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One of the most fundamental subjects in nanoscience and nanotechnology is structural analysis. We employed a scanning electron
microscope (SEM) image of the manufactured Gd3+/13X/DOX/FA nanocomposite in this study. The size, dimensions, and
morphology of nanocomposite materials were studied to ensure the uniformity and homogeneity of SEM images. This is the first
study to look at segmented SEM images for fractal dimension (FD) and other statistical criteria, including average, maximum,
minimum, skewness, and range for magnetic resonance imaging (MRI) nanocomposite. The average of FD (FDavg), the standard
deviation of FD (FDsd), and the lacunarity of FD (FDlac) fractal data analysis criteria were also employed. The findings show that
particle sizes and shapes vary because the minimum-to-maximum range is not zero, and our data provide a reasonable range. This
interpretation is further supported by an analysis of the nanocomposite’s SEM image. At first glance, the image seemed to be
uniform. However, when the calculations were performed, it was discovered that the generated particles were not particularly
uniform. The particles were uniformly dispersed throughout all surfaces, although their sizes, dimensions, and morphologies
varied. In conclusion, the study was supported by fractal data analysis, emphasizing the importance of structural analysis for future
research, particularly for medical applications like MRI.

1. Introduction

The powers of structural, directional, and functional control
are the most essential issues in nanoscience and emerging
nanotechnology. Many attempts have been made to regulate
the spatial distribution of nanoparticles (NPs) as well as their
physical and functional features [1–3].

Magnetic resonance imaging (MRI) is a noninvasive and
novel imaging modality [4–6]. The use of contrast agents
(CAs) in MRI is offered to enhance image contrast as well
as the identification of diseased cells [7]. Magnetic NPs are
one of the primary types of nanoscale materials that have the
potential to fundamentally alter current diagnostic and treat-
ment approaches [8, 9].

The scanning electron microscope (SEM) is a technique
that is used to scan and analyze microscopic characteristics on
solid surfaces, as in MRI CAs. SEM images are often used to
qualitatively analyze the surface features of morphological
variables like size, surface composition, and shape of samples.

They are also used to find sample characteristics like compo-
sitional changes, topography (shape, inclination, edges, etc.),
and physical differences (crystalline structure, magnetic
fields, electrical fields, etc.) [1, 6, 10].

Image processing of nanostructures involves a variety of
preparations, subdivisions, and data preprocessing processes
that end in quantitative data extraction. Recently, computer-
based image-processing techniques have advanced significantly,
allowing for the quantitative representation of complex hues,
patterns, texture properties, and sizes. According to research
done in the past, computer-aided diagnostics and image analysis
may be some of the best screeningmethods because theymake it
easier to process large amounts of information [10–13].

Fractal geometry is a mathematical method that is used to
analyze irregular geometric shapes. The fractal dimension (FD)
may show some of the properties of natural imagery [11–14].

Calculating the predictable edge of the length acquired
along the border and the number of ladders characterizes the
FD parameter [14–21]. Because lower step sizes represent the
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existence of more features on the particle output, the boundary
length rises as the step size is reduced [11, 22–24]. Furthermore,
incorporating other metal cations (such as gadolinium (Gd3+))
into the nanosized zeolites may alter their behavior, raising
interest in zeolite NP as an imaging tool [26]. It is possible
that this is a strong argument for the fractal analysis of
images [25].

Gd3+-based MRI CAs have the best structure for produc-
ing a positive signal, or T1 CA. Because of its low toxicity,
good solubility, great physicochemical qualities, and high
relaxation, it is also commonly employed in clinical diagnos-
tics to promote the relaxation of water protons. Also, using
Gd3+ nanocomposite, which is paramagnetic, may slow
down the rate of relaxation and improve contrast [26–28].

Doxorubicin (DOX) is an anticancer medication that has
the potential to be used against a variety of cancers. The folic
acid receptor is utilized to target materials in MRI CAs
because of folic acid’s high absorption and toxicity promote
binding to its receptor on the surface of cancer cells. The CA
structure, which we presented in the prior work, was targeted
with doxorubicin and folic acid [29–31].

