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Cu1–xNixO/Fe2O3 (with x= 0.01, 0.02, 0.03, 0.04wt%) were synthesized by plant extraction technique. The absorbance and
degradation performance of Ni-doped CuO and Fe2O3 nanocomposite against methylene blue (MB) was analyzed, and the 2%
Ni-doped CuO yielded an optimum result, and the optical bandgap of CuO, 2NCO, Fe2O3, and (60%) 2NCO/40% Fe2O3 was found
to be 1.88, 1.73, 2.1, and 1.80 eV, respectively. Hence, the 2% Ni-doped CuO (2NCO) was further used for the establishment of a
composite with Fe2O3. The lowest composition of the oxide composite was (1−x) 2NCO/(x) Fe2O3 (x= 0.1, 0.2, 0.3, 0.4, and 0.5).
The degradation performance of those oxide composites was determined against (MB) with the nominal composition of sample
(60%) 2NCO/40% Fe2O3 resulted in an optimum degradation of MB with a percentage of 94% at 120min. The recyclability takes a
look at was performed for five cycles at the start of 94%; after five cycles, the sample remained stable at 120min. Therefore, 2NCO/
40% Fe2O3 composite is going to be the selection material for waste product treatment.

1. Introduction

The need of eliminating organic contaminants and harmful
heavy metal ions fromwater sources has increased in response
to the rising demand for clean water [1]. MB is an organic
contaminant that has devastating environmental effects due to
its toxicity, carcinogenicity, mutagenicity, nonbiodegradabil-
ity, and complex chemical structure. As a result, before they
are released into the environment, these contaminantsmust be
efficiently removed and/or converted to nontoxic molecules
[2]. There are several techniques for removing and converting
these contaminants have been developed. Some of these pro-
cesses are flocculation [3], adoration [4], biodegradation [4],
sedimentation [5], and membrane process [6]. Since contami-
nants have complex chemical and physicochemical properties.
Those techniques have limitations of low efficiency, high-
energy consumption, and the risk of secondary pollutant for-
mation are insufficient [7]. Furthermore, due to the presence
of stable aromatic groups in the structure of organic pollu-
tants, they are nondegradable using traditional techniques [8].

As a result, an alternative technique for removing and con-
verting toxic molecules and substances from industrial efflu-
ents that is high in efficiency, low in energy consumption, and
environmentally friendly is desired. One of the alternative
approaches to treating industrial contaminants is photocata-
lysis, which uses photon energy and oxide semiconductor
nanomaterials as a catalyst to degrade organic contaminants
[9]. Metal oxides such as TiO2 [10], ZnO [11], CeO2 [12], CuO
[13], Fe3O4 [14], Fe2O3 [15], BiVO4 [16], and others have been
studied for their photocatalytic activity due to the degradation
of various organic pollutants. Catalysis by metal oxides under
solar irradiation is primarily limited by a large bandgap, low
charge transfer efficiency, and low recyclability. This limita-
tion is improved by heterojunctions, metal or nonmetal dop-
ing. Green technology based on plants is becoming more
popular as an eco-friendly, nontoxic, cost-effective, and safe
option because plant extract-mediated biosynthesis of nano-
particles provides natural capping agents in the form of pro-
tein [17]. CuO and α-Fe2O3, two important transition metal
oxides, have been extensively studied and applied in a variety
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of fields, including catalysts [18], sensors [19], and electro-
chemistry [20]. Many methods have been used to create
CuO/Fe2O3 composites, including solid-phase reaction [21],
hydrothermal [22], coprecipitation [23], sol–gel method [24].
The green synthesis method has advantages over other syn-
thesis techniques due to its high yield, high product purity, no
need for organic solvents, easy reproducibility, low cost, and
environmentally friendly approach [25].

According to recent research, the photon property of
CuO is important because of the variable oxidation states
of copper, i.e., Cu+, Cu2+, and Cu3+, which allows for both
hole and electron doping [26]. Many changes have been
reported as a result of transition metal doping into the
CuO lattice, including Ni, Fe, Ti, Cd, and Zn doping [27].
To overcome metal oxide’s limitations in photocatalytic
applications. We designed a plant-mediated synthesis of
Ni-doped CuO, and Fe2O3 is found to be an interesting
material for increasing the absorption of visible light. Hence,
within the bandgap, transition metal ions can generate
energy states. Furthermore, these act as stepping stones for
electrons as they transition between the valence and conduc-
tion bands [26, 28].

