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This study investigates the colloid systems and interfaces stability of cerium oxide nanoparticles in aqueous environments as a
function of pH, monovalent cations (Na+) and divalent cations (Ca2+), and humic substances (humic acid (HA) and fulvic acid
(FA)). Results show that the solution chemistry affected the colloidal stability and aggregation kinetics of CeO2 NPs. The pH point
of zero charge (pHPZC) of CeO2 NPs was measured at pH 10.2 with diameter of CeO2 NPs aggregates of ∼1,700 nm. The effects of
Na+ and Ca2+ and HA and FA on the magnitudes and rates of aggregation were pH-dependent. In addition, when salts were
present in the aqueous systems, although the CeO2 NPs were stable at pH< pHPZC (expect for 1mM of NaCl/CaCl2) and pH>
pHPZC (except for 0.5mM CaCl2), the aggregation was enhanced at pH= pHPZC, with the diameter of CeO2 NPs in the
∼1,300–3,600 nm range. HA also stabilized CeO2 NPs under pH> pHPZC with an enhanced aggregation of pH= pHPZC with
the diameter of CeO2 NPs in the ∼1,500–1,900 nm range, and in the presence of 0 and 1mM of NaCl/CaCl2 at pH< pHPZC. At
three pH levels (8.2, 10.2, and 12.2) and under all different electrolyte concentrations (0–1mM of NaCl or CaCl2), FA (0.14mg/L)
exhibited a greater degree of efficiency in stabilizing CeO2 NPs than HA (5mg/L), with CeO2 NPs aggregates growing at low rates
and resulting in diameter of ∼95–115 nm.

1. Introduction

Revolutionary advances in the field of nanoscience and nano-
technology have played a key role in the development of new
materials and technologies for products and applications to all
the sectors of industry—agriculture, manufacturing, and
services—and have impacted our daily life. Among the nano-
particles engineered in nanoscience, the metal nanoparticles
(NPs) CeO2NPs are a common nanomaterial used increasingly
in products and applications [1, 2]. CeO2 NPs have unique
physicochemical properties, such as strong ultraviolet (UV)
radiation absorbing capacity, high capacity for donating and
storing oxygen, and low CeIV/CeIII redox potential [3–6]. CeO2

NPs are used in exhaust gas catalysts in diesel fuel additives
[7–9], capacitors and semiconductors in electronic devices
[10, 11], antioxidants in medical products [12], UV-blocking

agents in sunscreen [7], and polishing agents in manufacturing
glass [8].

With the increasing use in products and applications, the
presence of CeO2 NPs in environmental components, such as
soil, sediments, water, air, and biota, is inevitable. Although
CeO2 NPs in diesel fuel additives increase the efficiency of
trapping particulate matter and decrease NOx emissions dur-
ing combustion in engines, CeO2 NPs are present in the
exhaust emissions that discharge into the air [7, 13, 14].
CeO2 NPs released from fertilizers can also contaminate the
soil. The estimated CeO2 NPs concentrations in biosolids,
which are calculated by using 2010’s market study production
estimates in three metropolitan areas (New York, Shanghai,
and London), range from 0.53 to 9.1mg/kg [15, 16]. By using
the samemethod of estimation, the range of the concentration
of CeO2 NPs released from wastewater treatment plants into
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waterbodies is 0.003–1.17 µg/L [15, 16]. Other possible
sources of release of CeO2 NPs into soil and water systems
include discarded electronics or residue from coatings or sun-
screen products [1, 17]. Once released into the environment,
CeO2 NPs may be contaminant carriers or serve as ecological
and public health threats themselves.

The toxicity effects of CeO2 NPs on plants, such as let-
tuce, rice, cucumber, tomato, and soybean, have been inves-
tigated [18–26]. For example, although the addition of CeO2

NPs to fertilizer may enhance root growth in rice seedlings
[27], it can alter the composition and nutritional values of
crop plants, such as soybeans, cowpeas, corn, and mungbean
[27–30]. Some studies have also involved determining the
toxicity of CeO2 NPs on microorganisms. Microbial commu-
nities were found to be inhibited by CeO2 NPs during the
wastewater treatment process [12]. The activities of soil
enzymes in a soil–plant system were also affected by CeO2

[31]. CeO2 NP toxicity to invertebrates on land and in water
systems has also been reported in studies involving earth-
worms, nematodes, algae, and phytoplankton [15, 32–34].

The transport of CeO2 NPs in natural porous media (e.g.,
soil and aquifer systems) and in engineered porous media
(e.g., sand filtration systems) was also the subject of study
[35–40]. In terms of the physicochemical parameters, CeO2

NP transport in saturated sand-packed columns was hin-
dered in the presence of NaCl with high ionic strength (IS)
values (larger than 10mM) at pH 3 [37]. Organic matter
enhanced the stability and mobility of CeO2 NPs in the
presence of 1mM NaCl at pH 6.5 [41]. The increase of HA
concentration from 0 to 10mg/L or the decrease of IS from
100 to 1mM markedly facilitated the transport of CeO2 NPs
more than the influence of the increase of pH from pH 7 to
10 [38]. The retention of CeO2 NPs was observed in loamy
sand as well as under high concentration levels of CaCl2 and
MgCl2 at pH 8 [39].

Colloidal stability and aggregation state of engineered
nanoparticles—such as CeO2 NPs—are key criteria govern-
ing the environmental behavior of nanoparticles [42, 43].
The stability of nanoparticles controls their fate and trans-
port in terrestrial and aquatic systems, bioavailability, and
toxicity, as the size of the nanoparticles/nanoaggregates is
essential in determining their reactivity [44, 45]. The stability
of CeO2 NPs is a function of their size [46–48], surface
chemistry and capping agent [47, 49, 50], and surface charge
[51, 52] which is influenced by the physicochemical condi-
tions of the soil water environment the nanoparticles
encounter, such as pH [45, 48, 53–56], IS [43, 53, 56–58],
electrolyte types [48, 52, 56, 59, 60], and organic compounds
[47, 52–54, 61, 62], including humic acid (HA) [43, 57, 63]
and fulvic acid (FA) [45, 58, 63, 64].

In terms of various environmental parameters, one of the
most importance of which was pH, the colloidal stability and
aggregation of engineered nanoparticles were the subject of a
number of studies [65–67]. The pH of suspensions affects the
surface ionization of nanoparticles. The stability of NPs has
been investigated in different electrostatic scenarios related
to pHPZC, specifically pH> pHPZC, pH= pHPZC, and pH<
pHPZC [45, 68, 69]. For example, the pHPZC of the uncoated

CeO2 NPs, which had a primary particle diameter 28Æ 10 nm
and a specific surface area 27.2Æ 0.9m2/g, is equal to 6.8Æ
0.1 [45]. An increase of the pH from 3 to 10 decreased the zeta
potential from positive to negative values. Further, the size of
the CeO2 NP nanoaggregates was lower than 200 nm at pH<
pHPZC and reached 800–1,500 nm at pH= pHPZC.

IS plays an important role in controlling the behavior of
NP stability [70–76]. The increase of IS, affecting NPs by
electric double layer (EDL) compression, zeta potential
reduction, and charge reversal by counterions, generally
enhances NP aggregation [17, 77, 78]. Electrolyte valence is
also an additional and important factor for determining the
aggregation efficiency of electrolytes. For example, at pH 4.8
and 0.0128M, CaCl2 had a faster rate of aggregate formation
of TiO2 NPs than that of NaCl [79]. Other research also
demonstrated that a lower critical coagulation concentration
(CCC) was observed in CeO2 NPs for Ca2+ (16mM) than
Na+ (80mM) with a proportionality fraction of z−2.3 where
z is the counterion valence [52].

