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The design and development of a new kind of cost-effective electrode material with excellent selectivity and stability are still a great
challenge in the field of electrochemical sensors. Recently, researchers have paid more attention to the electrochemical reduction of
nitro compounds due to their hazardous nature. Nitro compounds play a vital role in various industrial applications. However, the
direct discharge of nitro compounds to the environment as industrial wastewater is harmful. In this study, a nanocomposite made
of 1D graphene nanoribbons decorated with manganese dioxide (GNR-MnO2) was prepared to fabricate an electrochemical
transducer for the determination of nitrofurantoin (NFT) in biofluids. First, 1D GNR was prepared by unzipping of multiwalled
carbon nanotubes. Second, the GNR was decorated with MnO2 by the hydrothermal reduction method. As-prepared GNR-MnO2

nanocomposite was comprehensively characterized by field emission scanning electron microscopy with EDX, XRD, UV–visible,
electrochemical impedance spectroscopy, and cyclic voltammetry. Moreover, GNR-MnO2-coated glassy carbon electrode (GCE)
exhibited good electrocatalytic activity toward NFT. The electroreduction of NFT was found at −0.40V which was 50mV lower
than bare GCE. GNR-MnO2 nanocomposite modified GCE showed a well-defined linear reduction peak current for NFT from
10 nM to 1,000 µM. The selectivity of the sensor was also analyzed in the presence of other nitro compounds which confirmed that
NFT can be selectively detected at −0.4V. The GNR-MnO2 modified electrode was also able to separate reduction peaks of other
nitro compounds. In addition, the detection of NFT was carried out in human urine samples with a good recovery of
99.60%–98.60%.

1. Introduction

Synthesis of high-performance catalytic material for the
development of compact sensors is on demand. The modern

sensor technology has offered many ways to use chemical
and biosensors effectively to analyze the environmental,
medical, and food samples [1]. The usage of toxic metals,
highly poisonous nitro compounds, corrosive acids, and dyes
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could cause serious soil and water contaminations. Some-
how, these toxic substances have been used in various indus-
trial process, consumer products, and pharmaceuticals (nitro
compounds used as drugs). Apart from those, nitroaromatic
compounds have been used in the chemical industry, and
also in the preparation of explosives, pesticides, dyes, phar-
maceutical products, etc. The nitro functional group plays a
major role in the chemical and biological activities of nitro-
substituted compounds [2]. Due to the strong electronega-
tivity of nitro group, they are harmful to the environment. If
the nitro compounds are directly discharged into the water
bodies, they can pollute the water and cause carcinogenesis
in the human body upon high exposure [3]. Nitrofurantoin
(NFT), an antimicrobial drug, is active against the Gram-
positive and Gram-negative microbes [4, 5]. Basically, NFT
belongs to the family of nitrofuran and it has been used as a
medicine for the treatment of coccidiosis and the patients
suffering from the deficiency of glucose-6-phosphate [6].
Despite that NFT has excellent antimicrobial activity, still
it lacks of metabolic toxicity. The toxicity effect arises from
the reduction of nitro group into hydroxylamine and nitroso
derivatives by the anionic radical mechanism which helps for
the reduction of nitro group. After consumption of NFT as
an antimicrobial drug, it gets metabolized in the human
body. As a result, 25%–30% of NFT is excreted as in the
original form and about 1%–2% excretes through urine as
aminofurantoin [7, 8]. Moreover, the reduction process of
NFT (nitro group) has the versatile ability to produce the
reactive oxygen species. So, the direct discharge of NFT into
the ecosystem could be harmful to the environment [9] Thus,
it is necessary to monitor the level of NFT concentration in
the environmental, biological, and pharmaceutical samples
to avoid the harmful effect of NFT [10]. Normally, determina-
tion of NFT was carried out by spectrophotometry [11], high-
performance liquid chromatography [12], and fluorescence
method [13]. These methods have some limitations such as
the requirement of pretreatment of samples, time-consuming
process, skilled technical persons, and high cost [13]. Recently,
electrochemical sensors have been used for the accurate quan-
tificationofNFT in environmental sampleswithhigh sensitivity
and selectivity. In the electrochemical sensors, the electrocata-
lytic materials play a vital role because of their high surface-to-
volume ratio and catalytic activity which helped to achieve high
selectivity and sensitivity against the particular analyte in the
samples [14]. The nanomaterials were classified as 0D (quan-
tum dots) [15, 16], 1D (carbon nanotube, nanorod, and nano-
wire) [17, 18], 2D (graphene, MXene, MoS2, etc.) [19–21], and
3D (nanoparticles with different morphology) [22, 23]. These
nanomaterials exhibited unique properties and showed higher
electrocatalytic activity in the determination of various analytes
[24]. Recently, NFT determination was reported using the gra-
phene oxide/Fe3O4 nanorods composite-based sensor and used
to determine NFT from 0.005 to 100μM. This sensor was used
to quantify NFT in the pig liver sample [25]. The electrochemi-
cal determination of NFT was also studied by barium stannate
[26], 3D flower nickel oxide boron doped carbon nitride nano-
composite [27], NiFe anchored functionalized multiwalled

