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Metallized cold-spray coatings were employed to make B4C/AA7075 and aluminum+ plasma electrolytic oxidation (PEO) duplex
coatings on AZ64. In addition, the phase structure, mechanical characteristics, wear, and PEO ceramic coatings examine the
corrosion resistance. According to the findings, the PEO ceramic coating comprises α-aluminum oxide and γ-aluminum oxide,
with some remnants of B4C still being preserved. PEO ceramic coatings outperformed their corresponding CS counterparts
regarding mechanical characteristics and wear resistance. For example, the PEO-B4C coating achieved a hardness of 13.8GPa
and an elastic modulus of 185.5 GPa, which were 21.0% and 23.5%, respectively, more significant than the comparable values for
the coating with CS. The PEO-B4C coating was 58% and 15.7% less abrasive than the equivalent CS coating due to its lower wear
rate of 4.84× 10−5mm3/Nm and relatively lower of 0.64. The density of corrosion current in the PEO-treated B4C-AA7075 coating
(3.735× 106 A/cm2) is similar to the corrosion current density in the untreated CS coatings. Finally, compared to untreated CS
B4C-AA7075, the coating’s mechanical characteristics and wear resistance are considerably enhanced by the PEO treatment.

1. Introduction

Roughening components and low surface energy are com-
bined to form an SH surface with a water contact angle
(WCA) of more than 150° when PVC binder in THF solvent
is mixed with roughening components (referred to as

“superhydrophobic”) [1]. Since AZ91 alloys are not very
hard, corrosion resistant, and wear resistant, they are used
in high-stress technical applications [2, 3]. Material charac-
teristics improve by employing a wide variety of surface
engineering techniques. It is called CS, and it is a new way
to alter textures [4–6]. While still in solid, CS particles
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deposit on the substrate with significant kinetic energy. This
technique is better than conventional thermal spray methods
due to its comparatively “cool” working gas temperature [7].
Therefore, high-temperature exposures such as those seen in
ovens and microwaves can be avoided, along with the result-
ing oxidation, melting, phase changes, etc. [8]. Many alloys
analyze with CS deposits for surface protection, including Al,
Al2O3-Al, ND-Al, and B4C-AA7075 [9]. The CS coating’s
resistance to wear and corrosion is not up to par with the
rigorous requirements of the many applications and environ-
mental circumstances [10].

The plasma electrolytic oxidation (PEO) depositionmethod
results in a ceramic sheathing that dramatically increases the
wear and hardness of softer and more malleable metals, includ-
ing aluminum, magnesium, Ti, and their alloys [11]. The Al2O3

oxide converting layer produced by the PEO method signifi-
cantly enhances the resistance to wear and corrosion of alumi-
num and related alloys, as demonstrated by many studies
[12–14]. As a result of these findings, a hybrid CS+PEO dual
coating technique is to develop a hard metallurgically support-
ing ceramics surface. PEO technology turns themetallic coating
into a ceramic coating after it applies to the substrate with CS
[15]. Using a CS and PEO method, coated AZ31 alloy with an
aluminum-based PEO layer [16]. The aluminum-based PEO
coating improved wear resistance by 87% compared to an Al
coating and had corrosion resistance on par with pure alumi-
num [17–19]. Analyses were performed on the two CS+PEO
dual coatings to determine their microstructure, mechanical
characteristics, phase composition, wear, corrosion, and abra-
sion resistance [20, 21]. Duplex coating, generally protected by
magnesium and its coatings, particularly Al2O3, showed super-
ior resistance to wear and corrosion (an improvement of 61%
on the order of magnitude for each property). A duplex coating
provides hybrid, unique, and efficient surface protection for
alloys used in demanding situations by fusing the CS and
PEO processes [22]. However, there is a lack of literature on
this hybrid process. The CS B4C-AA7075 and aluminum coat-
ings applied on AZ64 were employed as seed surfaces and sub-
jected to PEO treatment to create the corresponding duplex
coatings [23–25]. Microstructure, mechanical characteristics,
and phase composition of two CS+PEO duplex coatings were
analyzed, as their resistance to wear, corrosion, and abrasion

[26, 27]. The two duplex coatings outperform conventional CS
coatings in protecting AZ64 alloy substrates. It must be noted
that the first and only paper to describe the use of PEO treat-
ment to produce an additional layer of protection on top of an
existing CSP coating (CS B4C-AA7075).