Natural organic matter (NOM), which contains humic
substances (HS), polysaccharides, algal, and bacterial resi-
dues, also affects the stability of NPs [45, 80]. As a major
component of NOM, HS is present in soil, water, and geo-
logical organic deposits. HS in natural water systems, which
compose 20%–50% of NOM in the aquatic environment,
have three components: HAs, FAs, and humin [45, 81]. HS
functional groups, such as carboxylate, phenolate, amino,
and thiol, can attach themselves to minerals or metal oxide
bulk particles and NPs [82, 83]. NPs stability is affected by
the NOM coating formation types on NP surfaces [84]. In
addition, the concentration, composition, molecular mass,
hydrophobicity, and polarity of NOM and the couple effects
of NOM and pH, or different types of cations, also determine
NP stability [85–87]. For instance, the stability of CeO2 NPs
and complexes of FA and CeO2 NPs were studied at three pH
levels (3, 7, 10) that corresponded to the positive (pH<
pHPZC), neutral (pH= pHPZC), and negative (pH> pHPZC)
surface charge of CeO2 NPs, respectively [45]. The environ-
mental amount of FA (2mg/L) at pH 3 (pH< pHPZC) was
capable of stabilizing CeO2 NPs. The CCC of CeO2 NPs for
KCl shifted to higher levels (>500 mM) as the SRHA
concentration increased (from 0 to 10mg/L) at pH 5.7 [47].
At pH 5.7 and at a low SRHA concentration (1mg/L), SRHA
stabilized the CeO2 NPs at a high KCl concentration
(500mM) [47].

Despite significant advances in the understanding of the
mechanisms and parameters that govern the fate and behav-
ior of engineered nanomaterials (ENMs) in the environment,
“many knowledge gaps remain” [42]. Studying ENMs in
“more complex real-world systems” and “relevant environ-
mental systems” [42], as in aquatic systems, is essential to
further the understanding of the fate and transport of ENMs
in the earth’s system of natural resources and to formulate
regulations on their discharge in the aquatic, terrestrial, and
atmospheric systems [42, 43].

Therefore, it is critical to further the understanding of the
fate and behavior of prominent ENMs, like CeO2 NPs, in
complex environmental systems for the purpose of protecting
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the ecosystems and human health [42, 43]. Most of all,
knowledge of the “aggregation state” and “characterization
of homo- and heteroaggregates” of ENMs in aquatic and
terrestrial systems needs to be improved, as outlined by
Surette et al. [42] in their assessment of research needs in
the field of ENMs and their interactions with the environ-
ment. Moreover, Surette et al. [42] highlighted the need to
explore the effects of specific physicochemical parameters of
aqueous systems on ENMs. These parameters include “IS/
composition, pH, and organic matter” and relate to research
needs focusing on “experimental condition” as proposed by
Surette et al. [42]. It also responds to the necessity to con-
duct studies exploring the fate of ENMs in aquatic systems
as mentioned by Bathi et al. [43].

Understanding of the synergistic effect of the physical
and chemical properties of CeO2 NPs and the chemistry of
their environment—pH, ionic composition, and NOM (HA
and FA)—is essential to further the understanding of the
processes governing the colloidal stability, interfacial inter-
actions, and aggregation of CeO2 NPs in water and environ-
mental systems. Interfacial interactions govern the behavior
of CeO2 NPs in the environment, and their threat to public
health and the environment. Yet, the synergy between CeO2

NPs as a function of pH, ionic composition, and organic
matter that induces alterations in colloid systems and inter-
faces stability is complex and varied. Then, it is crucial to
investigate the self-interactions between CeO2 NPs, the inter-
actions between CeO2 NPs and monovalent/divalent cations,
and the interactions between CeO2 NPs and monovalent/
divalent cations-humic substance systems under different
pH conditions, as well as their ensuing assemblage of struc-
tures/aggregation in order to discover their affect on the
colloidal phenomena and interfacial interactions of CeO2

NPs in aqueous environments.
As discussed in our recent study titled “Colloidal phe-

nomena and aggregation mechanisms of cerium oxide nano-
particles in aqueous systems: Effects of monovalent and
divalent cations, and Suwanee River humic and fulvic acids,”
colloid systems and interfaces stability of CeO2 NPs in aque-
ous systems are impacted by electrolytes and organic matter
[88]. Therefore, the objectives of this study are to (1) analyze
the colloidal phenomena and interfacial interactions of CeO2

NPs as a function of pH and determine the pHPZC, (2) inves-
tigate the colloidal phenomena and interfacial interactions of
CeO2 NPs at three different pH regimes which relate to
pHPZC (below, at, and above pHPZC) along with monovalent
and metallic cation Na+ or divalent and metallic cation Ca2+,
and (3) study the colloidal phenomena and interfacial inter-
actions of CeO2 NPs at three different pH regimes which
relate to pHPZC (below, at, and above pHPZC) along with
metallic cations (Na+ or Ca2+)—HS (HA or FA). A
laboratory-scale batch experiment approach was conducted
to assess and quantify the influence of pH, metal cations, IS,
HA, and FA on the colloidal phenomena and interfacial
interactions of CeO2 NPs. Measurement techniques of
dynamic light scattering (DLS) and electrophoretic light
scattering (ELS) were utilized to determine the hydrody-
namic diameter and zeta potential of CeO2 NPs, respectively.

Aggregation kinetics and attachment efficiency were calcu-
lated from the laboratory scale batch experimental data. The
net energy versus interparticle distance for CeO2 NPs in
water and environmental systems were estimated using the
Derjaguin, Landau, Verwey, Overbeek (DLVO) theory, i.e.,
the sum of van der Waals attraction and EDL repulsion
between two approaching particles.

The novelty of this research consists of the analysis of the
mechanisms governing the interfacial interactions between
the surface of CeO2 NPs as a function of pH, ionic composi-
tion, and Suwanee river humic and fulvic acids, the descrip-
tion and measurement of the dynamic growth of these
nanoaggregate–CeO2 complexes, and the evaluation of their
colloidal stability in aqueous environment.

2. Materials and Methods

2.1. Materials

2.1.1. CeO2 NP Stock Suspensions. CeO2 NPs were obtained
in the form of cerium (IV) oxide nanoparticles from
Sigma–Aldrich (Saint Louis, MO). According to the manu-
facturer, the average particle size and density of CeO2 NPs
are below 25 nm and 7.13 g/cm3 at 25°C, respectively. The
particle size of CeO2 NPs was obtained by application of the
Brunauer, Emmett, and Teller (BET) theory, and the struc-
tural conformity of the CeO2 NPs was measured by X-ray
diffraction, as stated in the product information from Sig-
ma–Aldrich. Every CeO2 NP stock suspension (250mg/L)
was prepared according to the following dispersion protocol.
First, a UMT2 ultramicrobalance (Mettler Toledo, Colum-
bus, OH) in a Nano Enclosure Xpert®, 38,872 series (Lab-
conco, Kansas City, MO) was used to weigh 250mg of
cerium (IV) oxide nanoparticles. Next, the weighted cerium
oxide (IV) nanoparticles were dispersed in 80mL ultrapure
deionized (DI) water (18.2MΩ cm) (Millipore Corporation,
Billerica, MA) by ultrasonication, and diluted to a 1 L sus-
pension. An ultrasonic liquid processor (S-4000, output
power 600W Max and output frequency 20KHz, Misonix,
Newton, CT) was used for the ultrasonication of the CeO2

NP stock suspensions with the following settings: an ampli-
tude of 45, a power of 45W, and a sonication of 4min.