carbon nanotube (MWCNT) [4], and MgFe2O4 nanoparticles
[28] based sensors.

Moreover, due to their high electrical conductivity,
mechanical properties, hydrophilicity, low cost and biocom-
patibility, 1D and 2D materials, and their nanocomposite
have been used to prepare electrochemical sensors, for exam-
ples, graphene [29], boron nitride [30], MXene [31], and gra-
phene nanoribbons (GNRs). GNR is a 1D material which has
been used in the development of battery, supercapacitor, and
sensors [32]. Recently, theGNR/Co3O4 nanocomposite-based
sensor was prepared for the selective detection of H2O2 [33]
and also oxidized GNR showed a good charging capacity of
1,400mAhr/g in lithium-ion storage [34]. GNR-based sen-
sors were also used to determine epinephrine [32] and nitro-
gen dioxide [35]. It was found that hybrid material made of
GNR and manganese oxide (MnO2) showed high electroca-
talytic activity compared to individual materials.

Herein, for the first time, we demonstrated the applica-
tion of GNR/MnO2 nanocomposite modified electrode to
selectively determine NFT concentration by the electrochemi-
cal reduction process. The GNR/MnO2 nanocomposite was
comprehensively characterized by UV–visible spectroscopy
(UV–vis), field emission scanning electron microscopy (FE-
SEM), energy dispersive X-ray spectroscopy (EDX) and X-ray
diffraction (XRD) analysis. Moreover, the GNR/MnO2 com-
posite modified electrode was prepared and its electrochemical
properties were evaluated against NFT by cyclic voltammetry
(CV). GNR/MnO2 was also used for the selective determina-
tion of NFT from 10nM to 1,000 µM. Finally, selective detec-
tion of NFT in human urine sample was demonstrated using a
GNR/MnO2 nanocomposite modified electrode. The effect of
various interference on the sensor response was also tested in
the presence of a few nitro compounds to investigate the selec-
tivity of the sensor.

2. Experimental

Manganese chloride, NFT, sodium acetate,MWCNTs, sodium
hydroxide, and ascorbic acid were purchased from Sigma-
Aldrich, India. Sulphuric acid, nitrophenol (NP), nitrobenzene
(NB), sodium nitrate, and potassium chloride were purchased
from Sisco Research Laboratories, India. The phosphate
buffer solution (PBS, pH= 7.4) was prepared using NaH2PO4

and Na2HPO4 for the sensing of NFT. All the solutions
were prepared using the milli-Q-water (18.2MΩ·cm @ 25
Æ 2°C).