Zeolite has a microporous structure made up of crystalline
aluminosilicate and specific chemical forms and is widely
employed for three major properties: adsorption, ion exchange,
and catalytic properties. Zeolite, particularly zeolite 13X, has a
crystalline structure and a hydrated aluminummain framework
with a hole filled withwater particles and ions. Previous research
has focused on two forms of zeolites, X and A [32–35]. Tatlier
and Erdem-Çenatalar [33] estimated the value of the FD of the
13X zeolite in the following earlier reports: 2.08. Finally, in this
study, we will use the SEM image of the Gd3+/13X/DOX/FA
nanocomposite [6].

According to our findings, no FD research has been con-
ducted on MRI-Gd-based CAs. Furthermore, there are sub-
stantial differences across related research regarding the type
and structure of the contrast material used and the SEM
image processing technique employed. Also, the FD method
on a manufactured MRI nanocomposite with anticancer and
targeting properties, Gd3+/13X/DOX/FA nanocomposite,
will be performed for the first time [6].

Our work is valuable because we perform preprocessing
operations to improve image quality, automatic image seg-
mentation to remove human error interference, and statisti-
cal data calculations using a more user-friendly application.
The purpose of this work is to investigate the size, dimen-
sions, and morphology of synthesized Gd3+/13X/DOX/FA
nanocomposite at the molecular level to confirm or reject
the uniformity and homogeneity of SEM images of nano-
composites based on the range of particles. Consequently,
it is important to examine the support for FD analysis, under-
lining the significance of structural analysis on nanocompo-
sites for future study, especially for medical applications.

2. Methods

2.1. Nanocomposite and Summary of Methods. Ghaderi et al.
[6] developed the Gd3+/13X/DOX/FA. X-ray diffraction
(XRD) patterns and SEM images were applied to determine

the physicochemical parameters of the Gd3+/13X/DOX/FA
nanocomposite. Lashgari et al. [14] assessed the FDs of
30 randomly selected SEM images (manganese–chromium
bimetallic nanocomposite) using MATLAB software. Lastly,
the SPSS software was used to acquire the image’s histogram
and normalize the image’s histogram, mean, median,
maximum and minimum values, range, skewness, and
harmonic mean. In this study, however, based on prior
research, 30 random images are needed after applying
the pre-processing SEM image in Gd3+/13X/DOX/FA
nanocomposite using the automated segmentation approach
through the toolbox and MATLAB program. Then, using
Excel, we will determine the average of FD (FDavg), standard
deviation of FD (FDsd), and lacunarity of FD (FDlac) for all
images, as well as the average, maximum, minimum, skewness,
and range of the chosen images. Lacunarity has been developed
to distinguish between distinct texture appearances that may
have the same FD value. Lacunarity quantifies the distribution
of gap sizes: geometric objects with low lacunarity are
homogenous since all gap sizes are the same, while objects
with high lacunarity are heterogeneous [36, 37]. For the first
time, our image processing research relies on a synthetic MRI
nanocomposite with anticancer and targeting characteristics.

2.2. Calculation of FD and Image Analysis. Dimension is one
of the most important concepts in fractal geometry [38].
Currently, numerous FD analysis and computation methods
have been followed by comparable bases, which are briefly
summarized in three steps:

(i) Object quantification using various step sizes and
stages.

(ii) Values were measured against the size of the steps,
and the minimum squares of the regression line
across data points were determined.

(iii) Estimating FDs as a regression line slope.

We will employ the box-counting approach in our research
since the box-counting dimension [14] is a mathematical
design, and an estimate of the box-counting dimension is sim-
ple. This value has become one of the most commonly used
generic dimensions [39, 40].We usedMATLAB version r2022b
to do the FD assessments and analyses. The SEM image of the
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FIGURE 1: SEM image of (Gd3+/13X/DOX/FA) nanocomposite.
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Gd3+/13X/DOX/FA nanocomposite is shown in Figure 1. This
image will be used in the image processing section [6].

