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Due to its outstanding physical, chemical, and thermal properties, an increasing consideration has been paid to produce copper
(Cu) nanoparticles (NPs). Various methods are accessible for producing Cu NPs by conceiving the top–down and bottom–up
approaches. Electrodeposition is a bottom–up method to synthesize high-quality Cu NPs at a low cost. The attributes of Cu NPs
rely on their way of deduction and electrochemical process parameters. This work aims to deduce the mean size of Cu NPs.
Artificial neural networks (ANN) and nature-inspired algorithms, namely genetic algorithm (GA), firefly algorithm (FA), and
cuckoo search (CS) algorithm were used to predict and optimize the electrochemical parameters. The results obtained from ANN
prediction agreed with data from the electrodeposition process. All nature-inspired algorithms reveal similar operating conditions
as optimal parameters. The minimum NP size of 20 nm was obtained for the process parameters of 4 g·l−1 of CuSO4 concentration,
electrode distance of 3 cm, and a potential difference of 27V. The synthesized NP size was in line with the anticipated NP size. The
scanning electron microscope and X-ray diffractometer (XRD) were performed to analyze the nanoparticle size and morphology.

1. Introduction

Currently, nanotechnology has attracted researchers in various
fields. The attributes of materials, particles, and molecules
available in smaller sizes change dramatically at nanoscale par-
ticles. Nanotechnology is the engineering system that functions
at the scale of a Nanometer (10−9m). Copper (Cu) is one of the
most popular and expensive metals employed in engineering
applications owing to its electrical, catalytic, and thermal prop-
erties among the various materials [1]. Cu nanoparticles (NPs)
have been recognized due to their enhanced electrical and ther-
mal conductivity, higher melting point, outstanding solderabil-
ity, low electrochemical migration performance, and low cost
[2]. The preparation of CuNPs is incredibly intricate compared
to other gracious metals like Au, Ag, and Pt.

The production of NPs has been categorized as top–down
and bottom–up approaches [3]. Various techniques to

synthesize Cu NPs include microemulsion, polyol process,
chemical reduction [4], electrochemical, sonochemical reduc-
tion, hydrothermal, microwave methods, biological synthesis,
sol–gel synthesis, mechanical milling, laser excision, vapor
phase synthesis, and pulsed wire discharge [5]. With these
approaches, electrochemical is the most suitable for synthe-
sizing Cu NPs because of its easy operation, high flexibility,
less contamination, and readily available equipment. It does
not require vacuum systems to synthesize the uncontami-
nated product [6, 7]. Electrodeposition is a nonvacuum elec-
trochemical method highly desirable to thin film deposition
due to its ability to deposit component alloys at room tem-
perature, making it cheaper and economical. In this method,
the deposition of thin metallic films is done onto the substrate
by reducing cations without any unwanted reactions. Also,
the electrodeposition process has the advantage of low-cost
and large-area semiconductor growth techniques for
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applications in the macroelectronic devices such as solar
panels and large-area display devices [8]. Cu NPs have gained
more interest in heat transfer, additives, inkjet printing, bio-
medical applications, catalytic synthesis, and so on. Adding
Cu NPs as a fuel additive significantly improves the charac-
teristics of diesel and biodiesel fuels [9].

Electrodeposition is a well-proven method with advan-
tages like deposition rate and yield, which can be effortlessly
regulated by varying the electrodeposition parameters. The
achievable deposition rate in the electrodeposition process is
0.025–1.23mg/min [10]. It is a simple method for synthesiz-
ing homogenously dispersed electrocatalysts without added
capping agents. Also, it is expandable under surrounding
conditions and permits controlled, and faceted nanocrystal
structure development [11].