Electrochemical studies were carried out using a three-
electrode systemwith an electrochemical workstation (Model:
CHI-760E), USA. The prepared GNR-MnO2 nanocomposite
material was confirmed by UV–vis using a 2000c nanodrop
spectrophotometer, NanoDrop Technologies, USA. All the
experiments were performed at room temperature (25Æ
0.2°C). The surface morphologies of GNR and GNR-MnO2

were examined by high resolution scanning electron micro-
scope (HR-SEM, 2100 plus electron microscope) (JEOL,
Japan).

2 Journal of Nanomaterials



2.1. Preparation of MnO2.MnO2 was prepared by hydrother-
mal method. Briefly, 4mM MnCl2 was dissolved in ethanol:
water (37 + 3mL) solution and kept for constant stirring at
600 rpm. After that, 5mM sodium acetate was added with
continuous stirring for 1 hr. Further, the reaction mixture
was transferred into 100mL steel-lined autoclave, and the
temperature was maintained at 180°C for 12hr. After the
completion of the reaction, brown precipitate was obtained.
The brown precipitate was separated by centrifugationmethod
and washed with ethanol and water. Finally, a dark brown
MnO2 powder was obtained and dried at 60°C (Scheme 1).

2.2. Preparation of GNR/MnO2 Nanocomposite. First, GNRs
were prepared as reported elsewhere [33]. From the obtained
powder, dispersion of GNRs was prepared with the concen-
tration of 1.5mg/mL. Second, the prepared GNR dispersion
(10mL)was added into the reactionmixture ofMnCl2 (4mM)/
ethanol:water/sodium acetate (5mM), as given in Section 2.1.
The same hydrothermal synthesis procedure of MnO2 was
carried out. The obtained product was washed several times
and precipitate was collected after centrifugation and drying
at 60°C [36]. Finally, the prepared GNR/MnO2 nanocompo-
site was dispersed in 10mL distilled H2O (0.5mg/mL) using a
high-frequency ultrasonicator. The same procedure was used
to prepare individual MnO2 and GNR dispersions for control
experiments.

2.3. Preparation of GNR/MnO2 Modified Electrode. The
glassy carbon electrode (GCE) was cleaned on the polishing
cloth using alumina slurry until a mirror-like surface appeared.
Five microliters of GNR or MnO2 or GNR/MnO2 dispersion

was drop casted on the polished GCE surface and dried at 50°C
for 10min. The GNR/MnO2 film modified electrode was used
for the electroreduction of NFT in PBS. All the electrochemical
studies were carried out at room temperature after purging out
dissolved oxygen from the buffer solution using nitrogen gas.
To study the interference effect, nitro compounds such as
nitrophenol, nitroaniline, nitrobenzene, and sodium nitrate
were tested on GNR-MnO2/GCE in the presence of NFT.

2.4. Preparation of Real Sample. The 30mL of urine sample
was collected from the adult (age 25). The collected urine
sample was centrifuged at 4,000 rpm for 10min and the
supernatant was collected. Then, the supernatant was diluted
at 1 : 1 ratio with distilled H2O and mixed well for 2min. It
was again centrifuged at 4,000 rpm for 10min to collect the
supernatant and analyzed by amperometry.

3. Results and Discussion

3.1. UV–Vis Analysis of GNR, MnO2, and GNR/MnO2

Nanocomposite. Scheme 1 shows the synthesis process of
GNR-MnO2 nanocomposite for the electrochemical reduction
of NFT. UV–vis spectrum of as-prepared GNR was recorded
which showed a strong absorbance band at 250 nm due to the
partially oxidized GNRs (Figure 1(a)) [37]. On the other hand,
the prepared MnO2 showed the two transition peaks at 284
and 380nm which were related to the d–d metal transition of
MnO2 nanoparticles (Figure 1(b)) [38]. In the case of GNR-
MnO2 nanocomposite, UV–vis spectrum revealed the corre-
sponding MnO2 absorbance peaks which were red shifted
from 284 to 290 and 380 to 400nm (Figure 1(c)). These
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observed red shift indicated the interactions between the GNR
and the MnO2 in the nanocomposite [31].

