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Staphylococcus aureus, a prominent bacterial pathogen, presents formidable medical challenges owing to its rapid development of
resistance. The emergence of multidrug resistant (MDR) S. aureus strains has become a pressing concern for healthcare systems,
driving researchers to explore novel therapeutic strategies for managing infections associated with this pathogen. In this pursuit,
niosomal-based platforms have emerged as promising candidates to effectively target S. aureus and fight conventional antimicro-
bial resistance. Niosomes comprise a bilayer membrane formed by nonionic surfactants, which can encapsulate both hydrophilic
and hydrophobic drugs. These nanoparticles are known as vesicular delivery systems and have many advantages, such as low cost,
less toxicity, and more flexibility and stability. Moreover, niosomes, being an effective drug delivery system, can directly interact
with the bacterial cell envelope, thereby enhancing the pharmacokinetic activities of drugs at infected sites. A niosome-based
delivery system can effectively treat S. aureus infections by destroying the biofilm community, increasing intracellular targeting,
and enhancing the antibacterial activity. The main mechanisms of action of niosomes against resistant S. aureus strains involve the
ability to resist enzymatic degradation, controlled release profile, and targeted drug delivery, which can provide an effective dosage
of antimicrobial agents at the site of actions. In addition, niosomes have the potential to transfer wide-spectrum materials from
different classes of antibiotics to nonantibiotic antimicrobial agents, such as natural compounds, antimicrobial peptides, and
metallic nanoparticles. The combination of polymeric materials in the structure of a niosomal formulation could improve their
bioavailability, loading capacity, and therapeutic efficacy for different applications. Furthermore, niosomes could find application
in photodynamic therapy, offering a promising alternative to conventional treatments for eradicating drug-resistant S. aureus
isolates. Finally, niosomal nanocarriers can be developed for delivering the drugs to desired sites by different routes of adminis-
tration and could be considered a powerful strategy for overcoming the therapeutic obstacles caused by MDR S. aureus.

1. Introduction

Staphylococcus aureus is known as a seriously life-threatening
agent for humans that bring enormous financial burdens to
healthcare system budgets [1-3]. This pathogen is one of the
major and continuous microorganisms causing a wide variety of
diseases with high mortality rates in patients [4-6]. S. aureus can
be a leading causative agent in various infections, including sur-
gical site, respiratory tract, prosthetic joint, necrotizing pneumo-
nia, and cardiovascular infections [7]. Methicillin-resistant
S. aureus (MRSA) is a dangerous bacterial pathogen isolated
from both community and clinical environments [8, 9]. In recent

years, chronic MRSA wound infections have become a big
healthcare-associated problem that has detrimental effects on
human quality of life [10-13]. According to the Centers for
Disease Control and Prevention (CDC) report in 2018, the
annual deaths caused by MRSA in the United States were esti-
mated at 20,000 and this rate was higher than any other drug-
resistant pathogen [14]. The indiscriminate use of vancomycin
in patients with MRSA infections has led to the emergence of
vancomycin-resistant S. aureus (VRSA) and vancomycin-inter-
mediate S. aureus (VISA) strains which have drastically
increased therapeutic challenges in healthcare systems. VRSA
is primary nosocomial pathogen that can cause invasive
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infections with considerable morbidity and mortality rates
worldwide [15]. Also, patients infected by VRSA often require
extensive treatment measures, leading to prolonged hospitaliza-
tion, increased medical costs, and a higher risk of invasive infec-
tions. The rapid spread of multidrug resistant (MDR) S. aureus
among patients also creates a great concern for public health,
complicating treatment decisions for this pathogen significantly.
Therefore, it is crucial to urgently develop novel treatments and
alternative approaches to effectively combat resistant staphylo-
coccal infections, particularly those caused by MRSA and VRSA
strains [16].

Facultative intracellular parasitism, the ability to a form bio-
film, and increasingly severe antimicrobial resistance are the
reasons that cause S. aureus to become a successful human
pathogen and challenge antibiotic therapy [17]. Furthermore,
S. aureus employs several virulence factors, including adhesins,
toxins, and immunomodulatory molecules, to evade the human
immune system causing severe infectious diseases. For instance,
protein A and clumping factor can inhibit opsonization and
phagocytosis of S. aureus by host immune cells [18, 19]. Also,
other staphylococcal virulence factors, including leukocidins,
enterotoxins, proteases, hemolysins, and exfoliative toxins, play
an effective role in dissemination of S. aureus during infection
[20]. In addition, S. aureus has evolved several mechanisms to
resist antimicrobial agents, including the production of drug-
degrading enzymes, efflux pumps, and modifications of antibi-
otic targets [21]. Furthermore, S. aureus exhibits a high capacity
to acquire resistance genes through horizontal transfer, leading
to the emergence of resistant strains that pose significant chal-
lenges in treating infected patients [22].

However, various drawbacks, such as in vivo instability,
low absorption, water insolubility, and no delivery to the
target organisms, cause the failure of conventional dosage
forms combating this superbug [23]. Therefore, developing
nano-based drug delivery systems as an emerging and alter-
native pathway seems necessary for conquering therapeutic
difficulty accompanied by S. aureus infections [24].