In this research, metallized cold-spray coatings were used
to produce the composite structures of boron carbide with
AA7075 and PEO with aluminum coatings on the AZ64
magnesium alloy. The mechanical behavior, phase structure,
and wear and PEO ceramic coatings were used to examine
the corrosive resistance.

2. Experimental Procedure

Pure Al powder (D50 = 34 μm) and B4C-AA7075 composite
(D50 = 37 μm) as CS’s powder raw materials. As a percentage
of the total mass, B4C made up 1% of the composite powder,
and its average particle size ranged from 10 to 50 nm. The
SST-P CGDS system applies coatings of CS. The spray angle,
pressure, and temperature were set to 90° at 1.7MPa and
350°C, using nitrogen as the gas phase. Methods for prepar-
ing CS coatings (such as Al coating and B4C-AA7075 coat-
ing) are explained in greater depth elsewhere. PEO coating
refers to a coating made from PEO-treated Al, and PEO-B4C
coating refers to a coating made from PEO and B4C on
AA7075 (the substrate/seed material). A 15 kW pulse power
source was used to run the PEO machinery. For 10min, the
samples were subjected to a PEO treatment with a continu-
ous 0.6 A/0.3 A positive/negative current [28].

The wavelength of the yield was 2,000Hz, and the duty
ratio was 8 g of NaAlO2 per liter of potassium hydroxide,
2 g of sodium ethylenediaminetetraacetic acid per liter, and
2 g of sodium (Na3C6H5O7.2) in water in the electrolyte.
Figure 1 shows how Al +PEO and B4C-AA7075+PEO duplex
coatings are created. Using a Miniflex 600 XRD with copper-
Kα radiation (λ=1.5420) at 41 kV and 16mA, it also deter-
mined the phase compositions of the materials.

The coating’s hardness and elasticity evaluate by a bat-
tery of nanomechanical properties (UNHT+MCT+MST).
A Berkovich diamond indenter applies a force that gradually
increases to 10mN in 30 s during the nanoindentation test.
Then, the burden slowly carried down to zero. The corrosion
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FIGURE 1: Al + PEO and B4C-AA7075 + PEO duplex coating preparation schemes.
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process testing (ASTMG59-97) was performed at room tem-
perature in a 3.6 wt% NaCl utilizing the CHI600C electro-
chemical workstation. The sample is the working electrode in
a constant potential setup that includes a platinum reference
plate and an additional platinum plate. After 30min in the
solution, the open circuit voltage potential was steady enough
to conclude the sample. During the polarization scan, the
input potential was scanned from −600 to +1,600mV OCP
at a rate of 1mV/s. Two duplexes’ coatings focus on the slide-
wearing test (ASTM G99-17) utilizing a test for wear and
friction using a ball-disk HT-1000 device at room tempera-
ture [29]. The counterbody was a 6mm Al2O3 ball. Test con-
ditions included a load of 2N applied in a circular motion
along a 3mm radius wear track. It slided the coatings at
300 rpm for 20min. It determined the volumetric wear rate
after measuring the cross-sectional zone with a 3D digital
microscope and describing the wear track’s morphology.

3. Results

3.1. Phase Composition of the Microstructure. PEO ceramic
coating development using the time–voltage response curve
is shown in Figure 2(a). Early on in PEO treatment, the effect
of the Al2O3 coating was demonstrated by a sudden rise in
the voltage response [30]. Microdischarge happened when
the voltage response was close to the drain current (seen
in the inset of Figure 2(a)), slowing the voltage reaction
increase and leading to stable saturation voltage. With its
high thermal and electrical conductivity, B4C reduces the
breakdown voltage in a B4C-AA7075 matrix from ∼301 to
∼262V. As a result, the B4C-AA7075 coating reached the
breakdown voltage much faster during the PEO process than
the pure Al coating. Figure 2(b) shows the PEO and PEO-
B4C coatings’ on X-ray diffraction (XRD) patterns. Both α-
aluminum oxide and γ-aluminum oxide form aluminum

oxide in all PEO ceramic coatings. There were also traces
of Al and B4C peaks in the diffraction patterns. It is possible
that the carbon peak created from the B4C-AA7075 coating
beneath the PEO-B4C one, considering how deeply the X-
rays penetrate the PEO-B4C coating. Raman spectroscopy
confirmed the presence of graphitic C (ID/IG = 0.61) in the
PEO-B4C layer (shown as an inset in Figure 2(b)).

