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Thin-film-based photovoltaics offer affordable solar panels (high energy output per unit cost). Various materials have been used for
thin-film solar cells, and still, newmaterials are being tested. In this work, the overall performance of GeSe is enhanced theoretically
from a generic solar structure to a configuration that yields a whopping 33.12% efficiency along with an open circuit voltage of
1.04V by optimizing various active layers using solar cell capacitance simulator SCAPS. The results have been explained most
simply, utilizing the physics behind introducing hole transport layers in solar cells. The work also shows how certain contradictions
in parameter values in the literature of GeSe can influence the cell’s performance. The result shows why the substrate structure is
better than the superstrate structure. Most of the reported results are on superstrate structure, which might have caused poor
performance in previously experimentally produced GeSe solar cells.

1. Introduction

The boom of twenty-first-century technology is becoming the
doom of the other centuries to ever come in the future due to
global warming and the energy crisis. It puts us in a position to
invest in low-cost and high-benefit renewable energy sources. It
is the point where thin-film photovoltaics (TFPVs) steps in.
Ideally, silicon-based solar cells can attain an efficiency of
34%, but the PV community has been able to design a cell
with 24.7% efficiency till now [1]. This value is even lower for
polycrystalline Si PVs. We already know that commercial solar
PV panels’ efficiency deteriorates with time [2]. Silicon PVs are
comparably costly to TFPVs because of the absorption coeffi-
cient of silicon. The bandgap of silicon is 1.13 eV [3]. It means
that silicon can use the photons having energy equal to and
more than 1.13 eV for electron–hole pair generation. The cor-
responding wavelength of these photons with energy equal to
and more than 1.13 eV falls from about 1,090 nm to 400nm,
which covers almost the entire solar spectrum. Its absorption

coefficient, which is a function of wavelength, is as high as 105

at 400nm (high energy photons) but decreases radically to 101

at 1,000 nm (low energy photons) [4, 5]. Since the absorption
depth is the inverse of the absorption coefficient, the low-
wavelength photons get absorbed near the surface while the
high-wavelength photons get absorbed deeper from the surface.
So, to absorb the entire solar spectrum, researchers are forced to
design a solar cell with a thicker silicon layer to generate the
maximum electron–hole pairs possible. It is the parameter that
makes conventional silicon solar cells thicker (∼2,00,000 µm),
leading to more material for production, which in turn leads to
more manufacturing costs [2, 3, 6]. The high thickness is also
why integrated silicon-based devices are hard to manufacture
[6]. However, when it comes to the absorber materials used in
TFPV cells (including modified or doped silicon), their absorp-
tion coefficient ranges from 105 to 103 for the intended wave-
length range [7]. So, the layer can be thin (∼2µm) and still be
able to absorb as well as silicon. Thus, TFPV has more energy
output per unit cost [8]. Cadmium tellurium (CdTe) and
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copper indium gallium selenide are other majorly used absor-
bers for PV cells. They have high efficiency of about 22%
[9, 10]. Both are inferior to GeSe because indium and gallium
are rare earth metals, and cadmium is highly toxic. Antimony
triselenide (Sb2Se3) and germaniummonoselenide/germanium
selenide (GeSe) are some of the best absorbers suitable for
TFPV applications. Both have an orthorhombic structure, but
Sb2Se3 is a V–VI type compound, making its structure more
complex than GeSe. The Earth’s abundance of Ge is six times
that of Sb, resulting in a lower raw cost of Ge than Sb [11]. The
high chemical stability of GeSe arises due to its crystallization
process, which happens to be layered [12]. This less-toxic
chalcogenide belongs to the IV–VI compound with a high
absorption coefficient at room temperature [13, 14]. Low-cost
preparation of GeSe films on glass is possible using the thermal
sublimation deposition method because of its high vapor pres-
sures [15, 16]. The same method is used to manufacture CdTe
films on glass [17, 18]. Another reason rapid thermal deposi-
tion is suitable for GeSe is that the common phase impurities of
GeSe are GeSe2 and Ge. These impurities’ vapor pressure are
very low compared to GeSe, so while deposition, the impurities
will remain in the boat while the pure GeSe will be deposited
[19]. GeSe film has also been deposited using magnetron sput-
tering. One example is FTO/CdS/GeSe/C–Ag solar cells, which
exhibited an efficiency of 0.05% with a Jsc, Voc, and fill factor
(FF) of 0.85mAcm−2, 220mV, and 26.50%, respectively [20].
The important parameter of GeSe that makes it a potential
absorber material for a solar PV application is its bang gap
which is 1.14 eV [19, 21]. The material GeSe was reported as
back as in the 1950s [22]. Its high potential in optoelectronics is
also not new. People have known its potential even in the 1960s
[7]. Despite this, developing the first experimental data of a
GeSe-based solar cell was done only in 2017. They managed to
achieve an efficiency of 1.48% [19]. The most recent develop-
ments, along with their timeline, are beautifully reported by the
Mathew J. Smiles group [23, 24]. The efficiency of GeSe solar
cells keeps getting higher and higher every time it gets reported.
For example, glass/Mo/GeSe/CdS/iZO/ITO/Ag cell showed an
efficiencyof 3.1% alongwithVOC= 0.33V, JSC= 20.1mAcm−2,
and FF= 47.1%, which was already twice the previously best-
reported efficiency of superstrate GeSe solar cell [25]. Later
surface passivated GeSe films showed to an efficiency of 5.2%
along with VOC= 0.36V, JSC= 26.9mAcm−2, and FF= 54%
which was even higher [26]. In the present work, we used solar
cell capacitance simulator (SCAPS) software to optimize the
absorber and buffer layer of a generic GeSe-based solar cell,
and also discussed some data conflicts in the literature for
GeSe. Alongwith the investigation of experiment-based setback
while preparing solar cell based on superstrate configuration
and its solution, this work explains in the simplest way possible,
the physics behind introducing hole transport layers (HTLs) in
solar cells.