2.1.2. HA and FA Stock Suspensions. Suwannee River humic
acid (SRHA) (standard II, 2S101H) and Suwannee River
fulvic acid (SRFA) (standard II, 2S101F) were obtained
from the International Humic Substances Society, St. Paul,
MN. A 50mg/L SRHA stock suspension was first made by
dissolving 50mg of SRHA in 1 L of ultrapure DI water. A
1.41mg/L of SRFA stock suspension was next prepared by
dissolving 1.41mg of SRFA powder in 1 L of ultrapure DI
water. Both SRHA and SRFA suspensions were then filtered
through Whatman™ hardened ashless filter papers, i.e., cot-
ton filters made of high-quality cotton linters (Whatman
quantitative filter paper, hardened ashless, Grade 542, GE
Healthcare Life Sciences, Little Chalfont, UK) with nominal
particle retention rating of 2.7 μm. The 50mg/L SRHA and
1.41mg/L SRFA suspensions were stored in the dark at 4°C
in a refrigerator.
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2.2. Preparation of CeO2 NP Suspensions. CeO2 NP stock sus-
pension was sonicated in an ultrasonic bath (CPX2800H,
Branson Ultrasonics Corporation, Danbury, CT) with settings
of 110W for power (maximum power) and 40KHz for fre-
quency for 30min prior to use. A diluted CeO2 NP suspension
(25mg/L) was obtained by mixing 10mL of CeO2 NP stock
suspension with 90mL of solution with specific IS in the
absence and presence of SRHA or SRFA. The pH values, which
ranged from 1 to 14 for the diluted CeO2 NP suspensions
(25mg/L), were adjusted with HCl or NaOH (BDH®, VWR
International, LLC, Radnor, PA) at different concentrations
(0.01, 0.1, and 1M) and measured with a FiveEasy™ Plus
pH meter (Mettler-Toledo, Colombus, OH). Once the pHPZC

was determined from the analysis of the zeta potential mea-
surements, two other pHs, which were above and below the
pHPZC, were selected for the later three pH region experiments.

Four concentrations (0.05, 0.1, 0.5, and 1mM) and one
control (0mM) of NaCl (Fisher Scientific, Fair Lawn, NJ)
and CaCl2 (Amresco, Solon, OH) were prepared to obtain
specific IS for each CeO2 NP suspension. In addition, HA
(5mg/L) and FA (0.14mg/L) were prepared using the spe-
cific IS concentration solutions (0, 0.1, and 1mM) to obtain
specific HS and IS conditions for each CeO2 NP suspension.

Three pHs, greater than, equal to, and less than the
pHPZC, were then adjusted to obtain different pH–IS and
pH–HS system suspensions. All the suspensions in the dif-
ferent pH–IS or pH–HS systems were prepared by diluting
250mg/L CeO2 NP stock suspension with specific IS or spe-
cific HS suspension and IS solution in 100 mL beakers
employing a magnetic stirring system. The HCl and NaOH
were used to adjust the pH of each suspension. The suspen-
sion was stirred until reaching the specific pH. All the sus-
pensions were produced in four replicates (sets) for
subsequent DLS and ELS analyses. A summary of the solu-
tion chemistry of the CeO2 NP suspensions analyzed in this
study is given in Table 1.

2.3. Aggregation Experiments. These diluted 25mg/L CeO2

NP suspensions were sonicated with the Misonix S-4000 ultra-
sonic liquid processor (50 amplitude and 45W power) for 4
min before testing. A NanoBrook 90Plus Zeta Particle Size
Analyzer (Brookhaven Instruments Corporation, Holtsville,
NY) was used to characterize the aggregation behavior of the
CeO2 NPs. The maximum value of automatic measurements
for each run in this analyzer’s setting was 10 with manual
operation required between two runs to obtain continuous
data in approximately 1 hr. DLS was used to analyze the hydro-
dynamic diameters of CeO2 NPs in one set of pH–IS or pH–HS
system suspensions over approximately 1 hr. ELS also over an
hour was then used to measure the zeta potentials of CeO2 NPs
in another set of both pH–IS and pH–HS system suspensions.

2.3.1. Particle Size Measurements. A NanoBrook 90Plus Zeta
Particle Size Analyzer from Brookhaven Instruments Corpo-
ration (Holtsville, NY) was employed to analyze the particle
size and to determine the hydrodynamic diameter of the
CeO2 nanoaggregates as a function of pH, ionic composition,

SRHA, and SRFA. DLS measurements were used to establish
the CeO2 nanoaggregate sizes with the DLS measured by
introducing the suspensions into BI-SCP plastic cells (10W×
10 L× 52Hmm, 3.5mL). Performed over a period of approx-
imately 1 hr for each sample, the DLS was measured in an
array of 31 runs, with each composed of 10 measurements
with a 10 s time interval between them. The time separating
the DLS runs was accounted for when reporting the DLS
measurements. All DLS measurements were taken at 25°C.

2.3.2. Zeta Potential Measurements. A NanoBrook 90Plus
Zeta Particle Size Analyzer from Brookhaven Instruments
Corporation (Holtsville, NY) was employed to measure the
zeta potential of the CeO2 nanoaggregates with respect to pH,
electrolytes, IS, SRHA, and SRFA. The zeta potential of the
CeO2 nanoaggregates was analyzed by placing 1.5mL of the
nanoparticles suspension in BI-SCP plastic cells followed by
ELS measurements. The ELS was measured at 25°C for each
sample within 1 hr to establish the zeta potential of these
CeO2 nanoaggregates. ELS measurements were taken contin-
uously with the data collected and categorized every 10min.
The number of zeta potential measurements within 1 hr var-
ied because the setting for data reading was observations of
less than 0.05 relative residual. The time elapsing between the
ELS runs was accounted for when reporting the ELSmeasure-
ments. All ELS measurements were taken at 25°C.

2.4. Aggregation Kinetics Analysis. Nanoparticle aggregation
kinetics were determined by monitoring the hydrodynamic
radius αh as a function of time (t). The initial rate of change
of αh was proportional to the initial aggregation rate constant
k11, as well as the initial particle concentration N0, and
expressed as follows:

dαh tð Þ
dt

� �
t→0

∝ k11N0: ð1Þ

The k11 was determined by using a linear correlation
function to the experimental data during the early stage of
aggregation (i.e., the first 600 s) [89–91]. The aggregation
kinetics of each suspension were calculated using the data
of the hydrodynamic radius of CeO2 NPs obtained by DLS.