It indicates that the PEO procedure has a negligible effect
on the B4Cs stability. The B4C from the PEO-B4C coating
was, thus, successfully retained in the B4C-AA7075 coating.
Figures 3(a) and 3(d) show the micrographs of cross sections
of aluminum+PEO and B4C-AA7075 + PEO duplex coat-
ings. PEO ceramic coatings make solid, gap-free contact with
their substrates. Figures 3(a) and 3(d) show the measured
thickness of 315 and 313m for the Al + PEO and B4C-
AA7075 + PEO duplex coatings. On average, PEO-B4C coat-
ings were 25m thicker than PEO coatings (18vs. 5 μm).

The PEO-B4C coating took longer to mature because of
its smaller drain current than AA7075 (Figure 2(a)). There-
fore, PEO-B4C coating was significantly more robust than
PEO coating. Cross-sectional analysis reveals that the PEO-
B4C coating consists of two distinct layers [31]. The surface
was pocked with pores and fractures, while the interior was
considerably thicker. Figure 3(b)–3(e) depicts the surface
morphology of PEO and PEO-B4C coatings. The PEO ceramic
coatings had the same rough texture, fractures, and pancake-
like porosity lamellar structure. The lamellar pores provided
vents for the molten Al2O3. An apparent volcanic structure
formed around the pores as the Al2O3 solidified [32]. The
PEO-B4C coating has higher and finer volcanic peaks than
the PEO coating. During PEO, B4C raised the pressure and
temperature locally within the discharge channel [33].

As molten Al2O3 poured out of the composite coating’s
discharge channel, more coating vanished. The EDS scan
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FIGURE 2: (a) Time–voltage response and (b) XRD pattern.
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revealed carbon uniformly dispersed throughout the PEO-B4C
coating (Figures 3(c) and 3(f)). C, O, and Al EDS plots are
shown in Figure 3 (an expanded portion of Figure 3(e)–3(i)).
The EDS scan has revealed carbon dispersed uniformly
throughout. It emphasized that the PEO ceramic coating,
not CS coating, is the source of the O in the sample. Carbon
has a relatively similar distribution pattern to that of O and
Al. The element-free zone in EDS maps results from spatial
inhomogeneity in the sampling area. It noted that the PEO
ceramic coating, not the CS layer, is the source of O in the
sample.

3.2. Test Results on Surface Roughness. Figure 4 depicts the
Ra value of PEO coating materials. It discovered that PEO-
B4C coating had a rougher surface than PEO coating. The

PEO process causes the B4C-AA7075 coating to produce
more molten Al2O3, which helps to form crater-like forms
on the coating’s surface. Consequently, PEO-B4C coating
had a rougher texture than PEO coating. The scanning elec-
tron microscopy (SEM) pictures and roughness test results
support this (Figures 3(b) and 3(e)).

3.3. Mechanical Characteristics. To evaluate the nanomecha-
nical characteristics of cold-sprayed metallized and PEO
ceramic coatings, researchers ran identical tests on all samples,
removing factors such as loading and unloading rate and load.
The B4C-AA7075 composite material’s mechanical character-
istics are evaluated using low nanoindentation stress. PEO
ceramic coating thickness was also down, making it unsuitable
for heavy weights. Accordingly, the nanoindentation tests were

Resin

Resin

PEO-B4C coating

B4C-AA7075
coating AA7075 + PEO

+B4C

EDS-carbon EDS-oxygen(g) (h) EDS-aluminum(i)

~315 μm

PEO coating

AA7075 + PEO
–315 μm

(c)

(f)

2.5

3.2

1.9

1.3

0.6

0.0
3.75 8.00 12.25 16.50 20.75 25.00 29.25 33.50 37.75

Energy  (keV)

Energy (keV)

KC
nt

3.7

3.0

2.2

1.5

0.7

0.0
0 2 4 6 8 10 12 14 16 18 20 22

KC
nt

~18 μm

~25 μm

AA7075
coating

O

O

AI

AI(a) (b)

(d) (e)

FIGURE 3: SEM images (a, d) cross section, (b, e) surface characteristics, and EDS of (c) PEO coating, (f ) PEO-B4C duplex coating, (g) EDS-
carbon, (h) EDS-oxygen, and (i) EDS-aluminum dispersal, as shown in Figure 3(e).