In this work, plant-mediated Ni-doped CuO and Fe2O3

composite have been used for the degradation of MB. Pristine
CuO has low photocatalytic activity due to agglomeration
and recombination problems. This problem was improved
by doping with Ni with a similar ionic radius, forming a
junction, and decreasing agglomeration by plant-mediated
synthesis method of metal oxides. Moreover, there is no
research has been conducted on photocatalyst material Ni-
doped CuO and Fe2O3 by plant-type Acmella ciliata, which
was used as a capping/stabilizing agent during the synthesis of
metal oxide for MB dye degradations.

2. Results and Discussion

2.1. X-Ray Diffraction (XRD) Analysis. The detailed synthesis
experimental procedures of all catalysts were explained on
pages s1 and s2 of Supplementary Material. Figure 1(a) XRD
patterns of CuO and p-CuO confirming that the synthesized
individual oxides with a single phase. The diffraction peaks at
2θ of 32.51°, 35.56°, 38.92°, 46.47°, 48.84°, 53.68°, 58.4°, 61.6°,
66.3°, 68.16°, 72.46°, and 75.26° were corresponded to (110),
(002), (111), (₋112), (₋202), (020), (₋113), (₋311), (31₋1), (220),
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FIGURE 1: XRD result of (a) CuO, and p-CuO; (b) Fe2O3; (c) p-CuO, 1NCO, 2NCO, 3NCO, and 4NCO; (d) CuO, Fe2O3, 2NCO/10FO, 2NCO/
20FO, 2NCO/30FO, 2NCO/40FO, and 2NCO/50FO.
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(311), and (004) crystallographic planes, respectively. In
accordance with JCPDS card no: 48-1548, Figure 1(a)
depicts a cubic crystal structure with a space group of C2/c
[29]. The plant extracts CuO exhibits similar diffraction peaks
and crystallographic planes. As shown in XRD patterns in
Figure 1(b) of Fe2O3, the diffraction peaks at 2θ 24.14°,
33.28°, 35.62°, 40.95°, 49.56°, 54.03°, 62.48°, 64.06°, 71.82°,
75.26°, and 77.26° corresponding to (012), (104), (110),
(113), (024), (116), (018), (214), (300), (1010), and (220)
planes, respectively. The Fe2O3 contains a tetragonal crystal
structure with space group R-3c; the result observed was in
close agreement with JCPD card no: 33-664 [30].

The XRD patterns of Figure 1(c) p-CuO, 1NCO, 2NCO,
3NCO, and 4NCO with their percentage compositions that
show no other extra impurities exist for the doping concen-
tration of Ni with 1, 2, 3, and 4wt% as containing a cubic
crystal structure. Because of the substitution of Ni2+ (0.69)
with Cu2+ (0.73) sites in their monoclinic structure by simi-
lar ionic radii. Furthermore, the addition of Ni dopant to the
CuO lattice had no effect on the lattice and only caused a
minor shift in the 2θ values, as shown in the XRD inset in
Figure 1(c). Different concentrations of nickel dopant list,
which is 1%–4% are found in Table S1.

The XRD patterns, as shown in Figure 1(d), the main
diffraction peaks are at 2θ of 35.5°, 38.7°, 48.7°, 58.3°, 61.6°,
66.2°, and 68.2° correspond to (₋111), (111), (₋202), (202),
(₋113), (₋311), and (200) crystallographic planes, with the
result closely matching the standard CuO JCPDS card no:
48-1548 [31]. The XRD pattern also presented intense diffrac-
tion peaks at 2θ of 24.1°, 33.1°, 40.9°, 49.4°, 54.0°, 62.4°, and
64.0° correspond to the (012), (104), (113), (024), (116), (214),
and (300) crystallographic planes, respectively, and the result
matched with standard Fe2O3 JCPDS card no: 33-664 [32].
Nickel-doped copper oxide was prepared by adding 1 up to
4%, as shown in Table S1, and similar the synthesize proce-
dure of composites was explained in percentage composition,
also shown in Table S2.