Vesicular drug delivery systems are composed of one or
more concentric bilayer membranes that were first discovered
by a British scientist in 1961 [25, 26]. The bilayer structure of
these systems is formed by the self-assembly of amphiphilic
molecules in an aqueous medium,; thus, they can be utilized to
incorporation of materials with a wide range of solubility [27].
Also, vesicular systems are gaining traction among researchers
for several other advantages, including biocompatibility, flexibil-
ity of membrane components, simple formulation, biodegrad-
ability, and surface modification [28]. Numerous lipid-base
vesicular systems have been prepared as novel formulation
approaches to eradicating infectious diseases. Liposomes are
the oldest type of lipoparticles that afford successful outcomes
when transferring conventional medicine [29]. Also, the lipo-
somal vesicular system could present several profits in delivering
therapeutic agents for bacterial complications, including
S. aureus infections [30]. However, due to some drawbacks of
liposomes, like high cost, requirement of special methods for
storage, and short half-life, scientist interest shifted toward other
vesicular nanoparticles like niosomes [31, 32].
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Niosomes are vesicular delivery systems, and since there is
a nonionic surfactant in the component, they are called by this
name. Alkyl glyceryl ethers, alkyl ethers, polyoxyethylene fatty
acid esters, and sorbitan fatty acid esters are among these non-
ionic surfactants, which are used in niosomal formulations and
can provide favorable properties for them [33]. The electrical
neutrality of these amphiphilic molecules causes more compat-
ibility and stability in niosomes, which can improve their phar-
maceutical behavior. Also, enhanced permeability, negligible
toxicity, biodegradability, and nonimmunogenicity are among
the niosomal advantages resulting from the participation of
nonionic surfactants in its composition [34, 35]. Cholesterol,
an important membrane additive, could be included in the
niosomal formulation because it positively affects entrapment
efficiency, leakage, permeability, and rigidity [36]. The salient
properties of niosomes in drug delivery are not limited to the
items mentioned, and others include no special storage condi-
tions, simple handling, osmotically active, structure flexibility,
and high loading capacity [37]. Also, niosomal nanoparticles
have great potential to encapsulate both hydrophobic and
water-soluble drugs because of their vesicular structure. The
lipid bilayers of these lipoparticles surround an aqueous core,
which is suitable for hydrophilic compounds. While, the lipo-
philic layer allows the possibility of transporting hydrophobic
compounds [32, 38]. However, niosomal applications in drug
delivery systems can be limited due to some disadvantages such
as aggregation, leakage of the entrapped drug, and time-
consuming preparation [39, 40]. The practical solutions to
deal with these drawbacks include combination the proper
proportion of ingredients (nonionic surfactants, cholesterol,
charge inducer molecules, and hydration medium), alteration
in the composition of loaded materials, and modification of
preparation methods, which have a significant role in the effi-
ciency of niosomes [31, 38, 41].

According to the numerous benefits, niosomal vesicular
systems can be effective nanocarriers for pharmaceutical
purposes, especially bacterial infections that could entail
desirable consequences [42]. Numerous studies have demon-
strated the tremendous potential of niosomal-based plat-
forms as effective antimicrobial agents against various
Gram-positive and Gram-negative bacteria and other patho-
gens. In this regard, the antibacterial activities of different
niosomal formulations against Gram-positive bacteria,
including S. aureus, Staphylococcus epidermidis, and Bacillus
subtilis, were investigated, and the potential of niosomes as
an effective antimicrobial delivery system was approved
[43-45]. Also, in different studies, the efficacy of niosomal
systems against Gram-negative bacteria such as Escherichia
coli, Serratia marcescens, Pseudomonas aeruginosa, Acineto-
bacter baumannii, and Klebsiella pneumoniae was evaluated
[44, 46, 47]. The results of these experiments indicate that
niosomal platforms hold promise in preventing and eradi-
cating serious infections associated with these microorgan-
isms [38, 48]. Furthermore, diverse niosomal formulations
have been successfully employed to deliver various com-
pounds and their antibacterial effects have been proven
[38]. In this review, we will discuss different aspects of
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FIGURE 1: Mechanism of targeting bacterial biofilms by niosomes.

niosome usage for eradicating S. aureus and the management of
related infections. Also, the superiority of niosomal-based deliv-
ery systems over conventional approaches will be emphasized.

2. Niosomes Delivery System against
S. aureus Infections

2.1. Biofilm-Related Infections. S. aureus is widely recognized
as a significant clinical pathogen due to its remarkable ability
to form biofilms on both biotic and abiotic surfaces [12]. A
biofilm is described as an aggregation of living bacteria in the
surrounding extracellular polymeric substances (EPS) [49],
which leads to bacterial survival in unfavorable conditions,
such as excessive antimicrobial agents [50]. EPS plays a cru-
cial role in biofilm formation and stability that its contribu-
tion to the development of antibiotic resistance is well
known. EPS is a complex mixture of polysaccharides, pro-
teins, lipids, and DNA that protects bacterial cells from envi-
ronmental stresses by providing structural support [51].
Moreover, EPS can reduce the effective concentration of
antimicrobial agents by preventing their diffusion into the
biofilm structure, which can lead to the emergence of persis-
tent infections. EPS can also act as a shield against host
immunity responses that mediate bacterial resistance to
immune clearance [52]. On the other hand, biofilms provide
optimal conditions for the exchange of genetic material
through horizontal gene transfer, leading to the acquisition
of antibiotic resistance genes among the bacterial population
[53]. Therefore, biofilm formation has undeniable role in the
emergence of MDR S. aureus strains causing complicated
infections that finding the effective treatment approaches
against them is still challenging [12, 54].