Many researchers have focused on electrodeposition from
acidified sulphate by galvanostatic and potentiostaticmethods
[6, 7, 11]. According to their reports, the particle size, growth,
morphology, chemical constitution, and other properties of
Cu NPs mainly depend on the synthesis parameters like elec-
trolyte concentration, the distance between electrodes, the
type of anode, temperature, current density, the quantity of
evolved hydrogen, and removal time of NPs. The preparation
of Cu NPs comprises of formation of a nucleus and augmen-
tation. Cu NPs size can be controlled by varying the propor-
tional rate of nucleus formation and enlargement through
preservatives [12]. Polyvinylpyrrolidone is one of the most
effective organic preservatives utilized in the electrodeposi-
tion process to synthesize the Cu NPs size [13]. The electrol-
ysis of Sn was prepared through bimetallic electrode [14].
Crespo [15] performed a detailed review of various methods
of electrodeposition. Aluminium was deposited on the plati-
num substrate with potentiostatic, galvanostatic, monopolar,
and bipolar current pulse polarization methods. The authors
found that the adhesive strength of deposited aluminium
was significantly enhanced using bipolar current pulse
polarization due to its anodic and cathodic pulse combina-
tion for electrodeposition [16]. The pulse current polariza-
tion method is suitable for the deposition of aluminium,
and the deposition structure can be controlled by varying
the pulse parameters [17].

Numerous conventional and metaheuristic approaches
have been applied to solve the nonlinear problem. An artifi-
cial neural network (ANN) is a data processing pattern com-
posed of algebraic equations. The ANN data processing units
are prepared in three layers: input, hidden, and output. The
data are normalized and fed to the input layer of the ANN.
The behavior of the hidden layer is decided based on the
actions of the input layer and the weights between the input
and hidden layer. The output layer’s performance relies on
the hidden layer’s activities and weights between the hidden
and output layer. The transfer function specifies the associa-
tion between input, hidden, and output layers. ANN is a
computer model corresponding to the human brain’s acqui-
sition of knowledge and decision-making skills [18].

The structure of ANN consists of several interlinked pro-
cessing units, generally called neurons. The neurons are con-
nected by two ormore (input, hidden, and output) and interact

through weights [19]. Nature and influencing strength between
interconnected neurons are determined based on scalar
weights. Every neuron is associated with all other neurons in
the subsequent layer. ANN was used to predict the mean Cu
particle size. ANN is a familiar tool in the artificial intelligence
approach used to solve complex problems and time-consuming
learning processes, reduce computational complexity, and
achieve a robust and accurate model. They provide the rela-
tionship between the input and output of the system. ANN is
used in extensive robotics, forecasting, control, pattern recog-
nition, manufacturing, signal processing, power systems, and
optimization. So far, few research works have focused on
employing ANN to synthesize Cu NPs.

The use of metaheuristic algorithms like genetic algo-
rithm (GA), simulated annealing (SA), particle swarm opti-
mization (PSO) [20], tabu search (TS), and evolutionary
programming (EP) has received considerable attention in
various problem domains for optimizing the process param-
eters. GA is a global optimization tool that removes most
deficiencies produced by local searching methods [21]. From
the literature, it was found that electrodeposition process
parameters are not optimized with nature-inspired algo-
rithms and predict the particle size using the prediction
model. This work applies nature-inspired algorithms like
GA, FA, and CS algorithms to optimize the process to obtain
the optimum parameters to produce Cu NPs. ANN is one of
the simple models to predict the particle size of Cu NPs.

2. Background Models

2.1. Optimization Using Genetic Algorithm. A GA is a
population-based search algorithm that employs the survival
of the fittest. GA is a combinational optimization technique
developed based on Darwin’s theory of evolution and the
perception of expected selection and genetics. GA approach
comprises three operators, namely selection, crossover, and
mutation. GA usually starts with a set of solutions to the
problem; the solution set (which acts as chromosomes) is
the population. Crossover operation is used to attain a new
answer by combining dissimilar chromosomes to generate
new, better offspring, and a new solution by varying existing
members of the population; this operation is called mutation.
The framework of GA is shown in Figure 1. A random initial
population is generated. The fitness value of each chromo-
some is calculated. According to the fitness value, one set of
chromosomes is carefully chosen from the initial population.