4 Journal of Nanomaterials



conductedwith a notional load of 10mNonAA7075 substrates
coated with CS or PEO ceramics, displacement–load curve,
nanohardness, and flexion modulus, as shown in Figure 5.

The PEO-B4C coating improved the material’s properties
by 23.5% in hardness (13.8 GPa) and 21.6% in elastic modu-
lus (185.4 GPa) compared to the PEO coating. As expected,
PEO treatment significantly enhanced theCS coating’smechan-
ical characteristics. Furthermore, the mechanical properties
were significantly affected by the PEO-treated B4C-AA7075
coating as opposed to the PEO-treated AA7075 coating.

3.4. Wear Resistance. Figure 6(a) shows the dry sliding wear
rates and coefficient of frictions (COFs) for a PEO ceramics
coating on an AZ64 alloy substrate with a CS coating.
Figure 6(a) shows that PEO ceramic coatings have slightly
lower COF than their CS counterparts. The COF of PEO
ceramic coatings increased in the early stages. After a brief
rise in the second phase, the COF remained relatively stable.
Compared to PEO, the COF of the PEO-B4C coating is lesser
(0.66 and 0.78). In addition, its COF shows lower steady-state
variability. The PEO ceramic coating considerably reduced
the wear rate compared to a similar CS layer. The PEO-B4C
coating significantly reduced the wear rate to 4.84× 105mm3/
Nm compared to the PEO coating. PEO treatment substan-
tially enhances the CS coating’s resistance to wear.

3.5. Corrosion Resistance. The optical constant of refraction
(OCR) and PDP curves of PEO, as well as PEO-B4C coatings,
are shown in Figure 7. Figure 7(a) shows that after initially
falling, the OCR value of PEO coating stabilized at 0.669V.
In contrast, the OCP shift on PEO-B4C coating was more
involved. This process consists of two phases. During the first
step, OCP is reduced slowly, starting at −0.56V to a lesser,
more enduring of −0.71V. A minimum of 1.040V will be the
optical constant of refraction, indicating that the electrolyte
has penetrated and settled on both sides of the internal bar-
rier/external porosity layer contact at the end of level II.

The electrolyte presumably diffuses through the barrier
layer before coating with CS B4C-AA7075. Moreover, the
SEM pictures showed that the OCP becomes stable once the

composite coating saturates with electrolytes (Figures 3(a)
and 3(d)). The porosity and dense barrier layers have two
separate corrosion phases in PEO-B4C coatings. Because of
the PEO coating’s tight molecular structure, the corrosive
solution is either on its surface or within its pores (not
through the PEO coating). As a result, its susceptibility to
corrode is reduced (OCP is higher) compared to PEO-B4C
coating. Protective characteristics of PEO coatings evaluated
in a 3.6% NaCl solution using the potent-dynamic polarized
technique, as shown in Figure 7(b). Potential for corrosion
(Ecorr) and density of current (Icorr) for a CS coating on an
AZ64 substrate are shown in Table 1. Corrosion current den-
sity condensed below the AZ64 substrate (1.127× 104A/cm2)
by covering the sample. The results prove that CS and PEO
coatings significantly improve the substrate’s resistance to
corrosion. Furthermore, PEO coating had superior corrosion
current density (1.703× 108 A/cm2) and corrosion potential
(0.47V) than the aluminum coating. According to these
results, PEO treatment dramatically enhances the CS alumi-
num coating’s resistance to corrosion.

Comparatively, the PEO-B4C coating’s possibility for cor-
rosion and current density of 1.127V and 3.735× 106A/cm2,
respectively, align with the B4C-AA7075 coating (0.940V and
2.031× 106A/cm2, respectively) that not treated with PEO.
Accordingly, the PEO-B4C coating offers the same level of
corrosion protection as the B4C-AA7075 layer. The corrosion
resistance of a B4C-AA7075 layer is unaffected by the PEO
treatment.