Niosome nanoparticles can disrupt bacterial biofilm due
to the facilitation of their penetration into the biofilm barrier.
Indeed, niosomes interact with the cell wall of embedded
bacteria, causing the accumulation of adequate drugs inside
the cytoplasmic membrane. The mechanism of niosome—cell
wall interaction is mediated by contact release, leading to the
diffusion of niosome contents into intracellular space by
creating a concentration gradient [55]. Also, the persistent
drug accessibility in the biofilm matrix causes the efficient
killing of biofilm-forming bacteria and eradication of exist-
ing biofilms, which could be provided through a sustained
release profile of the niosomes (Figure 1) [38].

In addition, niosomal physicochemical properties
including size, electrostatic surface charge, lipid composition,
and bilayer rigidity/fluidity can affect the antibiofilm poten-
tial of encapsulated drugs [56, 57]. Several studies on the
biofilm inhibitory and/or eradicating activity of different
niosome-based platforms were investigated, and it was also
suggested that niosomes could be an efficient drug delivery
system for targeting bacterial biofilms. In this regard, a study
found that minimal biofilm inhibitory/eradication concen-
trations (MBIC/MBEC) of S. aureus strains were more
decreased by a lower concentration of niosomal vancomycin
than the free drug [58]. Also, in another investigation, the
significant antibiofilm activity of amoxicillin-loaded nio-
somes against S. aureus strains was proven, where niosomal
formulations more reduced in colony-forming unit (CFU)
counts of biofilm-forming bacteria at the same concentration
of free drug [59]. The confirmatory study evaluated the anti-
biofilm effects of cefazolin-containing noisomes against
S. aureus and MRSA isolates. The findings of this study
demonstrated that encapsulated drugs can eliminate 1-, 3-,



and 5-day-old biofilm at lower concentrations than free anti-
biotics. In addition, drug-loaded niosomes reduced the bio-
mass of formed biofilms and also dramatically decreased the
MBEC value of tested isolates [60]. Furthermore, the effect of
ciprofloxacin-loaded niosomes on biofilm destruction was
confirmed by scanning electron microscope images, and it
became clear that the density of the formed biofilms had
significantly been decreased by niosomal antibiotic com-
pared to that formed in treated culture with free antibiotic
or untreated culture [61]. Additionally, an in vivo study
showed that the antibiofilm activities of conventional drug
could be improved by incorporating into niosomal systems.
In this study, the antibiofilm potential of niosomal formula-
tion against MRSA was proven, where cefazolin-containing
niosome had an effective therapeutic role on chronic infected
wounds by reducing CFU counts of biofilm-forming bacteria
[60]. It is also reported that the ciprofloxacin encapsulated
niosomes can be effective on the biofilm genotypic profile
and inhibit biofilm formation via downregulating the expres-
sion of the biofilm-related genes [62].

The results of the study indicated that the attachment of
S. aureus strains to bone plates was significantly suppressed
through covering with niosomal drug. Thus, abiotic surface
coating with vancomycin-loaded niosomes could prevent
biofilm formation and also contribute to controlling
biofilm-related infections. Also, regarding the noncytotoxic
effects of the prepared formulation on normal human cells,
niosome nanovesicles could be developed for further bio-
medical applications [63].

Opverall, the authors of the reviewed studies presented
niosomes as an appropriate carrier for antibiofilm agents
that could treat conundrum infections caused by biofilm-
forming S. aureus isolates. Also, surface modifications could
increase the antibiofilm potential of niosomes, which could
be provided through altered niosomal composition or PEGy-
latation (polyethylene glycol). In this regard, the results of a
study showed that preparation of norfloxacin niosomes with
cationic agents could more efficiently decrease the biofilm
formation due to further electrostatic attraction between
positively charged niosomes and negatively charged biofilm
[64]. Moreover, a study revealed that niosomal surface mod-
ification through PEGylatation (PEG-niosomes achieved a
more positive charge on the surface) could enhance the anti-
biofilm activity of vancomycin-loaded niosomes against
MRSA [65]. However, further research must be conducted
to investigate the exact mechanism of niosome vesicular sys-
tems on biofilm and the effect of surface modifications on the
antibiofilm activity of niosomes.

2.2. Ocular Infections. S. aureus is a common human colo-
nizer and increases the risk for eye-associated infections,
which causes this microorganism to become one of the pri-
mary ocular pathogens [66]. The review of the published
studies shows that the high prevalence of antibiotic resis-
tance among the S. aureus strains causing eye infections is
an ongoing challenge in ophthalmology [67]. Topical ocular
drug delivery is a favorable route to the eye due to several
advantages, such as noninvasive, painless, simple utilization,
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and decreased adverse effects resulting in improved patient
compliance. However, this type of medication transfer has
left ophthalmologists facing several limitations, including
tearing production, a short residency time, and less perme-
ability across ocular tissues. Furthermore, the physicochem-
ical properties of conventional therapeutic agents could
cause their inefficiency in treating drug-resistant ocular
infections [68].

Nanocarrier systems could improve topical drug delivery
for the effective transfer of antibacterial drugs into ocular
tissues, and in several studies, niosome-based platforms
have been used for this purpose. In this regard, Khalil et al.
[69] reported that the antibacterial efficacy of a conventional
antibiotic significantly increased when loaded into a nioso-
mal dispersion. Also, niosomal formulation had a remark-
able therapeutic impact on S. aureus conjunctivitis compared
to the commercial product (Orchacin®). Moreover, the phys-
ical stability and sustained drug release of formulated nio-
somes were approved [69]. In another investigation, a
niosomal antibiotic formulation was synthesized for oph-
thalmic administration. It was proven that niosomes have
more antibacterial activity compared to commercial formu-
lation. According to the ocular irritancy and histopathology
tests, synthesized niosomes could be endured by the ocular
tissue and have great potential to serve as a safe treatment for
bacterial conjunctivitis [70]. Moreover, niosomes, through
improved ocular drug bioavailability, could be appropriate
nanocarriers for overcoming ocular infections caused by
resistant S. aureus isolates [71].