The XRD patterns of Figure 1(c) p-CuO, 1NCO, 2NCO,
3NCO, and 4NCO show that there is no extra impurities
exist for the doping concentration of Ni with 1, 2, 3, and
4wt% containing a cubic crystal structure. Hence, the sub-
stitution of Ni2+ (0.69) with Cu2+ (0.73) sites in their mono-
clinic structure by similar ionic radii. Furthermore, the
addition of Ni dopant to the CuO lattice had no effect on
the lattice and only caused a minor shift in the 2θ values, as
shown in the inset of Figure 1(c). The widening of XRD peak
is due to the reduction in the crystallite size of CuO. Further-
more, there is no noticeable change in peak location, and the
peaks are found to be fairly sharp and high intensity, imply-
ing that the produced powders have high crystallinity. The
crystallite size was calculated using the Debye–Scherrer
Equation (1) by measuring the full width at half maximum
(FWHM) of the most intense diffraction peak [33].

D ¼ kλ
β cos θ

; ð1Þ

where β is the half-maximum intensity (FWHM) of the
observed diffraction peak, k is the Scherrer constant 0.9

and λ is the X-ray wavelength (Cuk radiation = 0.154 nm).
The crystallinity of bare CuO, 1NCO, 2NCO, 3NCO, and
4NCO is 18.53, 9.51, 8.63, 7.76, and 7.67 nm, respectively.
Additionally, 2NCO/10FO, 2NCO/30FO, 2NCO/40FO, and
2NCO/50FO were 13.12, 8.41, 8.85, 8.33, and 7.69 nm,
respectively. The peak intensity decreases linearly as the
FWHM increases with increasing Ni doping concentrations,
indicating crystallinity degeneration of the CuO. The Ni ions
move inside the CuO lattice and settle into the vacancy. The
charge imbalance and ionic radius mismatch between Cu
and Ni ions cause lattice distortion. CuO crystallization qual-
ity will be affected even more [34].

2.2. Thermal Analysis. Figure 2(a)–2(c) shows the thermogra-
vimetric analysis (TGA)-DTA curves of composites 2NCO/
10FO, 2NCO/30FO, and 2NCO/40FO. The first endothermic
peak (α region) for composites 2NCO/10FO, 2NCO/30FO,
and 2NCO/40FO at a temperature around 75°C, with a weight
loss of ∼2%, 10.14%, and 10.6%, respectively, and this was due
to the evaporation of residual water molecules adsorbed on the
catalyst’s surface [35, 36]. At a temperature around 300°C, the
second step (β region) shows removal hydroxides with weight
loss of around 6.76%, 19.73%, and 16.56% for 2NCO/10FO,
2NCO/30FO, and 2NCO/40FO, respectively. At a temperature
of 300–550°C, a pronounced endothermic peak was observed
in the third step (γ region), forming 2CNO/Fe2O3, respectively,
and corresponding weight loss of∼7.81%, 19.52%, and 18.63%,
respectively [37].

2.3. Fourier Transform Infrared (FTIR) Analysis. The func-
tional groups and chemical structures of Acimella plant
extract and powder CuO, Fe2O3, p-CuO, and 2NCO/40FO
were discovered by analyzing the FTIR spectra, as shown in
Figure 3. The broad peak centered at 3,436 cm−1 corresponds
to the stretching vibration of O–H, and there is a broadening
of O–H covalent bond peaks, indicating that bond lengths of
O–H covalent bonds have increased due to their involvement
in hydrogen bonding [38]. The peak at 875 cm−1 is due to
C–Hstretching vibration, and the strong band below 700 cm−1 is
assigned due to Fe–O stretchingmode. The peaks at 647.626 and
520 cm−1 correspond to the characteristic stretching vibrations
of the Cu–O bond in monoclinic CuO NPs. The sample’s char-
acteristic absorption bands at 555 cm−1 correspond to iron oxide
stretching, while the bands around 560 cm−1 correspond to the
Fe–O stretching mode of the Fe2O3 phase [39]. The other peaks
observed in the spectra were caused by stabilizers and hydroxyls
adsorbed on the surface of the oxide [40]. The Cu–O stretching
mode was occurred due to the stretching along the (202) direc-
tion in CuO crystal peaks at around 439 and 445 cm−1 [41].