3.2. XRD Pattern Analysis. The GNR, MnO2, and GNR-
MnO2 nanocomposite samples were analyzed by XRD, as
shown in Figure 2. The GNR showed a diffraction peak at
25.4° corresponded to the (002) crystal plane (Figure 2(a)).
Another disorder peak was appeared at 42.8°, due to the
oxidized GNR [39]. The XRD pattern of MnO2 showed
peaks at (2θ values) 18°, 28.6°, 36.7°, 38.6°, 41.9°, 49.7°,
56.4°, 60.2°, 65.4°, 69.6°, and 72.9° corresponded to (200),
(310), (400), (211), (420), (301), (600), (521), (002), (541),
and (312) planes, as shown in Figure 2(b). The observed
diffraction angles and the planes were corresponded to the
α-MnO2 nanoparticles [40]. Finally, XRD pattern of the
GNR-MnO2 was also recorded which showed the corre-
sponding peaks of GNR-MnO2. It is worth to note that
XRD peaks of the composite sample were slightly shifted
toward a higher angle (Figure 2(c)). This observed shift
may be due to the presence of synergistic interaction between
GNR and MnO2 in nanocomposite material.

3.3. Surface Morphology Analysis. The surface morphology of
as-prepared GNR was characterized and reported by our
group [17]. It was shown that MWCNTs were unzipped
into GNRs. To study the electrocatalytic activity, MnO2

nanoparticles were prepared with the average particle sizes
of 50–70 nm (Figure 3(a)). To investigate the role of GNRs,
the synthesis of MnO2 was carried out in the presence of
GNRs by hydrothermal process. FE-SEM images of as-
prepared GNR-MnO2 nanocomposite confirmed that MnO2

nanoparticles decorated on the surface of GNR (Figure 3(b)).
In addition, the EDX spectra of MnO2 and GNR-MnO2

composite were recorded which confirmed the presence
of respective elements (Figure 3(c)). In the EDX spectrum of
GNR-MnO2 composite, elements such as Mn (64.15%), carbon
(9.67%), and oxygen (26.15%) were present, as shown in
Figure 3(d). Thus, both the FE-SEM and EDX analysis were
confirmed thatMnO2 nanoparticles successfully incorporated
on to GNRs.

3.4. Cyclic Voltammetry (CV) and Electrochemical Impedance
Spectroscopy (EIS). The electrode kinetics of the modified
electrode was studied by CV and electrochemical impedance
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FIGURE 1: UV–visible spectra of (a) GNR, (b) MnO2, and (c) GNR-MnO2 nanocomposite.
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spectroscopy (EIS) in 2mM [Fe(CN)6]
3− with 0.1M KCl at a

scan rate of 50mV s−1. The bare GCE showed a well-defined
redox peak of ferricyanide with the anodic to cathodic peak
separation (ΔEp =Epc−Epa) of 70mV. However, the GNR-
MnO2 composite modified GCE exhibited a higher peak
potential separation value (202mV) and lower peak current
than the bare GCE. It was due to the electrostatic repulsion
between the negatively charged GNR-MnO2 composite and
[Fe(CN)6]

3− (Figure 4(a)). Next, both the modified and bare
GCEs were analyzed by EIS. The equivalent circuit model was
fitted to the EIS spectrum of the GNR-MnO2/GCE (Figure 4
(b). The obtained solution resistance (Rs) and charge-transfer
resistance (Rct) values of bare GCE were 237.9 and 257.1Ω,
respectively. Similarly, the Rs and Rct of GNR/MnO2/GCE
were measured as 225.2 and 4,100Ω, respectively, in 0.1M
KCl containing 2mM [Fe(CN)6]

3−.The Rct of the GNR-
MnO2/GCE was increased up to 4,100Ω compared to bare
GCE (257Ω). Hence, it was confirmed that the surface resis-
tance of GCE was increased upon coating of GNR-MnO2

(Figure 4(b)). The effective surface areas of the electrodes
were calculated using CV in [Fe(CN)6]

3−. The active surface

area for the bare GCE and the modified electrode were 0.07
and 0.126 cm2, respectively.