2. Device Structure and Simulation Parameters
(Experimental)

2.1. Device Structure and Configuration. A simple solar cell is
just a P–N junction in no bias configuration where the

generation of electron–hole pair takes place due to the inci-
dent photon in the P-type layer of the junction, usually called
the absorber layer. In this work, for the absorber layer, GeSe is
used, and for the N-type layer, which is sometimes called the
buffer layer, we used cadmium sulfide (CdS), one of the stan-
dard buffer layers. CdS consist of toxic constituents, compared
with N-type silicon, a nontoxic buffer layer for the second
configuration. The general configuration of this simple solar
cell is taken as front contact/ITO/buffer layer/GeSe/back con-
tact, as shown in Figure 1(a), alongwith its equivalent circuit in
Figure 1(b). The indium tin oxide (ITO) is coated on the glass
through which the sunlight enters. Due to illumination from
the sun or any light source, an ideal diode generates a potential
difference, namely, open circuit voltage (Voc). The potential
difference can be represented as if the N-type is grounded and
the P-type is connected to a voltage source.

2.2. Simulation Parameters. SCAPS, a magnificent one-
dimensional software, is developed by Mr. Marc Burgelman
of the University of Gent, Belgium [27]. This software was
initially designed to analyze CdTe and CuInSe2 solar cells
[28, 29]. Now the software has seen many improvements to
simulate almost all crystalline and amorphous solar cell fami-
lies [26, 29–31]. SCAPS provides consistent results with
computational and experimental work [32]. It stimulates the
solar cell by solving semiconductor equations. Many dignitary
researchers like Koen Decock, Stefaan Degrave, and Alex
Niemegeers have influenced the development of SCAPS
[28, 33]. In the present study, SCAPS has been been used to
optimize the conditions to achieve he best possible solar cell
using GeSe as an absorber layer. Usually, in SCAPS, the
simulation is done under certain conditions; those conditions
can be saved for future simulations in an action list [34]. The
temperature is set to be at 300K, which falls around the colder
value of the room temperature. Ideally, the temperature on the
rooftops is higher than this. The sun simulation is taken from
the default spectra file of SCAPS named “AM1_5G 1 sun.”

The intended solar cell is designed in SCAPS according
to Figure 1(a), and configurated using the parameters tabu-
lated in Table 1. One of the off-putting points about simula-
tion is that it often deviates from the experimental data. Still,
SCAPS allows us to figure out that deviation by including the
defect parameter option available in the SCAPS software.
Studying the effect of defects is crucial because producing
an ideal film without defects is as much an art as science [43].
Table 2 shows the defect parameters of the constituent layer
from the literature as it is necessary for the practicality and
novelty of our simulation.