2.2. Optimization Using Firefly Algorithm. The FA is the
most popular swarm intelligence algorithm for optimization-
related problems. FA can be applied to optimize the pro-
blems of several areas successfully [23]. The application of
FA in the electrodeposition process has rarely been found in
the literature. Exploration and exploitation are the two most
essential stabilizing factors in FA. Exploration is obtaining a
distinct range of solutions within a search space. Exploitation
searches for the best available exposure while aiming or using
the realized data. Fireflies have a flashlight to entice likely
mates and warn of potential threats. When the fireflies’ dis-
tance increases, the flashlight’s intensity decreases, and the
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firefly blinks its flashlight at regular instances. The frame-
work of FA is given in Figure 2.

2.3. Optimization Using the Cuckoo Search Algorithm. The
CS algorithm is based on cuckoo birds’ reproduction method
for increasing its inhabitants [24]. Cuckoos are a house of
birds with an absolute generative strategy and fast-growing
than any other kind. Lévy flights are arbitrary walks, and
their walk lengths result from the dissemination of Lévy.
The framework of the CS algorithm is shown in Figure 3.
The CS algorithm has its own rules for functioning [24].

3. Basics of Electrodeposition

The electrodeposition process is used as an effective method
to synthesize various nanomaterials. Electrodeposition is a
low-cost method and provides the deposition of pure nano-
materials. The electrodeposition process is a significant pro-
cess for synthesizing nanomaterials. Electrodeposition
process parameters regulate the morphology and rate of
deposition on the target surfaces. This process does not

require surface-active agents, which streamlines the process
for real-world applications. Typically, two metal electrodes
(anode and cathode) are submerged in the specialized electro-
lyte solution [11]. The direct current (DC) source is superfi-
cially applied to the electrodes to deposit the target metal on
the working electrode (cathode). The deposition thickness is
monitored by adjusting the voltage difference between the
electrodes (V) and the current density (A). Usually, DC power
(in the mW range) was applied to the electrodes, and the
positive ions shifted in the direction of the cathode. The elec-
trolyte includes a specific material that controls the electrode-
position process.

4. Experimentation

The electrodeposition process synthesized the Cu NPs from
aqueous copper sulfate (CuSO4) solution. Cu NP electrode-
position was conducted in the electrolyte solution poured in a
500ml beaker at a constant current of 5 A [6]. This process
consists of two pure surfaces (cathode and anode) electrodes
placed inside an aqueous solution of CuSO4. A homogeneous
CuSO4 acts as an electrolyte. A chemical reaction occurs when
Cu electrodes are connected to the power source. A 500ml
electrolyte was prepared for each run by dissolving CuSO4 salt
using distilled water in an electrolytic cell. A cylindrical Cu
rod (cathode) was connected to the negative terminal, and a
Cu plate was connected to the power supply’s positive termi-
nal. The constant current supplied to the electrolytic solution
through surface electrodes carried out the electrolysis process.

Figure 4 shows the electrodeposition process to synthesize
the Cu NPs. In the electrolysis process, Cu NPs were detached
from the copper plate and attached to the copper rod due to
the passage of the electrical supply. Cu NPs were detached
from the electrode at the end of the electrodeposition process.
Cu NPs were washed away numerous times with purified
water and then dried in an oven for about 30min.

Initial population size
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Best solution
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FIGURE 2: Framework of FA [23].
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FIGURE 3: Framework of CS algorithm.
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FIGURE 1: Framework of GA [22].
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The Cu NPs synthesized from the electrochemical method
were very fine NPs, as shown in Figure 5. The characterization
results confirmed that ultrafine powders were Cu NPs. The
synthesized CuNPs were analyzed through a scanning electron
microscope (SEM).

4.1. Mean Particle Size of Cu NPs. The properties of Cu NPs
are determined by their electrodeposition parameters like
electrolyte concentration, the distance between the electro-
des, type of anode, temperature, current, the quantity of
evolved hydrogen, and removal time of NPs. From the above
process parameters, three reference parameters, namely elec-
trolyte concentration, the distance between the electrodes,
and the potential difference among electrodes were selected
for this work. The preferred process parameters were used to
carry out the experiments. Experiments were devised using
response surface methodology (RSM) central composite
design (CCD) (α= 1.68179) [25, 26]. The matrix of the
experimental method is shown in Table 1. Table 2 shows
Cu NPs deduced via the electrodeposition process.