3.5. Electrochemical Behavior of Modified Electrodes. For the
determination of NFT, different modified electrodes were pre-
pared and tested in 0.1M PBS. The bare GCE, MnO2/GCE,
GNR/GCE, and GNR-MnO2/GCE were used to record cyclic
voltammograms (CVs) in the potential window between
−0.8V and 1.2V in PBS. Figure 5(a) (curve i) shows CVs of
bare GCE without any peaks. However, after the modification
with 5 µL GNR dispersion, GNRs/GCE showed a higher
capacitance current than bare GCE (Figure 5(b), curve i). Fur-
thermore, GNR showed a broad redox peak centered at
0.125V (Epa∼ 0.2 and Epc∼ 0.05V). This redox peak was
observed due to the presence of quinone functional groups
on the surface of GNR which was generated during the unzip-
ping process [41, 42]. Figure 5(c) (black curve i) showed a
notable redox peak at 0.8V (Epc∼ 0.65 and Epa∼ 0.95V)
with high peak currents which were assigned to MnO2 [43].
Finally, the GNR/MnO2/GCE was used to record CVs which
exhibited redox peak of MnO2 with high peak currents due to

10 20 30 40 50 60 70

In
te

ns
ity

 (a
.u

.)

2θ (degree)

ðaÞ

10 20 30 40 50 60 70

In
te

ns
ity

 (a
.u

.)

2θ (degree)

ðbÞ

10 20 30 40 50 60 8070

In
te

ns
ity

 (a
.u

.)

2θ (degree)

ðcÞ
FIGURE 2: XRD spectra of (a) GNR, (b) MnO2, and (c) GNR-MnO2 nanocomposite.
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the higher active surface area of the composite modified elec-
trode (Figure 5(d)), black curve i). Each one of these modified
electrodes were employed in the electroanalysis of NFT.

3.6. Electrochemical Analysis of NFT. Next, CVs were recorded
in the presence of NFT on bare GCE which showed the reduc-
tion peak at −0.45V with the peak current of 1.45µA,

(Figure 5(a), red curve ii) [44]. Figure 5(b) (red curve ii) indi-
cated the CVs of NFT reduction peak on GNR/GCE at−0.38V
with the small increment in the peak current of 3.0 µA. Fol-
lowed by, theMnO2modified electrode was used to record CVs
with NFT which showed reduction peak at −0.42V with the
cathodic peak current of 2.9 µA (Figure 5(c), red curve ii).
Interestingly, theGNR-MnO2 nanocomposite-coated electrode
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showed the reduction peak of NFT at −0.40V, with the reduc-
tion of overpotential about 50mV compared to bare GCE with
the peak current of 4.5 µA. The higher reduction peak current
of NFT observed at the nanocomposite modified electrode
indicated the high electrocatalytic activity of the hybrid

material. The electrochemical reduction mechanism of NFT
is also shown in Scheme 2 [45]. Compared to other reported
methods, NFT reduction peak observed at lower potential on
GNR-MnO2/GCE (−0.40V). For examples, graphene oxide/
Fe3O4 nanorods composite showed the reduction potential of
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NFT at −0.41V [25] and the barium stannate modified sensor
showed NFT reduction peak at−0.46V [26] (Table 1). Thus, it
is confirmed that the proposed GNR-MnO2 is a good compos-
ite material to develop NFT sensor.