3. Results and Discussion

3.1. Optimization of the Absorber Layer. The absorber layer’s
thickness is optimized against the four critical I–V character-
istics: open circuit voltage (Voc), short circuit current density
(Jsc), efficiency (η), and FF by using the batch setup and
recorder setup options for both buffer layer configurations
(ITO/CdS/GeSe and ITO/n-Si/GeSe). The parameters except
FF seem to saturate with an increase in thickness, as shown
in Figure 2(a)–2(d). Jsc can be represented as follows [46]:
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JSC ¼ eG dh þ deð Þ: ð1Þ

The short circuit current density depends on the elec-
tronic charge (e), carrier generation rate (G), and diffusion
lengths of holes (dh) and electrons (de). dh, de, and charge on

an electron cannot change, but the carrier generation rate,
which is a function of the absorption coefficient and thickness
of thematerial, changes. Even if it changes, the generation rate
will have an upper limit depending on the material’s carrier
concentration per unit area, recombination data, etc. This
saturation limit leads the Jsc to saturate (Figure 2(c)) [47].

TABLE 1: SCAPS parameters used in the simulation with the respective references.

CdS [35] GeSe [13, 36] n-Si [37–40] ITO [41]

Bandgap (eV) 2.42 1.14 [13] 1.2 [37] 3.5
Electron affinity (eV) 4.5 4.07 [42] 4 [38] 4.6
Di. permittivity 9 15.3 [13] 9.8 [39] 8.9
CB eDOS (cm−3) 2.2× 1018 4× 1018 [36] 2.58× 1016 [38] 2.2× 1018

VB eDOS (cm−3) 1.8× 1019 1.75× 1019 [36] 2.65× 1016 [38] 1.8× 1019

Electron thermal velocity (cm s−1) 2.6× 107 1× 107 [36] 1× 107 1× 107

Hole thermal velocity (cm s−1) 1.3× 107 1× 107 [36] 1× 107 1× 107

Electron mobility (cm2V−1 s−1) 3.4× 102 1.27× 101 [13] 45 [38] 10
Hole mobility (cm2V−1 s−1) 1× 101 1.12× 101 [13] 47 [38] 10
Shallow donor density (cm−3) 3× 1016 0 [36] 7× 1020 [40] 1× 1021

Shallow acceptor density (cm−3) 0 1× 1016 [36] 0 [38] 0

TABLE 2: Defects parameters of the constituent layer.

ITO [41] CdS, Defect 1 [35] CdS, Defect 2 [35] GeSe [44] n-Si [45]
Defect type Neutral Neutral Single acceptor Single donor Neutral

Capture cross-section electrons (cm2) 1× 10−17 1× 10−12 1× 10−20 1× 10−15 1× 10−14

Capture cross-section holes (cm2) 1× 10−15 1× 10−12 1× 10−11 1× 10−17 1× 10−14

Total defect density (cm−2) 1× 1016 1× 1018 2.9× 1016 1× 1013 1× 1016
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FIGURE 1: Schematic of (a) simple solar cell and (b) an equivalent diode circuit of the solar cell.
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Voc ¼
KT
e

ln
Jsc
Jv

� �
: ð2Þ

Now the open current voltage is a function of Boltzmann
constant (K), temperature (T), electronic charge (e), Jsc, and
Jv. Jv is the volume recombination current density. Usually,
Jsc is weaker than Jv [47], so the value ln Jsc=Jvð Þ also becomes
almost a constant which makes the Voc also constant, as
shown in Figure 2(b). The FF is heavily affected by the inter-
nal electric field [48] when the thickness increases, the inter-
nal electric field reduces and gets deformed, making the FF
reduce with an increase in thickness [46, 48].

η¼ VocIscFFð Þ
Pin

: ð3Þ

Even though the efficiency here depends on a decreasing
FF, the change in FF for thickness is not comparable with the
input power from in the sun (Pin), thus making efficiency (η)
also a reasonably constant value at a larger thickness value as

in Figure 2(a). The thickness value between 2 and 3 µm gives
the best results. Thus, we chose 2 µm as the optimized value
of the absorber layer. Excellent device performance was
achieved at this value, and the related I–V parameters are
tabulated in Table 3. The buffer layer’s unoptimized thick-
ness is 0.5 µm, and the thickness of standard ITO, which is
0.2 µm, is used.