Crystalline size of the CuNPwas estimated from Scherer’s
Equation (1)

D ¼ Kλ
β cos θ

; ð1Þ

where “λ” = wavelength of X-ray, “β” = full width at half
maximum, “θ” = diffraction angle, and “D” = crystalline size.

The interplanar distance was computed by employing
Bragg’s law Equation (2).

nλ ¼ 2d sin θ: ð2Þ

4.2. Modeling for the Size of Cu NPs. The relationship
between the input and output was analyzed through a corre-
lation matrix and shown in Table 3. A correlation matrix is a
table that summarizes the relationship between multiple
variables in a dataset. It shows the correlation coefficients
between each pair of variables, which indicate the strength
and direction of the linear relationship between them. The
values of the correlation coefficient range from –1 to 1, with
1 indicating a perfect positive correlation, –1 indicating a
perfect negative correlation, and 0 indicating no correla-
tion. A correlation matrix is often used in statistical analy-
sis to identify patterns and relationships between variables
and to inform the selection of appropriate analytical
methods.

The correlation matrix in Table 3 shows the pairwise cor-
relations between four variables: concentration of CuSO4, the
distance between the electrodes, a potential difference between

Cathode – copper rod

DC power supply

Anode – copper
plate 

Electrode holder plate

CuSO4 solution
(electrolyte)

Copper powder
deposited on

cathode 

FIGURE 4: Synthesize Cu NPs through the electrodeposition process.

FIGURE 5: Cu NPs deduced through the electrodeposition process.

TABLE 1: Electrodeposition parameters and their levels.

Electrodeposition parameters Units
Low
value

High
value

Concentration of CuSO4 g·l−1 4.4 5.6
Distance between the electrodes cm 3.4 4.6
Potential difference between the
electrodes

V 15 24
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electrodes, and Cu NP size in nanometers. The diagonal of the
matrix contains the correlation coefficients between each vari-
able and itself, which are always 1. The off-diagonal elements
represent the correlation coefficients between pairs of variables.
For example, the coefficient at position (1,4) is 0.283579, which
indicates a moderate positive correlation between the concen-
tration of CuSO4 and Cu NP size. Similarly, the coefficient at
position (2,3) is −2.4E–17, close to 0, and indicates no correla-
tion between electrode distance and the potential difference
between electrodes. Overall, the correlation matrix can provide
insights into the relationships between variables and guide fur-
ther analysis or experimentation.

The architecture of ANN is shown in Figure 6. The appli-
cation of ANN for predicting and modeling Cu NPmean size
depends on network architecture, training algorithms, net-
work type, neural network weight, number of iterations, and
momentum rate. A feed forward backpropagation neural
network (FFBPNN) with “sigmoid” hidden neurons is an
extensively employed neural network (NN) type, and the
network is trained with Levenberg–Marquardt backpropaga-
tion algorithm (trainlm) [26].

Input data are offered to the input layer of the NN,
and the output layer of the NN holds the response of the

input data. The intermediate layer is a hidden layer used to
characterize and estimate the relationship between the struc-
ture of these networks. Training of NN is effectively per-
formed with a sequence of corresponding input and output
data. Every hidden and output neuron treats its inputs by
manifolding each input data by its related weight and then
using a nonlinear transfer function to generate the result.
The NN’s learning process changed the neuron weights by
continuous iterations in response to the residuals among the
actual and target values. The sum of squared error (SSE),
regression coefficients (R2), and mean squared error (MSE)
values were used for the evaluation of ANN performance
[27]. Table 4 shows the MSE values of training and testing
for different hidden layers. Table 4 shows that the hidden
layer with ten neurons provides the least MSE error for
training and testing.

Weights (W) and biases (b) for all the layers of neurons
are integrated with the transfer function to achieve the
equation.

(i) The nodes of three input layers and a first bias node are
linked to four hidden layer nodes. Therewere 12weights
and four biases between the first two layers [25].

TABLE 2: Experimental design matrix.