2.3. FDMethodical Concepts. Fractals may be defined numer-
ically as a geometrical set with a Hausdorff–Besicovitch mea-
surement that carefully exceeds the topological measurement.
Mandelbrot [41] used the word “fractal” to describe non-
Euclidean structures that exhibit self-similarity at different
sizes. Because most organic and common highlights include
discontinuities and fractures, they will have an FD. In the
same way, most of these regular structures are complicated
and sometimes have a precise Euclidean (smooth) form so
that they can be approximated accurately.

In Euclidean n-space, a restricted set S is manifestly self-
comparable if it is the union ofNr no overlapping subsets as for
a scaling factor r, each of which has the structure r(Sn), where
the Nr and Sn sets are consistent in circulation to S. As a result,
the Hausdorff–Besicovitch—the fractal measurement—of a
finite set S in Rn is a legitimate number used to depict the
geometric multidimensional character of S in the same way
that length is employed as an estimating tool in Euclidean (dis-
crete) space.Nr is simply the number of comparable (invariant)
shapes, and r is the scaling factor for comparison [42, 43]. The
FD may now be calculated in Equation (1) as follows:

FD ¼ log Nrð Þ
log

1
r

� � : ð1Þ

In reality, most regular and some numerical self-comparable
fractals are arbitrary, meaning that they scale accurately. The
similarity between shapes seen at different scales in conventional
fractals is often inexact and seen as irregular rather than self-
comparable. In general, the FD of an investigated structure
should have self-comparable split and sporadic forms that do
not change as the size of the estimate goes up or down, all the
way up to infinity.

Depending on the goals and profundity of the acquired
image, this must be true for a limited number of scales. So,
for each studied typical fractal, there is a small scaling range
below or above which the structure is either smooth (i.e.,
Euclidean) or completely rough and not self-comparable
(i.e., arbitrary) [44].

To differentiate between two surfaces if their FD worth is
indistinguishable despite the fact that the two surfaces are
unlikely to be comparable, we must calculate the lacunarity
of the FD surface. Lacunarity quantifies the “knottiness” of
fractal information, providing meta-data on the figured FD

values in the image. The greater the lacunarity, the more
inhomogeneous the investigated fractal region, and vice
versa [45].

It is defined in terms of the fraction of the difference over
the mean capacity estimate, as in, where M and N are the
sizes of the FD-produced images [46–48] (Equation (2)):

Lacunarity ¼
1

MN
∑M−1

m¼0 ∑N−1
n¼0 I m; nð Þ2

1
MN ∑

M−1
k¼0 ∑N−1

l¼0 I k; lð ÞÀ Á
2 − 1: ð2Þ

2.4. General Schema of the Proposed Algorithm. As can be
seen from Figure 2, the algorithm consists of four general
stages. The first step is to read and preprocess the SEM
image. The second step is to perform nonlinear filtering on
a pixel block of varying sizes (box counting). The third step is
to compute the slope using linear regression, and finally,
in the last step, selecting a ROI and finding the correspond-
ing average FD and lacunarity are applied.

2.5. Image Preparation. The image evaluation process is
separated into many parts. The first stage is the handling
step, in which all arrangements of SEM image groups are
generated for each instance in computerized imaging and
correspondence in version design (DICOM image) and then
translated to FD values for each pixel. The FD shift produced
images with much higher contrast than the originals, as well
as easier SEM image segmentation.

At this point, the fractal analysis is performed to find the
most severe normalized FD (FDavg)—a normalized FD value
is obtained for each image in time sequence, and the biggest
is chosen—along with its comparative lacunarity (i.e., level of
inhomogeneity). Finally, an apparent structure is used to
study the influence of SEM logistical factors on FDavg and
lacunarity. All of the steps are generally divided into four
categories:

(1) Image preprocessing.
(2) FD transformation.
(3) Region of interest (ROI) and feature extraction.
(4) FDavg and lacunarity calculations.