2.4. Morphological Analysis. Themorphology of CuO, p-CuO,
Fe2O3, and 2NCO/40FO samples was examined using a scan-
ning electron microscope (SEM). Figure 4(b) shows that the
plant extract synthesized CuO shows well dispersed and
decreased agglomeration, whereas CuO synthesized without
plant extract is aggregated and not well dispersed. Figure 4(a)
SEM image of CuO, (b) p-CuO, and (c) Fe2O3, and it was clearly
observed that catalysts synthesized without plant extract are
agglomerated together, and this may block access to catalyst
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surfaces that result lower its performance toward the photoca-
talysis effect. Figure 4(d) shows that the composite 2NCO/
40FO catalysts are well dispersed and particles small in size.
The surface area and N2 adsorption/desorption isotherm of

CuO, p-CuO, Fe2O3, and 2NCO/40FO show similar pore sizes,
as explained in Table S3. The properties of being well dispersed,
smaller particle in size, higher surface area, and higher pore
volume provides access to the catalyst particle surfaces that
may enhance its photocatalytic performance [37].

2.5. Ultraviolet–Visible (UV–Vis) and Optical Studies.
Figures 5(a) and 5(b) show that the optical absorption spectra
of the samples CuO, Fe2O3, 1NCO, 2NCO, 3NCO, 4NCO,
2NCO/10FO, 2NCO/20FO, 2NCO/30FO, and 2NCO/40FO,
2NCO/50FO exhibit band edge absorption peak at 367.44 nm,
whereas Figure 6(a)–6(d) show that the optical bandgap
values estimation of samples Fe2O3, CuO, 2NCO, and
2NCO/40FO is 2.1, 1.88, 1.73, and 1.80 eV, respectively,
which is calculated using the Tauc relation Equation (2).

αhνð Þ2 ¼ A hν − Eg
� �

: ð2Þ
Eg stands for optical bandgap energy, v for frequency, h

for Planck’s constant, and A for a transition probability con-
stant [42]. The bandgap value clearly indicates that 2NCO/
40FO reduces the bandgap energy. The catalyst absorbs more
light as the bandgap narrows, allowing electrons to readily
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FIGURE 2: Thermogravimetric analysis of (a) 2NCO/10FO, (b) 2NCO/30FO, and (c) 2NCO/50FO.
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jump from the valance to the conduction band, and the
formation of electron and hole pairs is essential in the dye
degradation process.

2.6. Photoluminescence (PL) Analysis. PL is used to study the
separation of photogenerated charge carriers because the PL
signal is generally caused by the recombination of photogen-
erated electron–hole pairs. From the comparative PL spectra

presented in Figure 7 of synthesized CuO, 2NCO, Fe2O3,
and 2NCO/40FO. The PL-exhibited emission peaks in the
424.94 nm region under an excitation wavelength of 270 nm
[43]. The PL intensity of Fe2O3 and 2NCO was found to be
lower than that of pure CuO, indicating that Fe2O3 and
2NCO had greater charge separation than bare CuO due to
bandgap and surface defects or interstitial defects. Therefore,
the decrease in PL intensity of 2NCO/40FO may imply a low

(a)

(c) (d)

(b)

FIGURE 4: SEM morphological analysis of (a) CuO, (b) p-CuO, (c) Fe2O3, and (d) 2NCO/40FO.
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e−/h+ pair recombination rate and high photon efficiency of
the catalyst, explaining the rise in photocatalytic activity [44].

2.7. Electrochemical Impedance Spectroscopy (EIS) Studies.
This EIS result was measured in 0.1M Na2SO4, frequency
of 0.1Hz–100 kHz, and 10mV applied potential versus
Ag/AgCl/Cl− reference electrode to check the conductivity
properties of the catalysts. The EIS Nyquist plot’s arc radius
indicates that the interface layer resistance occurs at the elec-
trode’s surface. Figure 8 shows that the arc radius decreases
for samples 2NCO, Fe2O3, and 2NCO/40FO than CuO due
to the increased dipole moment; 2NCO/40FO has a lower arc
radius than the other. During photocatalytic reaction tests,
the composite 2NCO/40FO allows for faster charge separa-
tion and transfer of photogenerated charge carriers. The PL
result in Figure 7 confirms that composite 2NCO/40FO has
better charge separation. Hence, the obtained composite low-
ers the photogenerated electron–hole pair recombination,
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which results high photocatalytic activity toward dye degra-
dation [45–47].