Chitosan is a linear polysaccharide derived from chitin
and is a favorable material for niosome-based hybrid systems
due to its unique biological properties, such as nontoxicity,
biocompatibility, and biodegradability [72]. In another
study, niosomal drugs were incorporated into chitosan,
and a bioadhesive system for ocular drug delivery was per-
formed. The results of the ex vivo study exhibited that
chitosan-embedded niosomes could enhance drug perme-
ation into corneal tissue through slow and sustained drug
release. In addition, the dramatic antimicrobial efficacy of
this hybrid system, especially against S. aureus, was con-
firmed [73]. Also, in another study, encapsulated niosomes
were encrusted with cationic chitosan for bioavailability
improvement of antibiotics at the ophthalmic site, and the
result of microbiological susceptibility tests revealed signifi-
cantly higher anti-S. aureus activity of the synthesized for-
mulation in comparison to Zenox™ (commercial eye drop).
Opverall, chitosan-coated niosomes exhibit enhanced interac-
tion with bacteria due to increased surface electrical charge,
making them a promising candidate for effectively treating
bacterial conjunctivitis [74].

In situ gelling systems are favorable approaches to
enhancing the therapeutic efficacy of conventional ophthal-
mic medications by improving the precorneal availability of
the drug. The mechanism of these systems is an immediate
sol-gel transition, which depends on different stimuli,
including pH change, temperature alteration, and solvent
exchange [75]. In this regard, vancomycin entrapped in nio-
somes was integrated into a pH-triggered forming gel system
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for ophthalmic application. The physicochemical stability, rheo-
logical properties, and biocompatibility of niosomal gel were
approved. Also, the anti-MRSA activity of the prepared gelling
system suggested that niosomal gel could significantly treat bac-
terial eye infections by enhancing the ocular retention of the drug
[76]. Another study proposed the temperature-dependent gel-
ling system containing antibiotic-loaded niosomes for ophthal-
mic drug delivery. Also, niosomal gels could develop as a
thermoresponsive in situ gel for ophthalmic delivery since their
outstanding features include physical stability, pseudoplastic
flow behavior, facilitating gel formation, and prolonged precor-
neal residence time. Therefore, niosome in situ gelling systems
hold great promise for ophthalmic purposes and can potentially
serve as a viable alternative to conventional treatments [77].

2.3. Skin Infections. S. aureus is known as commensal skin
bacterium that causes widespread bacterial skin and soft tis-
sue infections in humans [78]. This bacterium is among the
predominant pathogens that colonize burn wounds and
cause chronic and life-threatening infections, particularly
in immunocompromised patients [79]. Moreover, the rapid
emergence of antibiotic resistance is occurring among
S. aureus strains, which hamper the treatment of burn infec-
tions caused by this pathogen [80]. Additionally, impaired
microcirculation in burn patients inhibits the distribution of
systemic drugs into injured skin; this issue emphasizes the
undeniable role of topical drug delivery in management of
burn wound infections [81]. However, limited penetration to
skin layers challenges the topical drug administration, and
nano-based transdermal drug delivery could be a novel and
high-potency systems for successfully controlling skin infec-
tions [82].

Niosome-based gel systems could facilitate the transder-
mal delivery of drugs and enhance the performance of anti-
biotics for treating burn wound infections. In this regard, a
study showed that niosomal gel improved the permeation
behavior of encapsulated drugs while providing controlled
therapeutic activity and prolonged residence time. Also, pre-
pared niosomal gel had better rheological characterization,
physical stability, and antimicrobial effectiveness (against
S. aureus) in contrast to conventional gel formulation.
Therefore, the niosomal gelling system can be a powerful
transdermal nanocarrier and may provide a new perspective
for treating bacterial skin, particularly burn infections [83].

Silver sulfadiazine (SSD), a broad bactericidal agent com-
monly used for topical administration in burn wounds, can
improve healing and re-epithelialize damaged skin. How-
ever, the administration of SSD causes many problems in
treating burn patients due to several drawbacks of the con-
ventional dosage form, such as poor aqueous solubility, not
being biodegradable, and frequent dressing changes [84].
The niosomal gel system could accelerate wound healing
by improving the release profile of SSD. Accordingly, in
the study by Dharashivkar et al. [85], the SSD niosomal gel
was considered for topical delivery and treatment of burn
wounds. In this study, the microbiological analysis demon-
strated more anti-S. aureus activity of niosomal SSD com-
pared to the marketed dosage form. Moreover, an animal

study showed that niosomal gel could enhance the angiogen-
esis and re-epithelialization of injured skin and could be
introduced as an alternative strategy in transdermal drug
delivery [85]. Also, due to the spreadability property of nio-
somal gel, this system could develop into a favorable wound-
healing agent in patients [86].

As mentioned, chitosan polymer could be an ideal can-
didate for a niosomal hybrid delivery system. Chitosan gel-
embedded niosomes were presented as an antimicrobial
hybrid system for local antibiotic delivery in burn infections
[87]. Also, the bioadhesive property of chitosan is an impor-
tant factor in wound dressing because it causes extended
retention and better absorption of the drug at the site of
application. Thus, incorporating niosomal drug into a chit-
osan polymer improves the pharmacokinetic profile of the
encapsulated drug and can be an appropriate solution for
topical therapy in bacterial wound infections, especially
S. aureus [88].