2.6. Image Preprocessing. The proposed design was per-
formed through image reading. The process of preprocessing
is described below.

Image preprocessing Performing nonlinear
filtering and 3D box-counting

Computing the slope
using linear regression
and FD transformation

Selecting a region of
interest and finding

corresponding
average FD and

lacunarity

FIGURE 2: The flow diagram of the proposed algorithm.
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2.6.1. Grayscale Conversion. After interpreting the SEM
image, the image is grayed out in this stage.

2.6.2. Histogram Equalization. The histogram equalization
function improves image quality. Histogram equalization is
a method for enhancing contrast by altering image intensi-
ties. Figures 3 and 4 show the histograms of the original and
enhanced images, respectively.

2.6.3. Segmentation. Segmentation is the process of labeling
each pixel. In other terms, segmentation divides a digital
image into several segments called “pixels.” The purpose of
segmentation is to reduce an image’s representation into
something more relevant and simpler to examine. Image
segmentation produces a collection of segments that encom-
pass the full image or a set of contours taken from the image.
The threshold approach is the most basic method of image
segmentation. The choice of a thresholding method depends
on the specific characteristics of the image being analyzed, such
as the type of image, the distribution of pixel intensities, and the
presence of noise or artifacts. There are many thresholding
methods available, including global thresholding, adaptive
thresholding, and Otsu’s thresholding, among others. Global
thresholding is the most basic method and involves selecting
a fixed threshold value that separates the foreground and back-
ground pixels based on the pixel intensity values. To calculate
the FD of an image using the box-counting method, first con-
vert a grayscale image to a binary image. This approach uses a
threshold value [49–51].

Otsu’s thresholding method is a popular choice for this
step, as it can automatically determine an optimal threshold
value based on the pixel intensity distribution of the image.

Once the image is binarized, it is divided into a grid of equal-
sized boxes. The size of the boxes is varied over a range of
scales, and for each scale, the number of boxes that contain at
least one foreground (i.e., object) pixel is counted. The box
counts are then plotted against the box size on a log–log scale.
The slope of the resulting plot represents the FD of the image.
To obtain a more accurate estimate of the FD, the box-
counting procedure is typically repeated with multiple grid
sizes, and the slope is calculated for each size range. The
average of these slopes is then used as the final estimate of
the FD. Finally, every pixel in an image is designated an object
pixel if its value is more than the threshold value and a back-
ground pixel if its value is less than the threshold value. A “1”
value is assigned to an object pixel, whereas a “0” value is
assigned to a background pixel. Following that, a binary image
containing all of the object and background pixels is produced
(see Table 1) [49–53].

2.7. Performing Nonlinear Filtering on a Varying Size Pixel
Block. Nonlinear image filtering is based on the idea that
instead of utilizing the spatial mask in a convolution process,
themask is used to acquire nearby pixel values, and then order-
ing processes generate the output pixel. In other words, when
the mask is moved around the image, the order of the pixels in
the windowed area of the image is rearranged, and the output
pixel is formed from the rearranged input pixels [54].

2.8. FD Transformation. The resulting SEM images are con-
verted to FD images using the differential box-counting
(DBC) technique at various scales, after which they are
shown for ROI proof, followed by surface analysis. The
DBC technique is often used when dealing with a large
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FIGURE 3: Input SEM images with their histogram.
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number of information values per test (the images below are
all 512× 512 pixels in size). In this study, both the DBC and
fragmented Brownian movement computations were first
attached to the images; nevertheless, the DBC method was
chosen for the subsequent analysis since it performed faster
on the FD counts of the 512× 512 SEM images. The initial
DICOM image I(x, y) of size M×N is converted to an FD
image by applying a varying-size nonlinear bit w(s, t) of

size m × n in Equation (3), which works by square
preparation on the nearby pixels and determines the
distinction between the most substantial (pmax) and least
significant (pmin) force pixels. The two components and b
are nonnegative whole values that are used to concentrate
the bit w(s, t) on the first picture’s pixel pxy. The
component is determined in Equation (3) and connected
in Equation (4) as follows:

w s; tð Þ ¼ ∑a
s¼−a∑b

t¼−bf loor
pmax−pmin

r

h i
þ 1 where r ¼ 2; 3; 4;…; j

a ¼ ceil
m − 1
2

� �
; b ¼ ceil

n − 1
2

� � ; ð3Þ

where d= 1, 2, 3,…, j – 1 represents the number of boxes
required to overlay the image on the grid Nd(x, y, d). The
scaling factor r was chosen experimentally to be between 2
and 9. In theory, r should indicate how much a certain pixel
structure is self-like in its entirety.

Nd x;y;dð Þ ¼ ∑
a

s¼−a
∑
b

t¼−b
w s; tð ÞI x þ s; y þ tð Þ j

r

� �
2
: ð4Þ

2.9. Selecting a ROI and the Finding Corresponding Average
FD and Lacunarity. After applying the previous steps and
also using the output of the image segmentation stage

(obtaining 30 sample images), each of the FD-average and
lacunarity were calculated (Table 1).

3. Results and Discussions

Following the preprocessing and segmentation, 30 images from
the SEM image were extracted (as described in the Methods
section) to execute the fractal calculation procedure using
MATLAB and Excel software. Table 1 shows the FD calculation
(FDavg, FDsd, and FDlac) results for 30 chosen SEM images.
Table 2 shows the results of calculating the average, maximum,
minimum, skewness, and range from the data in Table 1.

The variations within the pattern dimensions of the par-
ticles may be clearly seen, which reveals the nonhomogeneity
of the created particles. Based on the obtained SEM image
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FIGURE 4: Enhanced SEM images with their histogram.
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TABLE 1: FD calculation for 30 images from the SEM image.

1 2 3 4 5

FDavg 1.8309 1.8228 1.8291 1.9209 1.8538
FDsd 0.5806 0.6359 0.5917 0.5238 0.6064
FDlac 0.1003 0.1215 0.1045 0.0743 0.1069

6 7 8 9 10

FDavg 1.8973 1.8393 1.8963 1.8593 1.9199
FDsd 0.5719 0.5673 0.5451 0.5901 0.5679
FDlac 0.0908 0.0950 0.0825 0.1006 0.0874

11 12 13 14 15

FDavg 1.8257 1.8681 1.8995 1.9163 1.8777
FDsd 0.5267 0.6343 0.5100 0.6044 0.6855
FDlac 0.0835 0.1151 0.0720 0.0994 0.1331

16 17 18 19 20

FDavg 1.9044 1.7623 1.8584 1.8564 1.8299
FDsd 0.6244 0.5795 0.5961 0.5457 0.5301
FDlac 0.1074 0.1081 0.1028 0.0864 0.0839

21 22 23 24 25

FDavg 1.8042 1.8608 1.8043 1.8968 1.8250
FDsd 0.5639 0.5548 0.5630 0.5805 0.5936
FDlac 0.0976 0.0889 0.0973 0.0936 0.1058

26 27 28 29 30

FDavg 1.8172 1.8713 1.8401 1.8453 1.8632
FDsd 0.5422 0.5493 0.5333 0.5369 0.5436
FDlac 0.0890 0.0861 0.0840 0.0846 0.0851
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information in Tables 1 and 2, Figure 5 shows a chart in
which there are 30 particles, which range from 1.7623 to
1.9209, 0.510 to 0.6855, and 0.0720 to 0.1331 for FDavg,
FDsd, and FDlac, respectively.

The SD is a term that describes the scattering of data in a
collection, and it is, therefore, one of the most significant
statistical scales in the area of descriptive statistics. We can
say that the SD represents the amount of data dispersion
from the average point if the average estimations of the
data distribution’s center point are a set. Figures 6–8 show
the FDavg, FDsd, and FDlac for each of the 30 images.