S. no. Concentration of CuSO4 Distance between the electrodes
Potential difference between

the electrodes
Cu NP size (nm)

1 4.4 3.4 15 24.0
2 5 4 19.5 25.0
3 5.6 3.4 15 25.0
4 4.4 4.6 24 24.0
5 6 4 19.5 25.0
6 4.4 3.4 24 25.0
7 5.6 4.6 24 25.0
8 5 4 19.5 24.0
9 4.4 4.6 15 26.0
10 5 4 19.5 23.0
11 5 4 19.5 26.0
12 5 3 19.5 25.0
13 5 4 19.5 25.0
14 5 5 19.5 25.0
15 5 4 19.5 26.0
16 5.6 4.6 15 24.0
17 5.6 3.4 24 27.0
18 5 4 12 25.0
19 4 4 19.5 22.0
20 5 4 27 20.0

TABLE 3: Correlation matrix.

Factors Concentration of CuSO4
Distance between
the electrodes

Potential difference between
the electrodes

Cu NP size (nm)

Concentration of CuSO4 1
Distance between the electrodes 0 1
Potential difference between electrodes 0 −2.4E–17 1
Cu NP size (nm) 0.283579 −0.08102 −0.25657 1

Journal of Nanomaterials 5



The “tansig” transfer function was selected to com-
pute the weights of 12 inputs (wi,j) and four biases
(btj).

(ii) The output (mean size of Cu NPs) is a function of the
output transfer function (purelin), which consists of
a summation of bias values and weights. The weights
have been multiplied by the results obtained from the
hidden layer. For every iteration, bias and weight
values change to decrease the error.

ANN is utilized for training the electrolysis process
parameters by seeing the results shown in Table 2. The data-
set was divided into three groups such as 70% of the data for
training and 15% for testing, and 15% for validation. The
weight between the succeeding layers minimizes the differ-
ence between trained and actual values.

With ten neurons in the hidder layer, the performance of
different topologies (fitnet and patternnet) with varying transfer
functions (Levenberg–Marquardt backpropagation (trainlm),
Bayesian regularization backpropagation (trainbr), scaled conju-
gate gradient backpropagation (trainscg)) is shown in Table 5.
The most negligible value of mean absolute error (MAE), MSE,
and root-mean-square error (RMSE) and higher values of R-
square and VAF (closer to 1) are most desirable for better pre-
diction of the response. Table 5 shows that FFBPNN with
Levenberg–Marquardt (trainlm) transfer function with softmax
output neurons (patternnet) performed better than other net-
works in this study. Figure 7 shows the performance of

Levenberg–Marquardt backpropagation (trainlm) with softmax
output neurons. The network provides the least MSE of
2.5244e–30nm in six iterations.

The measured and predicted Cu NP mean size is shown
in Figure 8, indicating that the trained network performed
reasonably well in prediction [26]. The predicted Cu NP size
is very close to the experimental values. Similar results were
found in the literature [10, 28].

5. Parameter Optimization Using
Nature-Inspired Algorithms

Recently, metaheuristic algorithms have been applied to solve
complex real-world problems from numerous fields, like
manufacturing, scheduling, planning, and engineering opti-
mization problems. Intensification and diversification are the
fundamentals of a metaheuristic algorithm. The right balance
between these two is essential to solving a real-world problem
effectively. Mostmetaheuristic algorithms are inspired by bio-
logical progression and swarm behavior [22].

5.1. GA. In this study, GA was employed to optimize the
electrolysis parameters to identify the mean size of Cu
NPs. GA determines optimum operating conditions for the
electrolysis parameters and makes Cu NPs with minimum
particle size. The regression Equation (3) was obtained from
RSM regression analysis and considered an objective func-
tion to optimize the electrodeposition parameters.

Conc. of CuSO4

Electrode potential

Electrode gap Cu nanoparticle size 

Input layer Output layerHidden layer

FIGURE 6: Architecture of ANN.

TABLE 4: MSE for various hidden layer.