Povidone-iodine (PVP-I) is an antiseptic agent used for
topical wound dressing, which brings several problems,
including uncontrolled release from skin bandages. It has
been shown that encapsulation of PVP-I into niosomal car-
riers could be a suitable option for topical drug delivery by
providing a better drug sustained release profile. Moreover,
the anti-S. aureus potential of niosomal PVP-I offers a novel
and promising for eradicating skin infections caused by
antiseptic-resistant S. aureus isolates [89].

2.4. Intracellular Infections. Intracellular infections present a
significant challenge for healthcare settings that are faced
with the increasing occurrence of resistance to antibacterial
agents [90]. As a facultative intracellular pathogen, S. aureus
can invade immune cells and live there with the help of
various virulence factors. Bacterial cleaning is a big trouble
for the host immune system due to S. aureus preventing the
combination of phagosome and lysosome [91]. Also, the
intracellular survival of S. aureus in the immune cell niche
is associated with persistent and relapsing infections that
cause resistance to immune cell responses and antimicrobial
agents [92]. Due to short time retention and also limited
penetration in the subcellular space, conventional antibiotic
therapy may lead to failure against intracellular infections
[93]. It is proven that vesicular drug delivery systems
improve the subcellular distribution of antimicrobial agents.
Indeed, this system would facilitate the uptake by activated
tissue macrophages through increasing the accumulating
drug concentrations in infected sites [94]. Therefore, the
nanovesicles could be appropriate for intracellular delivery
by increasing drug distribution into infected cells. In this
regard, in the study by Akbari et al. [95], the intracellular
activity of niosomal drug against macrophages infected with
S. aureus was assessed. Scanning electron microscopy
showed that the drug-containing niosomes was tightly
attached to the macrophage cell membrane and facilitated
phagocytosis of the drug into the infected cells. In addition,
the images of fluorescence microscopy showed that the num-
ber of engulfed drugs in niosomal form was much higher
than the free form. Also, the significantly prolonged
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intracellular distribution of antibiotics occurred when mac-
rophage cells were incubated with niosomal formulation.
Also, the reduction in bacterial CFUs indicates more signifi-
cant intracellular activity of the antibiotic-niosome com-
pared with the non-niosomal form. Moreover, the results
of this study suggested that a niosome-based nanosystem
could be developed as a safe strategy for recurrent latent
infections [95]. However, further research and investigation
of the mechanism of intercellular activity of niosomes are
needed to support this claim.

3. Niosomal Systems for Delivery of Different
Antibacterial Agents

Several experiments have been performed by using niosomal
systems to deliver different antibacterial agents. The encapsu-
lated materials in niosomal nanocarriers can be categorized
into chemical antibiotics and nonantibiotic antimicrobial
agents, including natural compounds, antimicrobial peptides
(AMPs), metallic nanoparticles (MNPs), and photosensitizers
(Figures 2 and 3).

3.1. Antibiotics. The niosomal vesicular system can deliver
the encapsulated antibiotics inside bacterial cells by using
bilayer fluidity and fusogenic properties, which aims to
reduce dose-dependent adverse reactions and improve anti-
biotic therapy outcomes. In Gram-positive bacteria, the
bilayer fluidity of niosomes induces intracellular drug release
through interacting with peptidoglycan barrier and creating
a concentration gradient. While the niosomes’ fusogenic
properties cause drug penetration into Gram-negative bacte-
ria through fusion with the outer cell membrane [96]. The
niosomal vesicles, apart from enabling massive drug release
into bacterial cell, can shield antibiotics from enzymatic deg-
radation and are employed as an appropriate way for dealing
with drug resistance [38].

In recent years, various niosomal formulations for different
pharmaceutical purposes, particularly antibacterial drug deliv-
ery, have been prepared by researchers. Also, the niosomes
have been used as favorable nanocarriers for encapsulating
different antibiotic classes, including f-lactams, fluoroquino-
lones, cephalosporins, and glycopeptides. In Table 1, all antibi-
otic classes loaded in the niosomal vesicular system are
presented, and following, we will explain some classes that
are taken for S. aureus infections.

3.1.1. p-Lactams. Amoxicillin, known as semisynthetic peni-
cillin, has been among the most extensively prescribed to f-
lactam antibiotics since the 1970s [109]. This antibiotic irre-
versibly binds to penicillin-binding protein and inactivates
cell wall synthesis, resulting in permeabilization and bacterial
cell lysis [110]. The prevalence of amoxicillin resistance in
S. aureus isolates is a global concern, and antibiotic incorpo-
ration in niosomal nanocapsules can be a successful thera-
peutic approach to eliminate drug-resistant infections. In
this regard, the study by Shadvar et al. [59] has been per-
formed on the loading of amoxicillin in niosome nanoparti-
cles, and their antimicrobial effects against MDR strains of
S. aureus were approved. The findings of this study indicated
that amoxicillin—niosomes remarkably decreased minimum
inhibitory concentrations (MIC) (two- to fourfold) for all
MDR and MRSA strains. The time-kill and agar well diffu-
sion assays also confirmed the antibacterial properties of the
synthesized niosomal formulation, which were proposed as
anti-MDR-S. aureus agent with negligible cytotoxicity [59].
Also, the lipid solubility of amoxicillin is a promising feature
because its bactericidal activity could be increased in nioso-
mal form by improving the bioavailability and half-life [111].