Skewness is another statistical criterion for symmetry dis-
tribution probability. Skewness is the degree of distortion in
the probability distribution’s symmetric bell curve. To varying
degrees, the distributions may be found on the right (positive)
or left (negative). The derived statistical FDavg, skewness =
–0.13904, is therefore based on the selection criteria in

Table 2. Distributions may also be skewed to the left (nega-
tively) or pulled to lower values.

To evaluate for errors in the normal distribution, normal
probability plots were created. If the plot points were in
a straight line, normally distributed errors are assumed.
In Figure 9, a typical quantile–quantile (Q–Q) plot is used
to compare the forms of distributions, where the vertical axis
quantiles the deviation from normal and the horizontal axis
quantiles the observed values. Linearly linked points in the
normal distribution mode suggest that the data are normally
distributed.

As shown in Figure 9, the FD distribution of the nano-
composite particles is a regularly distributed error. Further,
a residuals curve is a helpful tool for illuminating the data’s
fit to the model. To visualize the most prevalent forms of
imbalance, a scatter plot of residuals vs. their matching fitted
values may be constructed. The points and curve should be

TABLE 2: Fractal data analysis of FDavg, FDsd, and FDlac for SEM image.

Type Average Min Max Skewness Range

FDavg 1.85655 1.7623 1.9209 −0.13904 0.1586
FDsd 0.572647 0.510 0.6855 0.871649 0.1755
FDlac 0.095583 0.0720 0.1331 0.730874 0.0611
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FIGURE 5: The chart shows that the FD calculation of 30 images.
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evenly spaced and symmetrical if the fitted model is correct.
If the fitted model is acceptable, the curve in a detrended
normal Q–Q plot of average should be symmetrical, and the
points should be equally distributed. Figure 10 shows that

the points are not evenly distributed, accepting and revealing
an asymmetric curve with a skewness of −0.13904.

Therefore, the comparison of results based on FDavg

shows that the mean and median of our synthesized NPs
were larger. The range of synthesized NPs is closer to zero,
indicating that the morphology and fabrication of NPs were
more homogenized. The particle range (range = 0.1586) is
smaller. Finally, the quantity distribution of the skewness
(skewness = –0.13904) is skewed to the left (negative).
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Lashgari et al. [14] and this study both found that the size
and distribution of the particles were mostly the same but
that the sizes and shapes of the particles varied within an
appropriate range in our study. However, we found that the
particles were not very uniform in terms of size, dimensions,
and morphology, which is a crucial factor to consider for
future research. To sum up, our results seem to be in line
with what Lashgari et al. [14] found about how important it
is to look at the uniformity and homogeneity of nanocom-
posite structures, especially for medical imaging studies like
MRI [14].

Also, Tadic et al. [55] look at how hematite nanoparticles
are made, their structure and morphology, their magnetic
properties, and how they might be used in biomedicine.
The study synthesized two different shapes of hematite
nanoparticles, rhombohedron and plate-like, and compared
their structural, morphological, and magnetic properties.
The authors characterized the nanoparticles using various
techniques such as XRD, SEM, and magnetic measurements.
In comparison to this study, both studies focus on the mor-
phological analysis of nanoparticles using SEM. However,
the materials and applications are different. The hematite
nanoparticles synthesized in the study have potential bio-
medical applications for MRI, whereas our work focuses on
the fabrication of a nanocomposite for MRI. In terms of
methodology, our study segmented the SEM image and
used FD analysis to determine the uniformity and homoge-
neity of the nanoparticles. The study on hematite nanoparti-
cles, on the other hand, used SEM to observe the morphology
and size of the nanoparticles. The results showed that the
rhombohedron-shaped nanoparticles had a smaller size and
a narrower size distribution than the plate-like nanoparticles.
The magnetic properties of both shapes were also compared,
and the rhombohedron-shaped nanoparticles showed higher
magnetic saturation than the plate-like nanoparticles. In total,
both studies demonstrate the importance of morphological
analysis of nanoparticles for their potential applications. In
this work, the use of FD analysis is a novel approach that
could be applied to other nanomaterials to determine their
uniformity and homogeneity. In several studies, researchers
have used different methods, such as FD, for structural and
morphological analysis and recommend analyzing the size,
dimensions, and morphology of nanomaterials for future
research on their structure in terms of uniformity and homo-
geneity [55].