3.7. Effect of pH on NFT Reduction. The pH of the supporting
electrolyte on electroreduction of 10 µMNFT was studied by
CV in different pH solutions (pH 2, 4, 6, 7.4, and 8). Depend-
ing on the pH, the potential of the NFT reduction peak was
shifted. When the pH was decreased from pH8 to pH 2,
reduction peak potential was shifted from a higher negative
potential to positive potential side, as shown in Figure 6(a).
From this pH study, it was found that pH 7.4 exhibited a
lower reduction potential with a higher peak current than the
other pH solutions. The linear plot between the pH vs. the
reduction potential of NFT resulted with a slope value of
25mV/pH (Figure 6(b)). This value indicated that the elec-
trochemical reduction of NFT undergoes the equal number
of protons and electrons. For further studies, PBS with pH 7.4
was chosen as the suitable electrolyte for the analysis of NFT
in biological samples [46].

3.8. Effect of Scan Rate. CVs were recorded at different scan
rates in 0.1M PBS containing 200 µM NFT from 20 to
200mV/s. A linear plot was prepared using the scan rate
vs. cathodic peak currents, the peak currents were increased
linearly against scan rate without much change in the poten-
tial. It indicated that the MnO2 redox process followed a
surface-controlled process. The effect of scan rate was also
studied in the presence of 200 µM NFT. The linear graph
made between the square root of scan rate and NFT reduc-
tion peak current revealed that it was a diffusion-controlled
process [5].

3.9. Determination of NFT at GNR/MnO2 Modified Electrode.
Figure 7(a) shows CVs of the GNR/MnO2 modified elec-
trode in 0.1M PBS with different concentrations of NFT.
The reduction peak currents were linearly increased at the
peak potential of −0.40V with respect to concentration of
NFT from 10 nM to 1,000 µM. At the higher concentration,
the sensors response attained the steady state. The limit of
detection (LOD) for NFT was calculated using Equation (1)
as 7 nM [47]:

LOD ¼ 3:3 × standard deviation of  the blank=slope of  the calibration curve: ð1Þ

TABLE 1: The comparison of electroanalytical parameters of NFT analysis between the proposed method and other reported methods.

Sr. no. Electrocatalyst Linear range (µM) References

1
NiFe sphere anchored on multiwalled

carbon nanotube
0.1–352.4 [4]

2 Graphene/Fe3O4 nanorods 0.005–100 [25]
3 MgFe2O4 0–342.6 [28]
4 Barium stannate 0.01–42.65 [26]
5 GNR/MnO2 nanocomposite 10 nM–1,000 This work
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3.9.1. Interference Analysis. The selectivity of the GNR/MnO2

sensor toward NFT was also investigated in the presence of
other nitro compounds, such as NB, NP, and sodium nitrate.
The selectivity of GNR/MnO2/GCE was tested with 500 µM
NFT in the presence of higher concentration of 1 µM NB,
NP, and NaNO3 in 0.1M PBS (Figure 8). From CV analysis,
it was found these nitro compounds showed different reduction
potential at −0.78, which was well separated from the NFT
reduction potential found at −0.40V. The corresponding
reduction peak current of NFT was noted after the addition
of each interfering nitro compounds. The sensor response
(GNR/MnO2/GCE) against NFT reduction peak was decreased
about 13%. This observation indicated that NFT reduction
signal was not affected in the presence of other nitro com-
pounds (Figure 8). Finally, it confirmed that the GNR-

MnO2/GCE had shown good selectivity toward NFT in the
presence of other nitro compounds.