2.8. Photocatalytic Dye Degradation. The UV–Vis spectros-
copy was used to examine the degradation percentage (D%),
which is calculated by using Equation (3).

D% ¼ C0 − Ct

C0
× 100%; ð3Þ

where C0 and Ct are the dye concentrations at 0 and t min-
utes of irradiation, respectively. The absorbance versus wave-
length plot was calculated using the Beer–Lambert rule using
equation S4 and UV–Vis absorption spectra of MB solution
at different light exposure time durations. The degradation
efficiency, as shown in Figure 9 calculated using Equation (3)
and for (a) CuO (68%), (b) p-CuO (74%), (c) 2NCO (81%),
(d) Fe2O3 (84%), (e) 2NCO/40FO (94%). Figure S1 shows the
degradation efficiency of (a) 1NCO (76%), (b) 3NCO (78%),
(c) 4NCO (77%). The degradation efficiency of (a) 2NCO/
10FO (81%), (b) 2NCO/20FO (84%), (c) 2NCO/30FO (86%),
and (d) 2NCO/50FO (90%) at 120min and UV–Vis absorp-
tion spectra of MB solution at different light exposure time
durations of (a) 1NCO, (b) 3NCO, and (c) 4NCO, as shown
in Figures S1 and S2. The photocatalyst efficiency of CuO
was lower than CuO synthesized with plant extract. The
plant-extracted CuO improved the surface area and charge
carriers for MB dye degradation [48]. On the other hand,
doping increases the photocatalytic activity of the catalyst by
concentrating the target molecules (organic pollutants) at the
catalyst surface by forming a Lewis acid–base combination,
and as the doping concentration is increased, the degrada-
tion efficiency increased up to 2% Ni and then decreased and
the optimum level of Ni-dopant is 2%. The use of Ni-dopant
at the donor level avoids the recombination of excited elec-
trons and holes in the valance band within the semiconduc-
tor. The crystalline size calculated from XRD result by
Sherer’s Equation (1) and the 2NCO shows that optimum

crystallinity due to its comparable effect. The crystalline size
should be neither large nor too small; it should be optimum
and comparable with its surface area. Figure 5(a) shows that
the absorbance of 2NCO has high absorption property.
Hence, the catalyst easily absorbs light and makes electrons
travel from the valance band to the conduction band more
than the others [49]. The composite of 2NCO/40FO was
more efficient than the others due to the existence of second-
ary metabolites present in plant extract and metal ions pres-
ent in the composite.

2.9. Kinetics Study. The photodegradation rates of MB were
faster with 2NCO/40FO composite than bare CuO under the
same conditions, as shown in Figure 10(a). The pseudo 1st
order model was used to study the kinetic degradation of MB
dye photodegradation at neutral pH utilizing CuO, p-CuO,
Fe2O3 2NCO, and 2NCO/40FO composite using Equation (4).

−ln
Ct

C0
¼ KT; ð4Þ

where Ct is the MB concentration at irradiation time t, C0 is the
preirradiation concentration, K is the first order rate constant
(min−1), and T is the temprature [50]. Then plotting ln (Ct/C0)
vs. t as shown in Figure 10(b) and the value of reaction rate was
exhibited in Figure 10(c) was calculated for CuO, p-CuO,
2NCO, Fe2O3, and 2NCO/40FO, to be 0.00969, 0.01147,
0.01322, 0.01498, 0.02301, 0.77079, 0.84899, 1.619 1.57458,
and 3.35464min−1, respectively. 2NCO/40FO shows a higher
kinetic rate than pure CuO, and the introduction of Fe2O3 in
2NCO can further increase to some extent. The data fitted well
and gave a correlation coefficient of CuO, p-CuO, 2NCO,
Fe2O3, and 2NCO/40FO, 0.93705, 0.93844, 0.94696, 0.94711,
and 0.95389 at the neutral pH, respectively.