The back contact is connected near the depletion layer
when the absorber layer is thin, especially in a TFPV. The
photons absorbed away from the surface will probably
recombine immediately into the back contact recombination
current [30, 32]. If the absorber layer is too long, the gener-
ated carrier might not have a long enough lifetime to con-
tribute to the diode’s forward current [30, 31]. Comparing
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FIGURE 2: Variation of (a) efficiency (η), (b) open-circuit voltage (Voc), (c) Jsc, and (d) fill factor (FF) versus thickness of GeSe layer.

TABLE 3: I–V characteristics for 2 µm of GeSe-based structure for
different buffer layers.

Buffer layers Voc (V) Jsc (mA cm−2) FF (%) H (%)

CdS 0.8699 35.47 85.84 26.49
n-Si 0.8605 36.37 85.74 26.84
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the mobility of electrons and that of the hole, we need a
thicker absorber layer when compared to the buffer layer
because the carriers of each layer could reach the respective
electrodes at approximately the same time [13, 49].

3.2. Optimization of the Buffer Layer. After optimizing the
absorber layer by fixing an arbitrary thickness of 0.5 µm for
the buffer layer, the buffer layer parameters were optimized.
The smaller the thickness of the buffer layer, the better the
solar cell’s performance, but it should not be too small com-
pared to the depletion layer of the P–N diode. The thinnest
and most economically advantageous thickness for CdS is
0.05 µm, used by many researchers [50]. In the case of the
n-Si layer, it follows similar graphs of CdS results, but there is
a local maximum in Voc and FF graphs before reaching the
lowest value, as shown in Figures 3(a) and 3(b). For the n-Si
layer, the best performance is achieved when the thickness of
the layer is set at 0.4 µm. The final I–V parameters after opti-
mizing the absorber and buffer layers are tabulated in Table 4.
Ideally, the thickness of the buffer layer must be less than the
diffusion length of the holes of the absorber layer so that it
might reach the metal electrode without recombining [49]. It
is how thin absorber layers maximize the current flow [51].

When comparing Tables 3 and 4, we can say that a signif-
icant change occurred once we optimized the buffer layer.

3.3. Contradictory Values of Parameters. In the literature,
there are many values in a particular range for some param-
eters of GeSe. In other words, GeSe seems to have many
different values for a single parameter like bandgap, relative
dielectric permittivity, electron affinity, etc. The value fluctu-
ation may result from preparation methods, various

experimental methods, or other reasons. If someone prepares
GeSe in a laboratory, it might have one of these values or
even lie in this range of values. This section will address the
issue of how the fluctuation of specific parameters can affect
the cell’s performance. The experimental fluctuation of
values is listed in Table 5, along with references.

These bandgap data contain both direct and indirect
bandgap values. The effect of dielectric permittivity does
change the result but only a negligible amount, so it is not
discussed here. Still, the impact of bandgap and electron
affinity is considerable.

The change in I–V parameters due to the change in elec-
tron affinity does saturate after a value in some cases
(Figures 4(b) and 4(c)). In other cases, it does not seem to
influence that much (Figures 4(a) and 4(d)). The bandgap
does produce a whooping change in the intended range in all
I–V parameters. So, these values of the parameters can be
optimized if the cause of the fluctuation is known. This kind
of optimization while preparing is required for a newbie
absorber layer like GeSe to make it a commercially successful
absorber layer for TFPVs.

3.4. Low Interface Defect Technique. Now, the important
layers of the P–N junction solar cell are optimized using
SCAPS. The development of the first experimental data of
a GeSe-based solar cell was reported only in 2017. They
achieved an efficiency of 1.48% [19] of configuration glass/
ITO/GeSe/CdS/Au. This value is not even comparable with
the simulated value due to high defect configuration, which
may have resulted from microcracking, native oxide

TABLE 4: I–V parameters after optimization of the buffer layer.

Buffer layers (µm) Voc (V) Jsc (mA cm−2) FF (%) H (%)

CdS, 0.05 0.8724 38.975 85.84 29.19
n-Si, 0.4 0.8606 37.28 85.76 27.52

TABLE 5: Fluctuating parameters and their respective references.