3.1.2. Fluoroquinolones. The fluoroquinolones represent an
expanded class of broad-spectrum antibacterial agents that
are effective for the prevention and treatment of a variety of
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FIGURE 3: Mechanism of photodynamic therapy based on niosomes against S. aureus infection.

Gram-positive bacteria and also S. aureus infections [112].
Change in the trans-cellular transport is one of the main resis-
tance mechanisms of S. aureus to this class of antimicrobial
agents, and increasing the bacterial uptake of antibiotics by vesic-
ular drug delivery can be a promising approach to cutting back
fluoroquinolones resistance. Accordingly, in a study, the in vitro
antibacterial activity of niosome encapsulated four fluoroquino-
lones including ciprofloxacin, gatifloxacin, levofloxacin, and nor-
floxacin, against 20 ciprofloxacin-resistant S. aureus strains
(CRSA) was determined. All fluoroquinolones-loaded niosome
reduced MIC against S. aureus (at least fourfold) and had more
significant antibacterial effects than conventional antibiotics
[99]. In addition, another study evaluated the inhibitory activity
of niosomal ciprofloxacin preparations with two formulations
against S. aureus clinical isolates. It also found that ciprofloxacin
incorporated into niosomes with optimized formulation
markedly decreased ciprofloxacin MIC (8-32-fold), and three
of 45 CRSA isolates had lost their resistance phenotype [61].
Moreover, it has been proven that niosomal formulation
decreases the MIC and sub-MIC values of ciprofloxacin against
MRSA strains while restoring the efficacy of conventional drugs
[62]. The results of these studies suggested that developing nio-
somal formulations could improve the potential of drug delivery
in the bacterial cell and that niosome nanocarriers could prevent
the rapid emergence of resistant fluoroquinolones, particularly
among MRSA strains [113].

3.1.3. Cephalosporins. Cephalosporins are a large group of
antimicrobial drugs classified into different generations,
which have been introduced for clinical administration since
1964. Cephalosporins have played a significant role in treat-
ing various bacterial complications, including skin and soft
tissue infections, community-acquired pneumonia, bacter-
emia, and meningitis [114]. However, the administration of
cephalosporins has been challenged since the increasing
emergence of resistance to p-lactam antibiotics among
S. aureus strains, resulting in a greater need to discover alter-
native antibacterial agents [115]. Also, variation in the drug

plasma level, adverse effects, and a short residence time in the
site of action are the main problems associated with conven-
tional dosage forms of cephalosporins [116]. It is also proven
that niosomes could improve drug bioaccessibility by control-
ling release profiles, thereby preventing drug-induced side
effects. Also, incomplete absorption of cephalosporins is a
key factor in developing resistance to this class of antibiotics
[117] and niosomal encapsulation could enhance the distribu-
tion of poorly absorbed drugs into target sites [118]. In addi-
tion, the ex vivo study revealed that the niosomal formulation
has a high potential for oral administration through improved
intestinal permeation of conventional drugs [100]. Moreover,
niosomal encapsulation can be a favorable solution to shield
cephalosporins from the f-lactamase enzyme, a main and
adaptive resistance mechanism to cephalosporins in S. aureus
strains [32, 119]. Also, the antibacterial potential of cephalos-
porins was dramatically increased by incorporating these anti-
microbial drugs into niosomes and, thus, could be an ideal
nanocarrier for medicinal agents [48, 101, 120].

3.1.4. Glycopeptides. Vancomycin is a glycopeptide antibiotic
first presented in 1958, and it is administrated as a choice
drug for treatment and prophylaxis of serious infections
caused by S. aureus, particularly MRSA. Unfortunately, the
susceptibility of MRSA strains to vancomycin is decreasing,
and a review of the clinical literature indicates the high emer-
gence of VISA and VRSA among patients [121]. However,
niosome nanoparticles as a nano-based approach could have
superior anti-S. aureus activity than conventional formula-
tion. In this regard, Barakat et al. [58] showed that the pre-
sentation of vancomycin in a niosomal form causes an
eightfold reduction in MIC of MRSA isolates compared to
the free drug. Moreover, niosomes could improve the phar-
macokinetics profiles of vancomycin via extended serum
half-life and reduced concentration-dependent toxicity.
Also, niosomal delivery systems that prevent enzymatic deg-
radation could be proposed for combating vancomycin resis-
tance in S. aureus [17].
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As was already said, surface functionalized with PEGylation
could enhance the performance of niosomal drug delivery sys-
tem. Applying PEG polymeric materials to nanoformulation
structures could improve loading efficiency and decrease drug
leakage [122]. Moreover, the PEGylation could inhibit the rec-
ognition and cleaning of niosomes by the host immune system
and subsequently enhance their bioavailability. Indeed, by pre-
venting the adsorption of blood proteins on niosomes, the PEG
polymers could reduce opsonization and phagocytic uptake.
Also, nanoparticle PEGylation, as passive targeted drug delivery,
effectively enhances the antibacterial activity of niosomal sys-
tems. In this regard, the result of the study showed that PEG
niosomes have a significant in vivo antibacterial efficacy against
MRSA skin infection mouse model, compared to bare niosomes
[65]. Besides passive drug targeting, conjugation of PEGylated
nanoparticles with target ligands could provide favorable thera-
peutic indexes of drug administration in desired tissues and
could be suggested as a beneficial solution for inadequate distri-
bution of antibacterial drugs into infected sites [123].