2.10. Stability and Recyclability. For pilot-scale remediation
systems, recovery and reusability of the photocatalyst are
important parameters to be considered. Figure 11 depicts
the recyclability and stability of the 2NCO/40FO catalyst
after five cycles for 120min reaction, and it is 0.125 g catalyst
in 500ml of the MB dye. This clearly indicated that the
catalyst was recycled and reused after MB dye degradation.
In the high-efficiency cycles, the performance of 2NCO/
40FO attended from 94% to 80% after five cycles. There is
a material loss during the recovery process (washing and
drying), leading to a reduced dose in succeeding cycles, low-
ering surface catalytic activity and lowering performance
[51]. The recyclability and stability test showed the catalyst
was stable for up to five cycles. The XRD results of reused
catalyst showed the reused material showed no change in
crystal structure in the XRD pattern. In keeping with the
findings, current materials systems degrade an organic MB
dye from industrial effluents created by numerous processes.
Therefore, the 2NCO/40FO photocatalyst was no significant
change up to five cycles successfully for degrading of MB dye
under visible light irradiation.

2.11. The Proposed Dye Degradation Mechanism of 2NCO/
40FO Nanocomposite. The photocatalytic mechanism of
CuO/Fe2O3 composites is depicted in Figure 12. During UV
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light irradiation, electrons from the CuO and Fe2O3 valence
bands (VB) are promoted to the conductive band (CB), leaving
holes in the VB (h+ VB). The heterostructure creates a good
couple, which helps separate the created electron–hole pairs
[52]. CuO was doped with (2%) Ni to improve its electron
transport properties. The difference in conduction band levels,
electrons stored in the CuO conduction band travel to the
Fe2O3 conduction band. Furthermore, the reaction between
absorbed oxygen (O2) and electrons collected at the surface
of Fe2O3 results in the formation of superoxide radical (·O2−)
as electrons in Fe2O3 conduction band reduce absorbed O2.
The MB dye was degraded by the superoxide radical and elec-
trons that were generated [53]. However, the valence band
holes in CuO and Fe2O3 barely met the criteria for the genera-
tion of hydroxyl radicals (·OH) (H2O/·OH

−) instead (·OH)
formed from the intermediate reaction shown in the following
equations. The holes and hydroxyl radicals may play a role in

the degradation process, as shown in the equations below.
Finally, the process produced intermediate molecules such as
H2O and CO2.

CuO e− þ hþð Þ=Fe2O3 e− þ hþð Þ
À!CuO e− þ e−ð Þ=Fe2O3 hþ þ hþð Þ; ð5Þ

hþ þ OH− À! OH; ð6Þ

e− þ O2 À! ⋅O−

2 ; ð7Þ

H2Oþ ⋅O−

2 À! ⋅OOHþ OH; ð8Þ

2OOH⋅þO2 À!H2O2; ð9Þ

H2O2 þ ⋅O−

2 À! ⋅OHþ OH− þ O2; ð10Þ
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⋅OHþ ⋅O−

2 þ hνþ pollutantÀ! degrade pollutant;

ð11Þ

⋅OHþ ⋅O−

2 þ hνþ degrade pollutantÀ! CO2 þH2O:

ð12Þ

3. Conclusion

In the present work, CuO, p-CuO, Fe2O3, 1NCO, 2NCO,
3NCO, 4NCO, 2NCO/10FO, 2NCO/20FO, 2NCO/30FO,
2NCO/40FO, and 2NCO/50FO catalyst were successfully
synthesized by plant-mediated extract, which is green

synthesis method. The prepared materials were characterized
by XRD, TGA, FTIR, PL, and EIS. The 2NCO/40FO catalyst
shows lowered recombination and better charge transfer
resistance. The performance of bare CuO was 68%, while
the plant-extracted green synthesized CuO shows better deg-
radation performance, and the synthesized Fe2O3 showed a
degradation percentage of 81% and optimization of Ni-
doped copper oxide with a doping concentration of 2% Ni-
doped CuO was 80% maximum absorbance properties. The
boosted photocatalytic property was assessed by coupling
2NCO coupled with Fe2O3 with weight percentages of 40%
Fe2O3 with 2NCO/40FO was shown 94% and better absor-
bance properties. The recyclability and stability test showed
the catalyst was stable up to five cycles, and the XRD result of
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reused catalyst showed no change in the XRD pattern. Con-
sequently, the material will degrade organic MB dye, which is
from different textile industrials effluents.
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