Fluctuating parameter Fluctuating values with references

Bandgap (eV)
1.075 [52], 1.14 [13], 1.25 [53],

1.45 [47, 48], 1.53 [7]
Electron affinity (eV) 4.07 [42], 3.2 [54], 3.8 [55]
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formation, antisite defects, etc. GeSe is only a recently
developed functional material, so many techniques exist to
enhance its performance. Like selenization of the GeSe
absorber layer, etching of the absorber layer to enhance the
absorbance, determining the best annealing temperature,
change in configuration design, etc. One of the design
improvements GeSe can take is that it should undergo a
substrate configuration instead of a simple superstrate
configuration. In other words, the deposition of CdS must
be on GeSe and not the opposite. Most of the GeSe cells that
have been reported are of superstrate configuration, as
shown in Figure 5(b) [56, 57].

Deposition of the GeSe on a buffer layer requires a
higher temperature, like 550°C [24, 58, 59], even though
the crystallization temperature of GeSe is about 300°C [60].
This high-temperature treatment might lead to diffusion of
the buffer layer constituents into the absorber layer, even-
tually leading to deep defects [25]. When the cell is pre-
pared in substrate configuration, as shown in Figure 5(a),
the deposition can be done in low-temperature methods
like sputtering, chemical bath deposition, etc. [61]. It is

how we can avoid annealing the absorber layer and the buffer
layer. Whether this deep defect, which arose from annealing,
leads to the low performance of the device built is not yet [25].
However, SCAPS allows us to find if the deep defects can have
such an influence. Thus, the device efficiency against the
interface defect density of the GeSe/CdS interface in super-
strate configuration is analyzed, as shown in Figure 5(b). It
was done using the same structure mentioned by Xue et al.
[19], hoping to get results similar to that of the first experi-
mental data of the GeSe-based solar cell developed in 2017.
The results are given in Figure 6 and Table 6.

The results show that the simulated efficiency and FF are
close to the experimental value, as shown in Figure 7.

Still, the Voc and Jsc are not comparable to the experimental
value, so by looking at the results, we can safely say that diffusion
of buffer layer constituents may not be the only reason for the
deviated value. However, the efficiency is heavily affected by this
(Figure 6). Thus, tackling this problem by adopting substrate
configuration will experimentally lead to better results. Many
other experimental techniques for the improvement of GeSe-
based solar cells are well described by Liu et al. [6].

1.2

3.0

3.2

3.4

3.6

3.8

4.0

1.11.0
Open circuit voltage (v)

Ba
nd

ga
p 

(e
V

)

El
ec

tro
n 

af
fin

ity
 (e

V
)

0.8 0.90.7

1.0

1.1

1.2

1.3

1.4

1.5

1.6

Bandgap
Electron affinity

ðaÞ

28

3.0

3.2

3.4

3.6

3.8

4.0

2624
Efficiency (%)

Ba
nd

ga
p 

(e
V

)

El
ec

tro
n 

af
fin

ity
 (e

V
)

18 222014 16

1.0

1.1

1.2

1.3

1.4

1.5

1.6

Electron affinity
Bandgap

ðbÞ

90

3.0

3.2

3.4

3.6

3.8

4.0

898887
Fill factor (%)

Ba
nd

ga
p 

(e
V

)

El
ec

tro
n 

af
fin

ity
 (e

V
)

85 8684

1.0

1.1

1.2

1.3

1.4

1.5

1.6

Bandgap
Electron affinity

ðcÞ

40

3.0

3.2

3.4

3.6

3.8

4.0

35
Short circuit current density (mA cm–2)

Ba
nd

ga
p 

(e
V

)

El
ec

tro
n 

af
fin

ity
 (e

V
)

25 3020

1.0

1.1

1.2

1.3

1.4

1.5

1.6

Bandgap
Electron affinity

ðdÞ
FIGURE 4: Variation of (a) Voc, (b) η, (c) FF, and (d) Jsc with bandgap and electron affinity.

6 Journal of Nanomaterials



3.5. Role of Hole Transport Layer. To improve the cell’s per-
formance further, we must analyze the energy band diagram
of our cell. Figure 8(a) represents the energy band diagram of
our optimized layers along with its bandgap. The ITO/CdS/
GeSe configuration has a Voc of 0.87 eV, as in Table 4. When
the Voc of the cell is significantly less than the bandgap of the
absorber used, we can say that significant recombination
dominates the Voc and Jsc.

