterial, antioxidant Cherry and tomatoes Food packaging [140]

AuNPs Gelatin Color change TTI Cherry and tomatoes – [141]
Au/Ag NRs Agar hydrogel Color change TTI Cherry and tomatoes – [142]

AgNPs AgNPs-cellulose – –

Antimicrobial food
packaging

[143]

AgNPs AgNPs-polyurethane S. aureus and E. coli Lettuce Fruit preservation [144]

AgNPs AgNPs-pullulan
L. monocytogenes and

S. aureus
Poultry products and

meat
Packaging material [145]

AgNPs AgNPs-LDPE Aerobic bacteria Barberry
Preserves freshness of food
during extended storage

[146]

AgNPs AgNPs-cellulose
Psychotropic bacteria,

aerobic bacteria, yeasts, and
and molds

Freshly-cut melon
Antimicrobial food

packaging
[101]

AgNPs AgNPs-polyvinyl chloride –

Wheat bread and red
grapes

– [102]

AuNPs
AuNPs-based alginate

plasmonic THI

Irreversible change in color
that indicate variation in

temperature
Perishable foods Tunable nanosensor [7]

AgNPs
AgNPs/GNRs-based
electrochemical sensor

Detection of methyl
parathion

Fruits and vegetables Nanosensor [147]

AuNPs
AuNPs-based glassy

electrode
Check of the freshness of

food sample
Canned tuna

Nanosensors for xanthine
and hypoxanthine

[148]

AuNPs –

Pathogens (E. coli and
salmonella spp.)

Cucumber and
hamburger extracts

Optical sensor [149]

AuNPs
AuNPs loaded on

MWCNT
Toxins (Bisphenol A) Soft drinks Electrochemical sensor [99]

Au@Ag NRs – Hydrogen peroxide (H2O2) Chicken claw Colorimetric sensor [150]
Au−Ag alloy
NRs

Dual enzyme-induced Au
−Ag alloy nanorods

Determination of
Staphylococcus aureus

Milk Colorimetric sensor [151]

Au@Ag NPs
Double strand DNA

binding bimetallic Au@Ag
NPs

Detection for veterinary
antibiotics (kanamycin)

Milk Optical sensor [106]

Au@Ag NRs –

Detection for benzoyl
peroxide

Milk Colorimetric sensor [107]

NRs, nanorods; MWCNT, multiwalled carbon nanotubes.
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be thoroughly investigated to assure its safety for human health
as well as the environment. Nanomaterials may pose a greater
risk of bioaccumulation within human organs and tissues due
to their small size and also depends on the uptake by the
organisms. In addition, nanomaterials’ behavior and fate are
dependent on their various properties such as concentration of
the particles, shape, surface morphology, chemical composi-
tion, stability, reactivity, aggregation, phase purity, solubility,
surface energy, crystallinity, homogeneity, and bioavailability
of nanomaterials in different media [175–177]. Moreover, the
properties of nanomaterials are dependent on environmental
factors such as temperature, pH, concentration, ionic strength,
and composition of natural organic matter that effects their
stabilization and aggregation. So, the toxicity should likely be
determined on a case-by-case basis as each nanomaterial has a
unique feature [178, 179]. Moreover, regulatory agencies must
make some standards for commercial products to assure prod-
uct safety, quality, and health and environmental regulations.

7. Conclusion

The traditional physical, chemical, and microbiological meth-
ods for creating NPs are not environment friendly. They have a
number of drawbacks, including the need for specifically devel-
oped equipment, templates, and extremely high temperatures
and pressure. The current review paper provides an environ-
mentally acceptable way tomanufacture biogenic nanoparticles
from natural plant extracts. Plant parts rich in flavonoids, phe-
nols, steroids, terpenoids, enzymes, and alkaloids, such as
leaves, stems, barks, fruit, and flowers, play an important role
in reducing and stabilizing metal ions that create metallic NPs.
The mechanisms involved in their synthesis, growth, and sta-
bilization involved in biosynthesis of monometallic (AgNPs

and AuNPs) and its bimetallic (Au–Ag) NPs are discussed.
The phytosynthesized nanoparticles have been extensively
used in food packaging and food quality analysis to enhance
the shelf-life of foods. The incorporation of bio-based mono-
metallic and bimetallic Ag and Au nanoparticles in packaging
materials can help to improve the food shelf life, as well as they
can be used biosensors to monitor the real-time food product
quality. Although the use of antimicrobial nanoparticles in the
food sector is promising still the release of nanoparticles in food
and related toxicity is a challenge, which needs to be addressed
in near future to ensure complete food safety.
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AgNPs: Silver nanoparticles
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ICP-MS: Inductively coupled plasma-MS
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