3. Results

3.1. Effect of pH on Stability of CeO2 NPs. To establish the
effect of pH on the stability of CeO2 NPs, ELS, and DLS
methods were used to measure the variation of surface
charge and average hydrodynamic diameter. Figure 1 shows
the average zeta potential and hydrodynamic diameter of
CeO2 NPs of approximately 1 hr measurements as a function
of pH values ranging from extremely acidic (pH 1) to
extremely basic (pH 14). The zeta potential of CeO2 NPs
was 10.28Æ 24.48mV, and the average hydrodynamic diam-
eter of CeO2 NPs was 1,056.85Æ 345.63 nm at pH 1. When
the pH of aqueous suspension changed from acidic to basic
conditions (pH 2–12), the average zeta potential of CeO2

NPs varied from positive values (e.g., 52.53Æ 10.26mV at
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pH 4) to negative values (e.g., −52.76Æ 12.46mV at pH 12),
and the size of CeO2 nanoaggregate was stable around
100 nm except at pH 10. The pHPZC of CeO2 NPs was
10.2, where the surface charge of CeO2 NPs was neutralized,
i.e., zeta potential was close to 0mV. The CeO2 NP nanoag-
gregate size increased significantly (1,202.14Æ 442.86 nm) at
pH 10, which was close to pHPZC (Figure 1). Additionally,
the hydrodynamic diameter reached about 1,500 nm, and the
absolute average zeta potential was less than 10mV at pH 13
and 14. Figure 2 presents results from the aggregation pro-
files, i.e., a series of aggregation experiments measuring the
hydrodynamic diameters of CeO2 NPs as a function of time
by DLS, over pH values ranging from 1 to 14. After approxi-
mately 1 hr of incubation (i.e.,∼1 hr), the CeO2 NPs increased
to the micron level at pH 1, 10, 13, and 14 (Figure 2). How-
ever, the hydrodynamic diameter of CeO2 NPs was constant
at other pH values (2–9 and 11–12) and close to 100 nm
(Figure 2). The average hydrodynamic diameter of CeO2 NPs
during the first 100 s and at ∼1 hr at pH ranging from 1 to 14
is displayed in Table S1. The size distribution represents the
hydrodynamic diameter of NPs in different size ranges in
order to analyze the size of NPs distributed at a time interval.
The particle size distribution of CeO2 NPs during the first 100
s and at ∼1 hr at pH ranging from 1 to 14 is presented in
Figure S1. The initial constant k11 aggregation rate represents
the aggregation kinetics, which ranged between 0.80 and 1.50
nm/s at pH 1, 10, 13, and 14 (Figure 3). However, k11 was less
than 0.10 nm/s at other pH values (2–9 and 11–12).

3.2. Impact of pH and NaCl on Stability of CeO2 NPs. The
effects of NaCl concentrations on CeO2 NPs stability in three
pH domains representing the three electrostatic states—pH=
8.2< pHPZC, pH= 10.2= pHPZC, and pH= 12.2> pHPZC—

were examined by measuring the surface charge and size of
nanoparticles using ELS and DLS methods.

3.2.1. Positively Charged CeO2 NPs in the Presence of NaCl
(pH = 8.2 < pHPZC). The aggregation experiments were con-
ducted at pH 8.2 (pH< pHPZC), where CeO2 NPs were posi-
tively charged in the absence of NaCl (Figure 1). The
aggregation profiles and average zeta potentials of CeO2

NPs at pH value of 8.2 and in the presence of monovalent
NaCl salt at various concentrations are presented in
Figures 4(a) and 4(b) and Figures 5(a) and 5(b), respectively.

The surface charge reflects the inclination of aggregation
or stabilization of NPs. In terms of time, the surface charge of
CeO2 NPs in the presence of NaCl at each NaCl concentra-
tion at each 10min interval in 1 hr was relatively stable. It is
independent of time at pH< pHPZC (Figures 5(a) and 5(b)
and Table S2). However, when considering the concentration
of NaCl, the zeta potential decreased from around 21mV to
around 10mV when the concentration of NaCl augmented
from 0 to 1mM. The Pearson’s correlation coefficients for
the ξ potential values of CeO2 NPs and time at pH 8.2 in
concentration of NaCl 0, 0.05, 0.1, 0.5, and 1mM are 0.10,
0.84, −0.28, 0.56 and −0.76, respectively.

The results of hydrodynamic diameter measurements
were the same as predicted by the results of surface charge.
CeO2 NPs were stable at pH< pHPZC when the concentra-
tion of NaCl was less than 1mM (Figures 4(a) and 4(b)).
When concentration of NaCl reached 1mM, the hydrody-
namic diameter of CeO2 NPs in about 1 hr increased rapidly
by 122.28% during the first 100 s (188.74Æ 29.89 nm) and
1,098.98% (1,346.21Æ 221.29 nm) at ∼1 hr, when compared
to the controls during the first 100 s (84.91Æ 3.61mm) and
at ∼1 hr (112.28Æ 2.11mm), respectively (Table S3). The
particle size distribution of CeO2 NPs during the first 100 s
and at ∼1 hr at pH value of 8.2 and in the presence of mono-
valent NaCl salt at various concentrations is presented in
Figures S2(a) and S2(b).

The aggregation rate constant k11 an indicator of the sta-
bility of NPs under different conditions is obtained by using
linear regression of hydrodynamic radius over 10min in this
experiment. The results of k11 also show the same prediction
as surface charge measurements. The k11 was 0.35 nm/s at
1mM NaCl, which was larger than values (<0.02 nm/s) at
other NaCl concentrations (Table 2).

The net energy barrier is also an indicator of the stability
of NPs. The larger net energy barrier means more stable NPs,
while no barrier indicates the inclination of the aggregation
of NPs. The results show that the net energy barrier disap-
peared at 1mM NaCl (Figure 6(a)), which is the same pre-
diction as surface charge and hydrodynamic diameter
measurements of CeO2 NPs.

3.2.2. Uncharged CeO2 NPs in the Presence of NaCl (pH =
10.2 = pHPZC). At pH= pHPZC, the surface of CeO2 NPs is
neutralized in the absence of NaCl (Figure 1). The aggrega-
tion profiles and average zeta potentials of CeO2 NPs at pH
10.2 and in the presence of monovalent NaCl salt at various
concentrations are presented in Figures 4(c) and 4(d) and
Figures 5(c) and 5(d), respectively.

In the presence of NaCl, the absolute average zeta poten-
tial of CeO2 NPs varied around 0mV and was less than
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FIGURE 1: Zeta potential and hydrodynamic diameter of CeO2 NPs
as a function of pH (1–14). The results are presented as an average
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dard deviation.
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20mV (Figures 5(c) and 5(d) and Table S2). However, the
surface charge of CeO2 NPs was negative at 0, 0.05, and
1mM of NaCl, but positive at 0.1 and 0.5mM of NaCl.
The surface charge is independent of time at pH= pHPZC.
The Pearson’s correlation coefficients for the ξ potential
values of CeO2 NPs and time at pH 10.2 in concentration
of NaCl 0, 0.05, 0.1, 0.5, and 1mM are −0.76, −0.48, −0.79,
−0.67 and 0.61, respectively. The results of hydrodynamic
diameter, k11, size distribution, and net energy barrier were
the same as the prediction from the surface charge results,
which suggests that CeO2 NPs were unstable in the presence
of NaCl at pH= pHPZC. The hydrodynamic diameter of
CeO2 NPs under all the NaCl concentrations grew at high
rates and reached several microns after approximately 1 hr of
incubation, at ∼1 hr (Figures 4(c) and 4(d)). For example, the
hydrodynamic diameter of CeO2 NPs at 0.1mM NaCl
increased by 618.28% at ∼1 hr (1,430.52Æ 159.61 nm) when
compared to the hydrodynamic diameter during the first 100 s
(199.16Æ 23.37 nm) (Table S3). The particle size distribution
of CeO2 NPs during the first 100 s and at ∼1 hr at

pH value of 10.2 and in the presence of monovalent NaCl
salt at various concentrations is presented in Figures S2(c) and
S2(d). The k11 under all the NaCl concentrations (0.33–0.45
nm/s) was greater than that at pH 8.2 and pH 12.2, and no
concentration-dependent increase was observed (Table 2). No
energy barriers were present when the Na+ concentration was
larger than 0.1mM (Figure 6(b)).

3.2.3. Negatively Charged CeO2 NPs in the Presence of NaCl
(pH = 12.2 > pHPZC). At pH= 12.2 (pH>pHPZC), the CeO2

NPs exhibited negative zeta potential values in the absence of
NaCl (Figure 1). The aggregation profiles and average zeta
potentials of CeO2 NPs at pH value of 8.2 and in the presence
of monovalent NaCl salt at various concentrations are presented
in Figures 4(e) and 4(f) and Figures 5(e) and 5(f), respectively.