These findings have important implications for research-
ers in the fields of material and medical science. FD analysis
is a valuable tool for characterizing the properties of nano-
materials and nanocomposites. It provides information on
the surface roughness, porosity, and fractal nature of the
material, which can be useful for understanding their physi-
cal and chemical properties. The use of FD analysis in this
study highlights its potential as a nondestructive and nonin-
vasive technique for characterizing nanocomposites for med-
ical imaging applications [56–61].

The results of this study suggest that FD analysis can be
used to evaluate the uniformity and homogeneity of nano-
composites for in vitro and in vivo applications, including

medical imaging investigations like MRI. By analyzing the
size, dimensions, and morphology of the nanocomposites,
researchers can gain a better understanding of their structure
and properties, which can aid in the design and development
of improved materials for medical applications. This study
also highlights the importance of carefully analyzing the size,
dimensions, and morphology of nanocomposites in order to
assess their uniformity and homogeneity, which is critical for
their use in medical imaging and other applications. Overall,
the findings of this study contribute to our understanding of
the properties of nanocomposites and demonstrate the poten-
tial of FD analysis as a valuable tool for their characterization.

The study recommended that future research into the
structure of nanocomposites should focus on analyzing their
size, dimensions, and morphology to improve their unifor-
mity and homogeneity for medical imaging investigations
such as MRI. Overall, this study provides insights into the
use of fractal analysis to analyze the structure of nanocom-
posites and highlights the importance of uniformity and
homogeneity in their design for medical applications.

4. Conclusion and Interpretations

To our knowledge, this is the first time that a fabricated
nanocomposite for MRI has had its SEM image analyzed
for FD and other statistical criteria. At the molecular level,
the size, dimensions, and morphology of the Gd3+/13X/
DOX/FA nanocomposite that was made were measured.
This was done to see if the range of particles in the SEM
images of the nanocomposites showed that they were uni-
form and homogeneous. Using a segmented SEM image of
the nanocomposite, we were able to determine the FDs of
30 randomly chosen particles and use them to do our calcu-
lations. The average, minimum, maximum, skewness, and
range of the data were used to analyze the SEM image of
the nanocomposite. The fractal data analysis metrics FDavg,
FDsd, and FDlac were also used. We evaluated the consistency
and uniformity of the SEM image by selecting 30 images.
Particle morphology, size, and dimension information all
be used to calculate FD. All the data support a negative
skewness of −0.13904. Based on FDavg, our maximum and
lowest values were 1.9209 and 1.7623. Assuming that the
range of the data is limited (in our research, the range is
0.1586), we infer that the particle size and distribution in
the SEM image are similar and that these NPs are homoge-
neous and have high uniformity. The FDavg demonstrates
that the average size of our produced NPs is relatively large.
To the contrary, we concluded that the particle sizes and
shapes are different since this range is not zero, and our data
show an appropriate range. The nanocomposite’s SEM image
supports this interpretation. At first glance, the image seemed
to be harmonized.When the computations were run, however,
it was discovered that the resulting particles were not very
uniform. The particles were evenly distributed throughout
all surfaces, yet they varied in size, dimensions, and morphol-
ogy. In conclusion, the nanocomposite exhibited uniform dis-
persion across all surfaces despite differences in particle sizes
and shapes, as evidenced by several fractal data analysis
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methods. This highlights the importance of structural analysis
in nanoscience and provides valuable information on themor-
phology and uniformity of nanocomposite materials, particu-
larly for future studies on their homogeneity and consistency,
especially in applications such as in vitro and in vivo nano-
composites and medical imaging techniques like MRI.
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