3.2. Natural Compounds. Natural compounds are derived
from various sources, including animals, plants, and micro-
organisms, and can play significant pathological roles against
different diseases [124]. These compounds are gaining the
attention of scientists due to their numerous pharmaceutical
applications, particularly antibacterial activity [125]. Regard-
less of their high potential therapeutic effects, the biological
activity of natural compounds is limited because of weak
solubility, poor bioavailability, and instability during storage
[126]. As a result, the nanodrug delivery system has been
deemed an appropriate tool for overcoming the abovemen-
tioned drawbacks, which cause success delivery of natural
compounds in suitable doses [127]. Furthermore, finding
auxiliary, cost-effective, and potent antibacterial agents to
overcome the antibiotic resistance of the S. aureus strain is
crucial due to its high prevalence in healthcare settings and
food [128]. In this manner, researchers have formulated nio-
somes with various natural compounds, effectively enhanc-
ing their anti-S. aureus activities. All advances in the
formulations of niosomal nanocarriers for encapsulating nat-
ural compounds are summarized in Table 2.

3.2.1. Essential Oils. Essential oils are natural hydrophobic
liquids composed of various chemical classes, including phe-
nols, aldehydes, alcohols, ketones, and esters [138], which
have detrimental effects on a wide range of bacteria. Due
to the hydrophobic matter, the essential oils could merge
with the cytoplasmic membrane, resulting in leakage of cel-
lular contents and bacterial death [139]. However, these
compounds are volatile and highly unstable [140], and in
combination with niosomal nanocapsules, the stability of
essential oils could be increased through gradual release.
Moreover, it has been found that essential oil-loaded nio-
somes may be suitable for wound disinfection applications
due to their anti-S. aureus efficacy, good intracellular trans-
fection, and lower cytotoxicity for human skin fibroblasts
[129]. In another study, the topical gel was prepared with
encapsulation of tea tree oil into vesicular systems (niosome
and liposome), and also the homogeneity, spreadability, and
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antibacterial efficacy against S. aureus were approved [130].
Moreover, lippia citriodora oil-loaded niosomes with anti-
S. aureus and antioxidant activities have a high potential for
food industry application as a natural preservative. There-
fore, niosomal encapsulation of bioactive compounds could
be a novel approach for controlling S. aureus food-borne
outbreaks [131].

3.2.2. Propolis. As a sticky compound, honeybee propolis has
strong and broad-spectrum antibacterial activities through
different mechanisms, including increasing cell membrane
permeability, disrupting cytoplasmic membrane potential,
inhibiting protein synthesis, and interfering with bacterial
cell division [141]. Also, the highly potent antimicrobial abil-
ity of propolis is associated with diversity in its chemical
composition, which mainly comprises flavonoids (e.g., api-
genin), phenolic (e.g., artepillin C), and aromatic acids (e.g.,
ferulic acid). Moreover, artepillin C shows high antibacterial
effects against MRSA, and the synergistic anti-MRSA activity
of apigenin with #-lactam antibiotics was also proven [125].
Nevertheless, the low physical stability and sticky resinous
nature of propolis pose several challenges in its application.
In this context, a niosomal-based system could play a valu-
able role in the development of propolis processing. Notably,
the antimicrobial potential of propolis was significantly
improved through its formulation into niosomal gel, which
could be an ideal candidate for bacterial and fungal wound
dressing [134].

3.2.3. Curcumin. Curcumin (Curc) is a polyphenolic herbal
compound that has displayed antibacterial activity by inhi-
biting biofilm formation and virulence factor production
[142]. The reports indicate that nanoparticulate drug deliv-
ery systems have effective role in improving the therapeutic
properties of curcumin, especially its antibacterial ability
[143, 144]. In this regard, it was shown that Curc niosome
gel had increased inhibitory effects on S. aureus in contrast to
free Curc (ethanol solution). Also, the synergistic antibacte-
rial activity between Curc and gentamicin was approved
when simultaneously incorporated in niosomes. Moreover,
a thermoresponsive in situ gel system based on niosomal
Curc was proposed as a favorable platform for intravesical
instillation due to its excellent properties, including short
gelation time, good rheological behavior, gel erosion kinetics,
and sustained release profile [104]. However, in the study,
Curc (with/without Rose Bengal)-loaded niosome nanopar-
ticles did not show any antibacterial effect on S. aureus which
may be due to the low concentration of Curc loaded into
nanoformulation or antagonistic effects between loaded
drugs [145].

3.2.4. Mangosteen. Mangosteen extract (ME) is derived from a
tropical plant (Garcinia mangostana) which contains outstand-
ing medicinal benefits such as anti-inflammatory, antioxidant,
and antibacterial properties [146]. The phytochemical com-
pounds contained in ME affect Gram-positive bacteria by inhi-
biting peptidoglycan synthesis [147]. The results of study
conducted by Pooprommin et al. [45] showed that incorporating
niosomal ME into a hydrogel scaffold provided consistent
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growth inhibition of S. aureus and S. epidermidis. Furthermore,
synthesized niosomal platforms can be considered for wound
healing applications due to their hemocompatibility, no skin
irritation, and biocompatibility [45].