S. no. Number of hidden layers MSE–training error MSE–testing error MSE–validation error

1 4 1.53439 1.95534 1.30800
2 5 3.13053e–1 4.19351e–1 4.30695e–1
3 7 3.52380e–1 2.35185e–1 4.00370e–1
4 8 3.8609e–1 3.63864e–1 1.34631e–1
5 10 3.73952e–1 4.81492e–1 7.43702e–2
6 12 2.68907e–1 9.00509e–1 1.31692e–1
7 15 7.50953e–1 1.17548e–1 2.01336e–1
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Mean particle size ¼ −27:40672þ 9:96726 × Að Þ
þ 1:48563 × Bð Þ þ 2:42318 × Cð Þ
þ 0:60428 × A × Bð Þ − 0:36325 × A × Cð Þ
þ 0:013675B × Cð Þ − 0:47380 × A2ð Þ
− 0:47460 × B2ð Þ − 0:023462 × C2ð Þ:

ð3Þ
where A= concentration of CuSO4, B= electrode distance,
and C= electrode potential difference.

The initial parameters considered for GA optimization
are listed below:

(i) Population size = 100
(ii) Crossover = 0.1
(iii) Rate of mutation = 0.01
(iv) Number of generations = 500
(v) Objective =minimization

The time required to obtain the optimum process param-
eters was 17 s. The optimum conditions determined by GA
for producing the Cu NPs are shown in Table 6.

5.2. FA. The parameters considered for FA are given below:

(i) Maximum number of iterations = 500
(ii) Maximum number of fireflies = 20
(iii) Initial randomness (α0) = 0.25
(iv) Randomness factor (α) = 0.90
(v) Absorption coefficient (γ) = 1
(vi) Randomness reduction (β) = 0.2
(vii) Objective =minimization

Equation (3) was used as an objective function. The algo-
rithm was converged within 7 s and gave the optimal param-
eter. The optimum condition attained from FA is shown in
Table 6.

5.3. CS. The parameters employed for the CS algorithm are
given below:

(i) Initial population size = 5
(ii) Minimum number of eggs = 2
(iii) Maximum number of eggs = 10

TABLE 5: Performance of NN with different topologies and transfer functions.

Performance measures/training
algorithm

Trainlm with
linear output
neurons
(fitnet)

Trainbr with
linear output
neurons
(fitnet)

Trainscg with
linear output
neurons
(fitnet)

Trainlm with
softmax output

neurons
(patternnet)

Trainbr with
linear output
neurons

(patternnet)

Trainscg with
linear output
neurons

(patternnet)

Mean square error (MSE) 3.73952e–1 9.08727e–1 5.24238e–1 2.5244e–30 6.25453e–19 1.21640e–1
Root mean square error (RMSE) 0.611516 0.953272 0.724043 1.49E–15 7.91E–10 0.348769
Mean absolute error (MAE) 0.11798 0.12765 0.13756 0.0092e–3 0.00256e–5 0.14874
R-square 0.92086 0.91046 0.91038 0.99994 0.98984 0.87564
Variance accounted for (VAF) 0.9215 0.9120 0.9132 0.9815 0.9752 0.8256
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(iv) Maximum number of iterations = 500
(v) Number of nests = 50
(vi) Solutions discovery rate = 0.25

The CS algorithm was converged within 8 s, and the
optimal parameter was acquired and shown in Table 6.

Table 4 shows the confirmation test with the selected
electrodeposition parameters. The mean size of the Cu NPs
obtained was 20.00 nm. The particle size is the nominal size
used for further applications.

6. Results and Discussion

The key objective is to produce the desired Cu NP size by
optimizing electrodeposition parameters. The particle size
was estimated through the X-ray diffractometer (XRD) anal-
ysis of synthesized Cu NPs. The optimal results were well
agreed with experimental results, which led to a smaller par-
ticle size of Cu NPs. After optimization, the verification trial
was conducted at an electrolyte (CuSO4) concentration of
4 g·l−1, the distance between the electrodes of 3 cm, and the
potential difference of 27V. Figure 9 shows the XRD pattern
of CuNPs synthesized from the confirmation trial. Crystalline
size of Cu NPs computed from the Debye–Scherer equation
was 20 nm which was in line with the size of Cu NPs antici-
pated through ANN.