4. Discussion

4.1. Coating Mechanical Properties of Plasma Electrolyte
Oxidation.Nanoindentation demonstrates that PEO ceramic
coatings have superior mechanical properties to cold-spray
metallized coatings [34]. Metal coating on aluminum-based
substrates can be transformed into ceramic Al2O3 layers by
PEO treatment [35]. Al2O3 cermet significantly greater hard-
ness and elasticity than Al and its composites. As a result, it is
not surprising that PEO ceramic coatings are over CS coats
in terms of hardness and flexural modulus. The PEO-B4C
coating has an elastic modulus of 23.5% points higher and is
21% points tougher than the PEO layer. It may have occurred
because of the induction of B4Cs in the matrix, which has
high mechanical characteristics. As mentioned in the prior
report, CS B4C-AA7075 coating has superior mechanical
qualities to the CS Al coating. Increased hardness of the
B4C-AA7075 coating is the result of reinforcing the B4C in
these coatings. In addition, the tensile properties of the B4C-
AA7075 coating enhance by the high modulus B4C. In con-
clusion, the mechanical properties of a B4C coating on Al2O3

ceramic improved with PEO treatment compared to those on
a B4C coating on AA7075 ceramic.

4.2. Dry Wear Behavior. Compared to a CS coating, the CS +
PEO duplex coating showed more excellent resistance to
wear in a series of wear tests. The PEO process increases
the coating’s durability by adding an oxide coating to the
CS coat; this is why, the duplex coating is much more durable
[36]. The B4C-AA7075 sample treated with PEO exhibited
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more excellent wear resistance than the Al sample treated
with PEO. Figures 8(a) and 8(b) show a profile of the worn
path in cross section for the PEO and PEO-B4C coatings.

The PEO-B4C coating is thinner than the PEO coating in
terms of the wear track [37]. Figures 8(a) and 8(b) show a
wear track formed by a PEO ceramic layer. The PEO-B4C
coating has a smaller wear track than the PEO coating. Tri-
bological testing showed that the PEO-B4C coating drastically
reducedmaterial removal and boosted resistance to wear [38].
In most cases, a coating made of Al2O3 will have a high
resistance to wear because of the strong relationship between

these two factors. Improved wear resistance increases the
material’s hardness. B4C testing of PEO nanohardness revealed
a value of 13.8GPa, significantly higher than PEO coating
(11.6GPa). As a result, the PEO-B4C coating offers excellent
durability. The oxide layer of PEO-B4C coating contained car-
bon elements (including B4C or other types of amorphous
carbon), which may serve as nanolubricants [39].

Carbon components that lubricate themselves, such as
B4C, can reduce wear volumetric loss and friction coefficient
[40]. Many other elements influence and enhance the wear
resistance of PEO-B4C coatings. Due to the random
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distribution of microcracks in the PEO ceramic coatings, the
wear tracks displayed a flaky morphology (Figures 8(c) and
8(d)). This conclusion indicates that the PEO ceramic layer
wore away due to fatigue. Fatigue cracks in PEO-B4C were
more extensive than those in PEO covering. Fractures prop-
agate in the direction of defects (pores, holes, microcracks)
caused by sliding wear. However, the thick PEO-B4C coat-
ing’s porous top layer made the microcracks on the wear
track more noticeable than they would have been in a PEO
coating.
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TABLE 1: Comparison of corrosion potential (Ecorr) and current
density (Icorr).

Examples Ecorr (V) Icorr (A/cm
2)

Plasma electrolytic oxidation coating −0.755 1.703× 10−8

Plasma electrolytic oxidation-B4C coated −1.127 3.735× 10−6

AA7075 coated −1.225 4.660× 10−6

B4C-AA7075 coated 0.940 2.031× 10−5

AZ64 −1.514 1.127× 10−4
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The PEO-B4C coating’s wear resistance is approximately
a magnitude more than that of the PEO coating because of
the B4Cs self-lubricating impact [41]. Figure 9 shows an
optical image showing the PEO and PEO-B4C coatings’
interaction with the Al2O3 spherical counterbody, where
wear marks on the surface of PEO, the ceramic-coated
Al2O3 ball. Even though the PEO ceramic coating is highly
durable, the Al2O3 ball counterbody affects wear during the
sliding process. Wear scars on the PEO-B4C-coated Al2O3

ball was more noticeable than those on the PEO-coated
Al2O3 ball. Stress wearing of the Al2O3 by the B4C PEO
layer’s reduction in the contact area between the ball and
the bearing. The COF of the PEO-B4C coating was much

smaller than that PEO layer. The homogeneous distribution
of carbon components like B4C in the PEO-B4C coating is
responsible for its better wear resistance; these elements
lessen the resistance to sliding between the ceramic covering
and the Al2O3 ball counterbodies.