In the presence of NaCl, the average zeta potential of CeO2

NPs in 1hr (0–60min) was less than −30mV (Figures 5(e) and
5(f) and Table S2). This finding indicates that CeO2 NPs are
stable at pH>pHPZC, which is also demonstrated by the results
of hydrodynamic diameter, size distribution, and net energy
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FIGURE 4: Hydrodynamic diameter of CeO2 NPs as function of time in varying concentrations of NaCl ranging from 0 to 1mM at pH 8.2, pH
10.2, and pH 12.2: (a) 0, 0.05, and 0.1mM NaCl and pH 8.2; (b) 0.5 and 1mM NaCl and pH 8.2; (c) 0, 0.05, and 0.1mM NaCl and pH 10.2;
(d) 0.5 and 1mM NaCl and pH 10.2; (e) 0, 0.05, and 0.1mM NaCl and pH 12.2; (f ) 0.5 and 1mM NaCl and pH 12.2.
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barrier. The Pearson’s correlation coefficients for the ξ potential
values of CeO2 NPs and time at pH 12.2 in concentration of
NaCl 0, 0.05, 0.1, 0.5, and 1mM are −0.64, −0.88, 0.97, −0.47,
and −0.74, respectively. The hydrodynamic diameter of CeO2

NPs at this pH grew at low rates for all NaCl concentrations
(Figures 4(e) and 4(f)). For all NaCl concentrations, the average
hydrodynamic diameter of CeO2NPs was less than 110nm after
approximately 1hr of incubation, at ∼1hr. For example, the
hydrodynamic diameter of CeO2NPs at 0.5mMNaCl increased
by only 19.87% at ∼1hr (102.39Æ 4.81nm) when compared to
the hydrodynamic diameter during the first 100 s (85.42Æ
3.99nm) (Table S4). The particle size distribution of CeO2 NPs
during the first 100 s and at ∼1hr at pH value of 12.2 and in the
presence of monovalent NaCl salt at various concentrations is
presented in Figures S2(e) and S2(f). The k11 was very small
(less than 0.02nm/s) for concentrations ofNaCl ranging from0 to
1mM (Table 2). The energy barriers were 3.10, 6.00, 4.73,
and 2.30 kJ, for 0.05, 0.1, 0.5 and 1mM of Na+, respectively
(Figure 6(c)).

3.3. Impact of pH and CaCl2 on Stability of CeO2 NPs. The
effects of CaCl2 concentrations on CeO2 NPs stability in three
pH domains representing the three electrostatic states—pH=
8.2< pHPZC, pH= 10.2= pHPZC, and pH= 12.2> pHPZC—

were examined by measuring the surface charge and size of
nanoparticles using ELS and DLS methods.

3.3.1. Positively Charged CeO2 NPs in the Presence of CaCl2
(pH = 8.2< pHPZC). The aggregation profiles and average
zeta potentials of CeO2 NPs at pH value of 8.2 and in the
presence of divalent CaCl2 salt at various concentrations are
given in Figures 7(a) and 7(b) and Figures 8(a) and 8(b),
respectively. At pH 8.2 (pH< pHPZC), at 0–10min, the
average zeta potential of CeO2 NPs diminished from

20.46Æ 11.12mV to 16.21Æ 11.37mV when the concentra-
tion increased from 0 to 0.1mM of CaCl2, but it then
increased to 21.41Æ 13.45mV when the CaCl2 concentra-
tion raised to 1mM (Figures 8(a) and 8(b) and Table S2).
However, the manifestation of different trends occurred at
50–60min. At this point, the average zeta potential increased
from 19.88Æ 12.47mV to 27.65Æ 7.76mV with the increase
of CaCl2 concentration (increased from 0 to 0.1mM). It then
decreased to 12.71Æ 13.08mV when the concentration of
CaCl2 was 0.5mM, and increased to 22.40Æ 7.50mV when
the CaCl2 concentration was 1mM. The Pearson’s correla-
tion coefficients for the ξ potential values of CeO2 NPs and
time at pH 8.2 in concentration of CaCl2 0, 0.05, 0.1, 0.5, and
1mM are 0.10, 0.92, 0.82, −0.85, and 0.60, respectively. No
obvious prediction was possible from the results of zeta
potential when CeO2 NPs were in the presence of CaCl2 at
pH 8.2.

The hydrodynamic diameter of CeO2 NPs was greater at
1mMCaCl2 than at other CaCl2 concentrations (Figures 7(a)
and 7(b)). At ∼1 hr, the average hydrodynamic diameter at
1mM CaCl2 (922.91Æ 89.41 nm) was 721.97% (112.28Æ
2.11 nm), 763.99% (106.82Æ 2.29 nm), 615.05% (129.07Æ
5.38 nm), and 426.62% (175.25Æ 11.86 nm) greater than at
0, 0.05, 0.1, and 0.5mM CaCl2, respectively (Table S3). This
finding indicates that CeO2 NPs are unstable at 1mM CaCl2.
The particle size distribution of CeO2 NPs during the first
100 s and at ∼1 hr at pH value of 8.2 and in the presence of
monovalent CaCl2 salt at various concentrations is pre-
sented in Figures S3(a) and S3(b). The same prediction
can be demonstrated by k11 and size distribution. When
the concentration of CaCl2 was less than 1mM, k11 was
very small (0.01 nm/s) (Table 2). At 1 mM CaCl2, k11
increased to 0.08 nm/s.

TABLE 2: Initial aggregation rate constant k11 obtained from the linear regression of the experimental data during the first 600 s, under varying
concentrations of NaCl or CaCl2 ranging from 0 to 1mM in the absence and presence of HA (5mg/L) or FA (0.14mg/L) at three different pH
values (8.2, 10.2, and 12.2).

pH Electrolyte concentration (mM)

Aggregation rate (nm/s)

NaCl CaCl2 HA FA

NaCl CaCl2 NaCl CaCl2

8.2

0.00 0.01 0.01 0.51 0.51 0.02 0.02
0.05 0.01 0.01
0.10 0.02 0.01 0.01 0.04 0.01 0.02
0.50 0.02 0.01
1.00 0.35 0.08 0.25 0.11 0.02 0.02

10.2

0.00 0.44 0.44 0.54 0.54 0.02 0.02
0.05 0.45 0.25
0.10 0.33 0.35 0.42 0.37 0.01 0.01
0.50 0.40 0.41
1.00 0.44 0.50 0.48 0.44 0.02 0.02

12.2

0.00 0.01 0.01 0.01 0.01 0.02 0.02
0.05 0.01 0.02
0.10 0.01 0.02 0.02 0.02 0.01 0.01
0.50 0.01 0.47
1.00 0.00 0.00 0.02 0.00 0.01 0.02
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However, the prediction from the result of hydrody-
namic diameter differed little from the prediction from the
net energy analysis, possibly affected by the values of both
the zeta potential and IS. The net energy barrier disappeared
at 0.5 and 1mM of CaCl2 (Figure 6(d)). This absence indi-
cates that the CeO2 NPs are stable when the concentration of
CaCl2 is less than 0.5mM, but unstable when the concentra-
tion of CaCl2 reaches 0.5 and 1mM.