Suspecting that this recombination happens in the
metal–GeSe junction at the back of the cell, we can analyze
the band bending before and after reaching equilibrium during
the junction formation. The metal–GeSe junction is diagram-
matically represented in Figure 9. This metal–semiconductor
contactmust be rectifying or ohmic. Rectifying contact forms a
Schottky barrier/Schottky diode [62, 63]. The conditions for
forming a Schottky barrier differ based on the semiconductor

type, P or N [62, 63], which are tabulated in Table 7.Wm is the
work function of the metal used, andWsc is the work function
of the semiconductor. For P-type semiconductors, ohmic con-
tact is a hole-allowing contact, and rectifying contact is a hole-
blocking contact [63, 64].

The Fermi level of the GeSe is lower than that of the
metal, as in Figure 9(a). When the junction is set, the Fermi
level of both materials gets aligned. There is a transfer of
electrons from the metal to the semiconductor until the
equilibrium is reached. The semiconductor bands must
bend in the downward direction, thus forming a rectifying
contact [63, 65]. The initial Fermi level (green) is below the
final Fermi level (purple), as shown in Figure 9(b). The
usual IV curve of a solar cell will show a negative current
for an appreciable positive voltage. The current flows from
the semiconductor to the metal, so the electron must flow in
the opposite direction. As the name of the contact suggests
hole blocking contact, the downward bending of the bands
prohibits quite a few electrons with lower energy from
entering the valance region of the semiconductor, as
described in Figure 9(b). Thus, the holes are unable to enter
the valance region of the metal. It happens purely because
of the shape of the bending of the semiconductor bands.
Thus, the rejected holes recombine with the minority car-
riers (electrons) in the P-type material. These holes could
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TABLE 6: The I–V parameters of the first GeSe solar cell in 2017.

I–V parameters Values [19]

Voc (V) 0.24
Jsc (mA cm−2) 14.48
FF (%) 42.60
H (%) 1.48
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have been harvested to increase the cell’s performance, con-
tributing to bulk recombination. To tackle this, we intro-
duce a thin layer of P+-type material which is, in our case,
cuprous oxide (Cu2O), a HTL. HTLs have higher acceptor
density, which makes our solar cell into a P+PN structure
instead of an ordinary P–N junction. Since we are putting
this layer between the back contact and the absorber layer,
this layer is also called a back surface field layer. The band
energy diagram after inserting the HTL layer is given in
Figure 8(b).

We again need to analyze themetal–P+ junction to under-
stand hole the HTL layer makes a difference. We can see that
the Fermi level of the P+-type layer is higher than that of the
metal, as shown in Figure 10(a). So, during alignment to
match the Fermi levels, the bands must bend up this time.
We can see that the initial Fermi level (red) is above the final
Fermi level (purple) in Figure 10(b). The upward bending of
the band allows even the lower energy electrons to enter the
valance region of the semiconductor. It again happens
because of the shape of the bending of the semiconductor
conduction bands. Thus, the electrons and holes are saved
from recombination, increasing the cell’s performance instead
of contributing to bulk recombination. We used cuprous
oxide as HTL in ITO/CdS/GeSe and ITO/n-Si/GeSe to com-
pare its performance by analyzing its I–V curves, as shown in
Figure 11 and Table 8. The parameters used for the simulation
of the Cu2O layer was obtained from reference [66].

The n-Si and CdS buffer layer cell structures with no
HTL are similar. There is much improvement as we added
the back surface layer to our existing structure. The Voc of the
ITO/CdS/GeSe/Cu2O configuration is the only one that is
approximately equal to the bandgap of the absorber. Hence,

it means that there was dominant recombination due to bulk
recombination in the ITO/CdS/GeSe configuration, which
has been reduced by introducing an HTL. There is an
improvement in Jsc in the case of CdS buffer cells but not
in n-Si buffer cells. The efficiency of both buffer cells has seen
improvement.

The work based on GeSe solar cells is compared with other
experimental and theoretical results, as shown in Table 9.

3.6. Temperature Effect on the I–V Parameters and Stability
Comparison. As discussed in the Introduction section, the
rooftops where the solar panels are usually placed are not
300 K. In an average tropical country, the temperature ranges
from 295 to 308K. Thus, we also optimized the effect of
temperature on the performance of the I–V parameters, as
shown in Figure 12(a)–12(d).