3.9.2. Reproducibility, Repeatability, and Stability of theModified
Electrode. Figure 9(a) shows the repeatability data of the
GNR/MnO2 modified electrode which was recorded in 0.1M
PBS with the addition of 10µM NFT. The same GNR/MnO2

modified electrodewas used to record the reduction peak current
of (10µM) NFT in five different samples with 0.1M PBS. The
observed data indicated that GNR/MnO2 modified sensor
retained the current response of about 99%. Furthermore, to
analyze the long-term stability of the sensor, the GNR/MnO2

modified electrode was used to detect NFT in 0.1M PBS. After
that, the GNR/MnO2 modified electrode was gently rinsed with
distilled H2O and stored at room temperature for 37hr. It was
later used tomeasure theNFT in 0.1MPBS,which indicated that
sensors’ response was stable up to 92% compared to its initial
response for the reduction peak of NFT (Figure 9(b)). Next, the
sensor fabrication procedure was repeated to prepare three
individual sensors independently (using the same GCE to
modify with GNR/MnO2). As-prepared each sensor was
used to determine NFT concentration, which showed the
relative standard deviation of 0.49%. This confirmed that
our sensor fabrication process was highly reproducible for
the fabrication of NFT sensors (Figure 9(c)).

3.9.3. Real-World Sample Analysis. We have also tested our
prepared sensor in the determination of NFT in the collected
human urine sample. CVs were recorded in 0.1M PBS with
10µM NFT before and after spiking with 100µL of urine
sample using GNR-MnO2 nanocomposite modified electrode
(Figure 10(a)). GNR-MnO2 nanocomposite modified electrode
exhibited reduction peak of NFT. However, after spiked with
urine, there is a broad peak that was observed between −0.6
and −0.8V, and no any changes were found at −0.40V (NFT
reduction peak was not increased or decreased). It indicated
the absence of NFT in the collected urine sample.
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Moreover, the amperometry (i–t curve) was performed
to find out the recovery percentage of NFT in the urine
sample after spiked with the standard (Std.) NFT solutions
on GNR-MnO2 nanocomposite modified electrode. Ini-
tially, 100 µL of prepared urine sample was added to the
0.1M PBS, then spiked with standard NFT into the solution
mixture (urine + PBS), followed by the addition of three
variable concentrations of NFT (2.5, 5, and 10 µM). The
amperogram was recorded using the GNR/MnO2 modified
electrode at the applied potential of −0.45 V. No significant
current response was observed after the addition of 100 µL
of urine. However, after the addition of NFT solutions,

sharp reduction currents were observed. Table 2 shows
the calculated NFT concentration in the human urine sam-
ple using amperometry data after the standard additions of
NFT. This shows that the spiked NFT has recovered well in
the urine sample (98.6%–99.6%). It was concluded that the
GNR/MnO2 modified electrode can be used for selective
detection of NFT in biological samples.

4. Conclusion

We prepared and tested an electrochemical sensor based on
GNR/MnO2 nanocomposite. For this purpose, GNR/MnO2
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FIGURE 9: (a) The repeatability of the GNR/MnO2 modified electrode was tested by five repeated measurements in freshly prepared 0.1M PBS
containing 10 µM NFT; (b) the long-term stability of the modified electrode during the analysis of NFT from 0 to 37 hr; (c) CVs of three
different GNR/MnO2 modified electrodes for the NFT reduction. (Inst figures of a–c show the percentage of response of the sensors during
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nanocomposite was synthesized by hydrothermal method. The
synthesized GNR/MnO2 nanocomposite was comprehensively
characterized by UV–vis, EDX, FE-SEM, and XRD. The EDX
and XRD data were successfully confirmed the formation of α-
MnO2, GNR, and the GNR-MnO2 nanocomposite. Moreover,
the prepared composite and the individual materials have been
applied to prepare electrochemical sensors which were tested
in the electroreduction of NFT. The GNR/MnO2/GCE had
reduced the overpotential of NFT reduction reaction and also
increased the peak current for NFT, compared to other
individual material modified electrodes. The GNR/MnO2

nanocomposite-based sensor showed a linear response for
NFT from 10nM to 1,000 µM. The selectivity, stability, and
repeatability of the GNR/MnO2/GCE were also investigated
which revealed that this sensor can be used for selective detec-
tion of NFT in the presence of other nitro compounds with
high reliability.
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