3.3.2. Uncharged CeO2 NPs in the Presence of CaCl2 (pH =
10.2 = pHPZC). The aggregation profiles and average zeta
potentials of CeO2 NPs at pH value of 10.2 and in the pres-
ence of divalent CaCl2 salt at various concentrations are
shown in Figures 7(c) and 7(d) and Figures 8(c) and 8(d).
At pH 10.2 (pH= pHPZC), the average zeta potential of CeO2

NPs in the presence of CaCl2 varied about 0mV (Figures 8(c)

and 8(d) and Table S2), which indicates that CeO2 NPs are
unstable and the surface charge of CeO2 NPs is independent
of time at pH= pHPZC. The Pearson’s correlation coeffi-
cients for the ξ potential values of CeO2 NPs and time
at pH 10.2 in concentration of CaCl2 0, 0.05, 0.1, 0.5, and
1mM are−0.76,−0.62,−0.83,−0.73, and−0.40, respectively.
The unstabilty prediction of CeO2 NPs at pH= pHPZC is also
demonstrated by the results of hydrodynamic diameter, k11,
size distribution, and net energy barrier. At pH 10.2, hydro-
dynamic diameters under all the CaCl2 concentrations grew at
very high rates (Figures 7(c) and 7(d)). At ∼1hr, the average
hydrodynamic diameters were 1,670.11Æ 229.21nm, 1,318.10
Æ 125.18nm, 1,690.85Æ 210.69nm, 1,845.22Æ 175.04nm, and
3,568.23Æ 552.86nm, at 0, 0.05, 0.1, 0.5, and 1mM of CaCl2,
respectively (Table S3). For example, the hydrodynamic diame-
ter of CeO2 NPs at 0.1mMCaCl2 increased by 167.77% at∼1hr
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FIGURE 6: Net energy versus interparticle distance according to DLVO theory, showing the influence of representative monovalent electrolyte
NaCl or divalent electrolyte CaCl2 concentrations varying from 0 to 1mM at pH 8.2, pH 10.2, and pH 12.2, for CeO2 NPs suspended in
aqueous systems: (a) NaCl and pH 8.2; (b) NaCl and pH 10.2; (c) NaCl and pH 12.2; (d) CaCl2 and pH 8.2; (e) CaCl2 and pH 10.2; and (f )
CaCl2 and 12.2. Calculation of DLVO theory includes the contributions of the van der Waals and electric double layer (EDL) interactions.
The net energy (Net) shown is the sum of EDL repulsion and van der Waals attraction between two approaching particles.
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(1,690.85Æ 210.69nm) when compared to the hydrodynamic
diameter during the first 100 s (631.45Æ 49.47nm). The particle
size distribution of CeO2 NPs during the first 100 s and at ∼1hr
at pH value of 10.2 and in the presence of monovalent CaCl2 salt
at various concentrations is presented in Figures S3(c) and S3(d).
k11 in the presence of CaCl2 was 0.25–0.50nm/s at pH 10.2
(Table 2), which was greater than at pH 8.2 and 12.2. No energy
barrier was present at pH 10.2 (Figure 6(e)).

3.3.3. Negatively Charged CeO2 NPs in the Presence of CaCl2
(pH = 12.2> pHPZC). The aggregation profiles and average
zeta potentials of CeO2 NPs at pH value of 12.2 and in the
presence of divalent CaCl2 salt at various concentrations are
shown in Figures 7(e) and 7(f) and Figures 8(e) and 8(f),
respectively. At pH 12.2 (pH>pHPZC), the average zeta poten-
tial in 1 hr was approximately−30mV at 0, 0.05, 0.1, and 1mM
CaCl2 (Figures 8(e) and 8(f) and Table S2). However, the zeta
potential in 1 hr was −5.65Æ 20.67mV at 0.5mM CaCl2. The

Pearson’s correlation coefficients for the ξ potential values of
CeO2 NPs and time at pH 12.2 in concentration of CaCl2
0, 0.05, 0.1, 0.5, and 1mM are −0.64, −0.86, −0.25, 0.13, and
−0.91, respectively. This finding indicates that although CeO2

NPs were unstable at 0.5mM CaCl2, they remained stable at
other CaCl2 concentrations. The same prediction was obtained
from the results of the other three parameters, which are the
hydrodynamic diameter, k11, and the size distribution.

At pH 12.2 (pH> pHPZC), the growth rates were low
for all CaCl2 concentrations, except for 0.5mM of CaCl2
(Figures 7(e) and 7(f)). At ∼1 hr, the average hydrodynamic
diameters were 89.09Æ 1.56 nm, 99.74Æ 2.37 nm, 182.14Æ
5.52 nm, 1,700.32Æ 287.78 nm, and 101.85Æ 2.72 nm under
0, 0.05, 0.1, 0.5, and 1mM of CaCl2, respectively (Table S3).
This finding demonstrates that CeO2 NPs in the presence of
CaCl2 are stable at pH> pHPZC, except for 0.5mM of CaCl2.
For example, the hydrodynamic diameter of CeO2 NPs at
1mMCaCl2 increased only by 2.64% at∼1hr (101.85Æ 2.72nm)
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FIGURE 7: Hydrodynamic diameter of CeO2 NPs as function of time in varying concentrations of CaCl2 ranging from 0 to 1mM at pH 8.2, pH
10.2, and pH 12.2: (a) 0, 0.05, and 0.1mM CaCl2 and pH 8.2; (b) 0.5 and 1mM CaCl2 and pH 8.2; (c) 0, 0.05, and 0.1mM CaCl2 and pH 10.2;
(d) 0.5 and 1mM CaCl2 and pH 10.2; (e) 0, 0.05, and 0.1mM CaCl2 and pH 12.2; and (f ) 0.5 and 1mM CaCl2, and pH 12.2.
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FIGURE 8: Zeta potential of CeO2 NPs as function of time in varying concentrations of CaCl2 ranging from 0 to 1mM at pH 8.2, pH 10.2, and
pH 12.2: (a) 0, 0.05, and 0.1mM CaCl2 and pH 8.2; (b) 0.5 and 1mM CaCl2 and pH 8.2; (c) 0, 0.05, and 0.1mM CaCl2 and pH 10.2; (d) 0.5
and 1mM CaCl2 and pH 10.2; (e) 0, 0.05, and 0.1mM CaCl2 and pH 12.2; and (f ) 0.5 and 1mM CaCl2 and pH 12.2.
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when compared to the hydrodynamic diameter during the first
100 s (99.23Æ 5.87nm). The particle size distribution of CeO2

NPs during the first 100 s and at ∼1hr at pH value of 12.2 and
in the presence ofmonovalentCaCl2 salt at various concentrations
is presented in Figures S3(e) and S3(f). The k11 was very low
(<0.02nm/s) at 0, 0.05, 0.1, and 1mMCaCl2 (Table 2). However,
k11 was 0.47nm/s at 0.5mMCaCl2. The values of energy barriers
were 6.60 and 0.51kJ, for 0 and 0.05mM CaCl2, respectively
(Figure 6(f)). However, the prediction from all the parameters
above differed from the prediction from the result of the net
energy barrier at 0.1 and 1mM of CaCl2. No energy barrier was
found for 0.1, 0.5, and 1mM of CaCl2.

3.4. Impact of pH and HA on Stability of CeO2 NPs. The
effects of HA and cation (Na+ and Ca2+) concentrations
on CeO2 NPs stability in three pH domains representing
the three electrostatic states (i.e., pH= 8.2< pHPZC, pH=
10.2= pHPZC, and pH= 12.2> pHPZC) were examined via
ELS and DLS measurements of the nanoparticle surface
charges and sizes.