An XRD was utilized to record the peaks. An XRD spec-
trum was recorded from 10° to 90° [29] angles with a step of
0.02° and a scanning rate of 0.05 deg·min−1. The investiga-
tional and usual diffraction angles of Cu NP are shown in
Table 7, illustrating that experimental and classic results were
almost the same. The crystal structure and phase composition
of synthesized Cu NPs are analyzed by XRD, as shown in
Figure 9. Based on the XRD data, the synthesized Cu NPs
have a face-centered cubic (FCC) crystal structure. The char-
acteristic diffraction peaks (1 1 1), (2 0 0), and (3 1 1) at 2-θ
values of 37.4°, 43.52°, and 73.71°, respectively, confirm the
presence of Cu NPs. Two peak values of 37.4° and 43.52°
corresponding to (1 1 1) and (2 0 0) planes were found and
evaluated with the Joint Committee on Powder Diffraction
Standards, copper file number 03–1,005 [30].

XRD results revealed that synthesized Cu NP has cubic
lattices [31]. The XRD results found a gradual reduction in
diffraction peaks’ intensities. However, the XRD data also
show the presence of cuprous oxide (Cu2O) with diffraction
peaks indexed to (1 1 0) and (2 2 0) at 2-θ values of 29.1° and
62.9°, respectively. These peaks indicate that partial oxidation
of Cu NPs has occurred due to dissolved oxygen in the solu-
tion [32, 33]. Therefore, the synthesized Cu NPs are a mixture

of metallic Cu and Cu2O phases. The presence of Cu2O can be
undesirable in some applications, but it may also have some
beneficial properties, such as catalytic activity.

SEM examination of synthesized Cu NPs at the optimal
process parameter is shown in Figure 10. Figure 10 showed
that monodispersive hexagonal structure like crystalline Cu
NPs was synthesized through electrodeposition. The smaller

TABLE 6: Optimal electrodeposition parameters obtained from nature-inspired algorithms.

Algorithm
Concentration of electrolyte

solution (g·l−1)
Distance between the

electrodes (cm)
Potential difference between

the electrodes (V)
Cu NP average size (nm)

GA 4 3 27 22.51
FA 4 3.3 26.8 22.95
CS 4 3 25 21.25
Confirmation test 4 3 27 20.00
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FIGURE 9: XRD pattern of Cu NPs.

TABLE 7: Experimental and standard diffraction values for Cu NP.

Experimentation (2-θ)
Standard diffraction (2-θ) JCPDS

Cu : 03–1,005

43.52° 43.25°
50.65° 50.37°
73.71° 73.99°

1 – 23.5 nm
2 – 21 nm
3 – 25.5 nm
4 – 22.5 nm

FIGURE 10: SEM image of confirmation trial.
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NPs yield a higher surface area and improve the catalytic
activity. Figure 10 shows the fine particles with hollow sphere
fashioned Cu NPs [34]. The fine dispersion of Cu NPs was
observed. A reasonable agreement between the particle size
was found from SEM and XRD. This can be ascribed to the
production of defect-free Cu NPs.

7. Conclusions

Cu NPs were successfully synthesized at an elevated reaction
rate and low cost through electrodeposition. It was con-
cluded that the combined approach of ANN and nature-
inspired algorithms was used to find the effect of selected
electrolysis parameters, namely electrolyte (CuSO4) concen-
tration, electrode potential difference, and electrode distance
on the average size of Cu NP. All the nature-inspired algo-
rithms give similar optimal parameters. The optimum con-
dition for preparing Cu NPs was the concentration of
electrolyte solution as 4 g·l−1, an electrode gap of 3 cm, and
the potential difference between electrodes of 27V. The aver-
age particle size obtained from the experimentation was
20 nm. The ANN and nature-inspired algorithms are accu-
rate and give a promising and appropriate way to predict the
optimum electrolysis parameters to produce Cu NPs.
Trainlm with softmax output neurons (pattern net) network
predicts the particle size with an MSE of 2.5244e–30.
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