3.3. Antimicrobial Peptides. AMPs are cationic amphiphilic
molecules with 10-50 amino acid residues. These peptides
have high antimicrobial capacity against broad-spectrum infec-
tious bacteria via different mechanisms such as membrane
permeabilization, inhibition of cell wall formation, and disrup-
tion of intracellular processes. Lipid-based delivery systems are
attractive for transporting AMPs and their protection from
proteolytic degradation [148]. However, cholesterol in lipo-
somal membranes might have a detrimental effect on AMPs
encapsulation [149], and results in the study suggested that
niosomes could be more suitable carriers for AMPs than lipo-
somes due to better encapsulation efficiency. Also, the high
stability and cost-effectiveness of niosomes offer an alternative
approach for incorporating AMPs in nanostructured materials
[150]. In the study, the in vitro inhibitory effects of melittin-
loaded niosomes against MRSA and VISA were found, and it is
demonstrated that S. aureus skin infection is limited after
administration of melittin nanoniosomes [151]. In another
study, the niosomal gels with a-/f-defensin significantly treated
MRSA-infected wounds, and the high ability of niosomes for
effective delivery of AMPs was approved [152]. The niosomal
gel could increase the transdermal absorption of AMPs
through their protection against chemical and thermal degra-
dation [153]. Also, in separate studies, the anti-S. aureus activ-
ity of niosomes-encapsulated nisin and lysostaphin was found
that could be effective strategies for treating infectious diseases
[150, 154].

3.4. Metallic Nanoparticles. Recently, MNPs have been gain-
ing popularity for their strong antibacterial activity. The pos-
sible antibacterial mechanisms of action of MNPs include
disruption of enzymes in the respiratory chain, excessive
generation of reactive oxygen and nitrogen mediators, and
disruption in metabolic activities, protein synthesis, and
repair systems [155]. Also, these nanoparticles have been
highlighted as potential strategies to treat MDR infections
due to the low risk of bacterial resistance to MNPs [156].
However, cytotoxicity, nonbiodegradability, and low bio-
availability are major challenges in the development and
clinical application of MNPs. Combining MNPs with vesic-
ular vehicles, including niosomes, could be a favorable
approach to tackling MNPs drawbacks [157]. In this regard,
the study demonstrated that the antibacterial effect of MNPs
against S. aureus was significantly enhanced when synthe-
sized MNPs were loaded into niosome nanoparticles. Also,
the strong antibiofilm activity of MNPs in niosomal form
was approved that niosome-loaded MNPs reduced the
expression level of biofilm-forming genes compared to free
MNPs [158]. Moreover, in another study, Curc and MNPs
simultaneously incorporated into niosomal system that syn-
thesized hybrid system had more antibiofilm and antibacte-
rial effects against S. aureus in contrast to non-niosomal
forms [136]. Furthermore, it is shown that the chitosan com-
posites based on niosomes and MNPs were highly effective
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against Gram-positive and -negative pathogenic bacteria,
particularly S. aureus, and the synthesized niosomal compos-
ite had wound-healing properties [159]. Thus, the coformu-
lation of MNPs into niosomes could be developed in clinical
nanomedicine, and this hybrid delivery system could be
highlighted to eradicate MDR infections.

3.5. Photodynamic Therapy. Photodynamic therapy (PDT) is
an efficient approach for treating microbial infections with
widespread antibiotic resistance. PDT consists of light-
absorbing molecules known as photosensitizers (PS), which
can eliminate pathogens by generating reactive oxygen spe-
cies. Lacking induction of resistance is a promising advan-
tage of PTD that could be used to avoid the emergence of
MDR pathogens [160]. However, the development of PTD
may be hindered by the hydrophobic matter of many PSs,
whereas lipid-based nanoparticles as a prominent PS delivery
system could resolve the mentioned drawback [161]. It has
also been proved that niosomal incorporation could enhance
the antimicrobial photobiological activities of PSs by
improving their poor water solubility [162], and niosomes
could be proposed as promising nanocarriers for the clinical
development of PDT (Figure 3).

4. Conclusion

S. aureus, being a dangerous human pathogen, is responsible
for causing a wide range of diseases, posing numerous con-
cerns for healthcare systems. The spread and dissemination of
MRSA and VRSA strains, as highly virulent pathogens, are
increasing worldwide that present significant challenges in
medical settings. Due to the lack of effectiveness of the con-
ventional treatments against MDR S. aureus isolates, it is
urgently necessary to discover an alternative therapeutic solu-
tion for controlling infections caused by them. The niosomal
drug delivery system can be developed as an effective strategy
for reducing the problems related to antimicrobial resistance
in S. aureus. The acceptable stability, cost-effectiveness, sim-
ple handling, and biodegradability are among the excellent
features of these nanoparticles that significantly improve the
therapeutic indices of loaded contents. Moreover, niosomes
can be targeted to enhance the accumulation of drugs in the
biofilm environment, thereby eradicating persistent infec-
tions. In addition, niosomes can prevent the induction of
resistance in S. aureus strains by controlling the release of
drugs and inhibiting their enzymatic degradation, which
can be a helpful approach in managing S. aureus outbreaks.
Niosomes, with their high encapsulating capacity, offer a
powerful platform for delivering both synthetic and natural-
based drugs, thereby enhancing their pharmacokinetic prop-
erties, antimicrobial activity, and clinical efficacy. Also, the
niosome-based vesicular systems have performed well in ocu-
lar delivery, and applying niosomal gelling systems could
prove to be a novel therapeutic approach against complicated
ocular infections associated with MDR S. aureus strains. Fur-
thermore, the topical niosomal system could be beneficial for
treating S. aureus skin infections, and chitosan-coated nio-
somes as a hybrid delivery system can be applied for wound
healing. Moreover, optimization and surface modification of
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niosomal formulations could improve the ability of this deliv-
ery system for bacterial targeting. Generally, according to our
findings, niosomes would be a successful drug delivery system
for different biomedical applications, particularly in eradicat-
ing serious resistant infections caused by S. aureus.
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