3.4.1. Positively Charged CeO2 NPs in the Presence of HA
(pH = 8.2 < pHPZC). The aggregation profiles and average
zeta potentials of CeO2 NPs at pH value of 8.2 and in the
presence of monovalent NaCl or divalent CaCl2 salts as
well as SRHA, all at various concentrations, are given in
Figures 9(a) and 10(a) and Figures 11(a) and 11(b), respec-
tively. At pH 8.2 (pH< pHPZC), at 0–60min, in the presence
of HA, when the concentration of NaCl increased from 0 to
1mM, the average zeta potential of CeO2 NPs increased from
7.98Æ 20.71mV to 13.03Æ 9.68mV (Figures 11(a) and
11(b) and Table S2). However, it increased initially when
the CaCl2 concentration increased from 0 to 0.01mM, then
decreased when concentration of CaCl2 increased to 1mM.
The average zeta potential of CeO2 NPs was less than 20mV
and close to 0mV, which indicates the aggregation of CeO2

NPs in the presence of HA and CaCl2 at pH 8.2. The Pear-
son’s correlation coefficients for the ξ potential values of
CeO2 NPs and time at pH 8.2 in the presence of HA in
concentration of NaCl 0, 0.1, and 1mM, CaCl2 0.1 and
1mM are 0.01, −0.66, −0.35, −0.17, and −0.88, respectively.
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FIGURE 9: Hydrodynamic diameter measurements of CeO2 NPs in the presence of HA (5mg/L) or FA (0.14mg/L) as a function of time, and
NaCl concentration ranging from 0 to 1mM at pH 8.2, pH 10.2, and pH 12.2: (a) HA, NaCl, and pH 8.2; (b) HA, NaCl, and pH 10.2; (c) HA,
NaCl, and pH 12.2; (d) FA, NaCl, and pH 8.2; (e) FA, NaCl, and pH 10.2; and (f ) FA, NaCl, and pH 12.2.
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However, the other parameters did not show the same pre-
diction as zeta potential measurements.

At pH< pHPZC, in the presence of HA, the average hydro-
dynamic diameter of CeO2 NPs was smaller at 0.1mM of
NaCl/CaCl2 than at both 0 and 1mM of NaCl/CaCl2
(Figures 9(a) and 10(a)). For instance, at ∼1 hr, the hydrody-
namic diameter of CeO2 NPs at 1mM CaCl2 (1,397.18Æ
209.50 nm) was 649.24% greater than at 0.1mM (186.48Æ
8.47 nm) (Table S4). At ∼1 hr, the average hydrodynamic
diameter in the presence of HA was larger than or close
to it in the absence of HA. For instance, at ∼1 hr, the
hydrodynamic diameter of CeO2 NPs at 0.1mM NaCl in
the presence of HA (183.78Æ 7.76 nm) was 65.05% greater
than in the absence of HA (111.35Æ 2.83 nm). The particle
size distribution of CeO2 NPs during the first 100 s and at
∼1 hr at pH value of 8.2 and in the presence of monovalent
NaCl or divalent CaCl2 salts as well as SRHA, all at various
concentrations, is presented in Figures S4(a), S4(b), S4(g),
and S4(h).

First k11 decreased then increased when the electrolyte
concentration increased from 0 to 1mM. It was smaller at
0.1 and 1mM NaCl/CaCl2 than at 0mM of NaCl/CaCl2
(Table 2). In the presence of HA, at 0.1mM of salt, k11 in
the presence of NaCl was smaller than in the presence of
CaCl2. In the presence of HA, at 1mM of salt, k11 in the
presence of NaCl was greater than in the presence of CaCl2.

No energy barrier was found at 1mM of NaCl/CaCl2 in
the presence of HA (Figures 12(a) and 12(d)). The values of
energy barriers were 4.23, 2.83, and 2.96 kJ at 0mM of NaCl,
0.1mM of NaCl, and 0.1mM of CaCl2, respectively
(Figures 12(a) and 12(d)). This finding indicates that at
pH< pHPZC, CeO2 NPs are unstable at 1mM of NaCl/CaCl2.

3.4.2. Uncharged CeO2 NPs in the Presence of HA (pH= 10.2=
pHPZC). The aggregation profiles and average zeta potentials
of CeO2 NPs at pH value of 10.2 and in the presence of
monovalent NaCl or divalent CaCl2 salts as well as SRHA,
all at various concentrations, are presented in Figures 9(b)
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FIGURE 10: Hydrodynamic diameter measurements of CeO2 NPs in the presence of HA (5mg/L) or FA (0.14mg/L) as a function of time, and
CaCl2 concentration ranging from 0 to 1mM at pH 8.2, pH 10.2, and pH 12.2: (a) HA, CaCl2, and pH 8.2; (b) HA, CaCl2, and pH 10.2;
(c) HA, CaCl2, and pH 12.2; (d) FA, CaCl2, and pH 8.2; (e) FA, CaCl2, and pH 10.2; and (f ) FA, CaCl2, and pH 12.2.
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FIGURE 11: Zeta potential of CeO2 NPs as a function of time in varying concentrations of NaCl or CaCl2 in the presence of HA at pH 8.2, pH
10.2, and pH 12.2: (a) HA, NaCl, and pH 8.2; (b) HA, CaCl2, and pH 8.2; (c) HA, NaCl, and pH 10.2; (d) HA, CaCl2, and pH 10.2; (e) HA,
NaCl, and pH 12.2; and (f ) HA, CaCl2, and pH 12.2.
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FIGURE 12: Net energy versus interparticle distance according to DLVO theory, showing the influence of HA (5mg/L) and representative
monovalent electrolyte NaCl or divalent electrolyte CaCl2 concentrations varying from 0 to 1mM at pH 8.2, pH 10.2, and pH 12.2, for CeO2

NPs suspended in aqueous systems: (a) HA, NaCl, and pH 8.2; (b) HA, NaCl, and pH 10.2; (c) HA, NaCl, and pH 12.2; (d) HA, CaCl2, and
pH 8.2; (e) HA, CaCl2, and pH 10.2; and (f ) HA, CaCl2, and 12.2. Calculation of DLVO theory includes the contributions of the van der
Waals and electric double layer (EDL) interactions. The net energy (Net) shown is the sum of EDL repulsion and van der Waals attraction
between two approaching particles.
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and 10(b) and Figures 11(c) and 11(d), respectively. At pH
10.2 (pH= pHPZC), the absolute average zeta potential of
CeO2 NPs varied about 0mV and was less than 22mV
(Figures 11(c) and 11(d) and Table S2). The Pearson’s corre-
lation coefficients for the ξ potential values of CeO2 NPs and
time at pH 10.2 in the presence of HA in concentration of
NaCl 0, 0.1, and 1mM, CaCl2 0.1 and 1mM are 0.89, −0.97,
0.72, −0.87, and −0.75, respectively. CeO2 NPs were unstable
in the presence of HA at pH= pHPZC. This conclusion can
also be predicted by the results of hydrodynamic diameter,
k11, and size distribution. The average hydrodynamic diame-
ter of CeO2 NPs grew at high rates and reached the micron
level in the presence of HA after approximately 1 hr of incu-
bation (Figures 9(b) and 10(b)). For example, in the presence
of HA, the hydrodynamic diameter of CeO2 NPs at 0.1mM
CaCl2 increased by 236.61% at ∼1 hr (1,584.86Æ 223.48 nm)
when compared to the hydrodynamic diameter during the
first 100 s (470.83Æ 39.34 nm) (Table S4). The particle size
distribution of CeO2 NPs during the first 100 s and at∼1 hr at
pH value of 10.2 and in the presence of monovalent NaCl or
divalent CaCl2 salts as well as SRHA, all at various concentra-
tions, is presented in Figures S4(c), S4(d), S4(i), and S4(j).