All the parameters get slightly decreased with an increase
in temperature except for Jsc. Since the absorber layer is a
semiconductor, the conductivity increases with the tempera-
ture. All the increases and decreases of the I–V parameters
are not very dominant in the plots. Thus, the typical natural
temperature range would not affect the device’s performance
much. All these characteristics are in much so favor of prov-
ing that GeSe-based thin film solar cells are worthy of invest-
ing our time and money in. Another important reason why
GeSe is worthy enough is its stability. There is a good amount
of evidence to attribute this stability to the Ge (4s) and Se
(4p) bonding [26, 70]. The stability is enough to be approved
by the IEC following the code IEC 61646 used for the thin
film solar cells commercialization [26, 71]. Here are some
existing data that have proven the stability of GeSe engi-
neered in different configurations of solar cells. These solar
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cells had no encapsulation during the stability measurements
(Table 10).

4. Conclusion

TFPVs are better than Si-based solar cells in terms of cost. We
choose GeSe for this particular paper because of its earth’s
abundance, nontoxic constituents, and optimal absorption
coefficient for thin film PVs. The optimal thickness of GeSe
was 0.2 µm for ITO/CdS/GeSe and ITO/n-Si/GeSe configura-
tions. The I–V parameter of ITO/CdS/GeSe came up to be

PCE= 26.49%, VOC= 0.8699V, JSC= 35.47mA cm−2, FF=
85.84%, and of ITO/n-Si/GeSe came up to be PCE= 26.84%,
VOC= 0.8605V, JSC= 36.37mA cm−2, and FF= 85.74%.
Optimization of the buffer layers (CdS—0.05 µm, n-Si—
0.4 µm) led to an increment in the cell’s performance. We
also saw that the fluctuation of the bandgap is far more con-
cerning than the fluctuation of electron affinities because the
change in electron affinity affects the efficiency and FF of the
cell but up to a limit.

In contrast, the change in bandgap affects all the I–V
parameters very much. Switching to a substrate configuration
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TABLE 7: Ohmic and rectifying contact conditions.

Semiconductor type Rectifying contact Ohmic contact

P-type Wm<Wsc Wm>Wsc
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from a superstrate configuration is essential as the simula-
tion proved that the diffusion-caused interface defect den-
sity would drag the efficiency at an alarming rate. The
introduction of the HTL layer boosted the performance of
all the configurations of GeSe solar cells. A notable increase
happened with ITO/CdS/GeSe when the Cu2O was included
to make it ITO/CdS/GeSe/Cu2O the Voc increased from 0.87
to 1.04V. The Jsc increased from 38.97 to 39.66mA cm−2, and
the efficiency rose from 29.19% to 33.12%. The FF was slightly
decreased instead of increase in this particular configuration.
The logic behind introducing the HTL relies on the band
bending while forming the contact was discussed well. The
average temperature range of a tropical country (295–308K)
does not influence the solar cell in great lengths simulation-
wise. This theoretical paper aims to back up the statement,
“GeSe-based PV panels are a very fair option for Green energy

generation, and with enough research time and budget, it can
potentially be the best option for green energy generation.”
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TABLE 8: I–V parameters of with and without HTL configurations.

Configuration Voc (V) Jsc (mA cm−2) FF (%) H (%)

ITO/CdS/GeSe 0.87 38.97 85.84 29.19
ITO/CdS/GeSe/Cu2O 1.04 39.66 80.23 33.12
ITO/n-Si/GeSe 0.86 37.28 85.76 27.52
ITO/n-Si/GeSe/Cu2O 0.88 37.28 85.84 28.39

TABLE 9: Comparison with other theoretical and experimental results.

Ref. Configuration Voc (V) Jsc (mA cm−2) FF (%) η (%)

[19] ITO/CdS/GeSe 0.24 14.48 42.6 1.48
[25] ITO/CdS/GeSe 0.33 20.1 47.1 3.1
[67] FTO/CdS/p-GeSe/Au 0.135 12.61 38.2 0.65
[68] ZnSe/GeSe/WSe2 1.07 47.84 82.80 42.18
[69] AZO/i-ZnO/CdS/GeSe/NiO/Au 0.903 39.79 87.28 31.37
This work ITO/CdS/GeSe/Cu2O 1.04 39.66 80.23 33.12
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