4.3. Electrochemical Corrosion Analysis. The density in the
aluminum coating dropped by two orders of magnitude after
being treated with PEO, as shown by electrochemical corro-
sion testing [42]. However, the PEO treatment did not
noticeably alter the B4C-Al coating’s resistance to corrosion.
Coatings made of PEO were practical barriers between
substrates and corrosive solutions. Its corrosion resistance

302 μm409 μm

(a)

(c) (d)

(b)

FIGURE 8: (a, b) SEM images and (c, d) high magnification morphology of PEO with B4C coating.

ðaÞ ðbÞ
FIGURE 9: Optical images of (a) plasma electrolyte oxidation coating and (b) plasma electrolyte oxidation +B4C coating of the Al2O3 ball
paired.
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enhances by preventing corrosive media from penetrating
the coating [43]. However, the substrate corroded because
the electrolyte penetrated the interface through fissures and
holes in PEO ceramic covering, creating channels for corro-
sion. Corroded specimens of aluminum+PEO and B4C-
AA7075 + PEO twin coatings exhibit in the cross-sectional
SEM image, as shown in Figures 10(a) and 10(b).

A massive corroded region is visible under the PEO-B4C
coating, as seen in Figure 10. Corrosion solution entered via
fracture in PEO ceramic coating (arrow in Figure 10(b)),
corroding B4C-AA7075 coating. Instead, a cross section of
PEO covering showed minimal fissures and pores [37]. As a
result, the Al coating protects from corrosion. The PEO
ceramic layer developed on the CS aluminum coating sample
was denser and smoother than the PEO ceramic coating
developed on CS B4C-AA7075 coating specimens. It enabled
more channels for the electrolyte to infiltrate through corro-
sion to the PEO-B4C coating. The B4C-AA7075 coating’s
corrosion resistance is not drastically altered by the PEO
treatment. PEO treatment on an Al substrate creates PEO-
B4C and PEO coatings. A PEO ceramic coat applied to an Al
substrate was shown to be less effective at preventing corro-
sion in the presence of B4C. To further enhance its corrosion
resistance, PEO-B4C coating could benefit from the applica-
tion of sealing methods.

5. Conclusion

Successful duplex coatings on AZ64 alloy using the CS tech-
nique combined with PEO, including B4C-AA7075 + PEO
and AA7075 + PEO. Mechanical characteristics, wearing,
and resistance to corrosion of CS+PEO duplex coatings com-
pared to the cold-spray metallized coatings. The results of
this study indicate the following:

(1) Depending on the cold-spray coating’s composition,
the PEO ceramic coatings included α-Al2O3, γ-Al2O3,
and a trace quantity of the B4C. The PEO-B4C coating
also had a uniform distribution of carbon.

(2) Hardness and elastic modulus improved upon the
PEO-B4C coating compared to their CS counterparts.

PEO-B4C coatings were thicker (∼25 μm) than stan-
dard PEO coatings (∼18 μm). It results in more sig-
nificant results for hardness (13.8GPa) and elastic
modulus (185.4GPa) for the PEO-B4C coating (21%
and 23.5% higher).

(3) Compared to the wear rates of PEO and B4C-AA7075
coatings, PEO-B4C coating was significantly more
durable, with a rate of only 4.84× 105mm3/Nm.
The Al2O3 layer is complex, and the B4C acts as a
natural lubricant. Not only that, it also has remarkable
antifriction qualities.

(4) The PEO raises aluminum coating corrosion resistiv-
ity by lowering the current density in the coating by
two magnitudes. By an outcome of these defects in
the B4C-AA7075 coating, the PEO treatment did tiny
to enhance the material’s resistance to corrosion.

(5) The resulting duplex coating comprises CS with the
PEO technique. It has superior mechanical, wear,
and corrosion characteristics equated to the indepen-
dent cold-spray metallized coating. This resilient that
the hybrid CS-PEO method is effective in surface
engineering.
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