The k11 was in the range of 0.37–0.54 nm/s under
all concentrations of NaCl/CaCl2 in the presence of HA
(Table 2).

No energy barrier was found at 0.1mM of NaCl and at
0.1 and 1mM of CaCl2 (Figures 12(b) and 12(e)). The values
of energy barriers were 6.87 and 4.70 kJ at 0 and 1mM of
NaCl (Figure 12(b)). This result indicates that at pH=
pHPZC, CeO2 NPs are unstable in the presence of HA at
0.1mM of NaCl, and at 0.1 and 1mM of CaCl2. This predic-
tion is different from the prediction from the results of the
other parameters above.

3.4.3. Negatively Charged CeO2 NPs in the Presence of HA
(pH = 12.2> pHPZC). The aggregation profiles and average
zeta potentials of CeO2 NPs at pH value of 12.2 and in the
presence of monovalent NaCl or divalent CaCl2 salts as well
as SRHA, all at various concentrations, are presented in
Figures 9(c) and 10(c) and Figures 11(e) and 11(f), respec-
tively. At pH 12.2 (pH> pHPZC), the average zeta potential of
CeO2 NPs was less than −30mV during the 1 hr incubation
in the presence of HA and NaCl/CaCl2 (Figures 11(e) and
11(f) and Table S2), which indicates that CeO2 NPs are
stable in the presence of HA at pH> pHPZC. The Pearson’s
correlation coefficients for the ξ potential values of CeO2 NPs
and time at pH 12.2 in the presence of HA in concentration
of NaCl 0, 0.1, and 1mM, CaCl2 0.1 and 1mM are 0.31, 0.11,
−0.24, −0.43, and 0.35, respectively.

The growth of hydrodynamic diameter of CeO2 NPs was
slow for all suspensions in the presence of HA over 1 hr
(Figures 9(c) and 10(c)). At ∼1 hr, the average hydrodynamic
diameter of CeO2 NPs was less than 120 nm. For example, in
the presence of HA, the hydrodynamic diameter of CeO2 NPs
at 1mM NaCl increased only by 20.74% at ∼1 hr (93.86Æ
1.91 nm) when compared to the hydrodynamic diameter dur-
ing the first 100 s (77.74Æ 2.31 nm) (Table S4). This finding
also indicates the stability of CeO2 NPs in the presence of HA

at pH> pHPZC with the same prediction obtained from the
other parameters. The particle size distribution of CeO2 NPs
during the first 100 s and at ∼1 hr at pH value of 12.2 and in
the presence of monovalent NaCl or divalent CaCl2 salts as
well as SRHA, all at various concentrations is presented in
Figures S4(e), S4(f), S4(k), and S4(l). The k11 was less than
0.02 nm/s at pH 12.2 for all suspensions in the presence of HA
(Table 2). The net energy barriers were 10.4, 27.3, and 18.4 kJ,
at 0, 0.1, and 1mM of NaCl, respectively (Figure 12(c)). The
net energy barriers were 20.5 and 4.16 at 0.1 and 1mM of
CaCl2 (Figure 12(f)).

3.5. Impact of pH and FA on Stability of CeO2 NPs. The
effects of FA and cation (Na+ and Ca2+) concentrations on
CeO2 NPs stability in three pH domains representing the
three electrostatic states—pH= 8.2< pHPZC, pH= 10.2=
pHPZC, and pH= 12.2> pHPZC—were examined by measur-
ing the surface charge and size of nanoparticles using ELS
and DLS methods.

3.5.1. Positively Charged CeO2 NPs in the Presence of FA
(pH = 8.2 < pHPZC). The aggregation profiles and average
zeta potentials of CeO2 NPs at pH value of 8.2 and in the
presence of monovalent NaCl or divalent CaCl2 salts as well
as SRFA, all at various concentrations, are presented in
Figures 9(d) and 10(d) and Figures 13(a) and 13(b), respec-
tively. At pH< pHPZC, in the presence of FA, the average zeta
potential of CeO2 NPs was less than −35mV at 0, 0.1, and 1
mM of NaCl and at 0.1mM of CaCl2 (Figures 13(a) and
13(b) and Table S2). However, the average zeta potential of
CeO2 NPs ranged from −23 to −26mV at 1mM of CaCl2.
The Pearson’s correlation coefficients for the ξ potential
values of CeO2 NPs and time at pH 8.2 in the presence of
FA in concentration of NaCl 0, 0.1, and 1mM, CaCl2 0.1 and
1mM are −0.58, −0.21, −0.11, −0.67, and 0.56, respectively.

At ∼1 hr, the average hydrodynamic diameter of CeO2

NPs in the presence of FA was less than 110 nm (Figures 9(d)
and 10(d)). For example, in the presence of FA, the hydro-
dynamic diameter of CeO2 NPs at 0.1 mM NaCl only
increased by 9.12% at ∼1 hr (101.87Æ 3.36 nm) when com-
pared to the hydrodynamic diameter during the first 100 s
(93.36Æ 1.95nm) (Table S5). This result indicates that FA sta-
bilizes CeO2 NPs at pH<pHPZC. The same prediction is obtain-
able from the results of size distribution (Figure S5). The particle
size distribution of CeO2 NPs during the first 100 s and at ∼1hr
at pH value of 8.2 and in the presence of monovalent NaCl or
divalent CaCl2 salts as well as SRFA, all at various concentra-
tions, is presented in Figures S5(a), S5(b), S5(g),
and S5(h). Thus k11 was less than 0.02nm/s at pH 8.2 for all
suspensions in the presence of FA (Table 2).

However, at 1mM of CaCl2, the result of the net energy
barrier was different from the other parameters in the presence
of FA (Figures 14(a) and 14(d)). Here, energy barriers existed at
all salt concentrations, except at that level (Figures 14(a)
and 14(d)).

3.5.2. Uncharged CeO2 NPs in the Presence of FA (pH= 10.2=
pHPZC). The aggregation profiles and average zeta potentials
of CeO2 NPs at pH value of 10.2 and in the presence of
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FIGURE 13: Zeta potential of CeO2 NPs as a function of time in varying concentrations of NaCl or CaCl2 in the presence of FA at pH 8.2, pH
10.2, and pH 12.2: (a) FA, NaCl, and pH 8.2; (b) FA, CaCl2, and pH 8.2; (c) FA, NaCl, and pH 10.2; (d) FA, CaCl2, and pH 10.2; (e) FA, NaCl,
and pH 12.2; and (f ) FA, CaCl2, and pH 12.2.
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monovalent NaCl or divalent CaCl2 salts as well as SRFA,
all at various concentrations, are presented in Figures 9(e)
and 10(e) and Figures 13(c) and 13(d), respectively. At
pH = pHPZC, the average zeta potential of CeO2 NPs
was less than −30mV in the presence of FA and NaCl
(Figures 13(c) and 13(d) and Table S2). The average zeta
potential of CeO2 NPs was −15 to −32mV in the presence
of FA and CaCl2. The Pearson’s correlation coefficients for
the ξ potential values of CeO2 NPs and time at pH 10.2 in
the presence of FA in concentration of NaCl 0, 0.1, and
1mM, CaCl2 0.1 and 1mM are 0.07, −0.20, 0.77, 0.23, and
0.17, respectively.

The results of hydrodynamic diameter, k11, and size dis-
tribution indicated the stability of CeO2 NPs in the presence
of FA at pH 10.2. At ∼1 hr, the average hydrodynamic

diameter of CeO2 NPs in the presence of FA was less than
105 nm (Figures 9(e) and 10(e)). For example, in the pres-
ence of FA, the hydrodynamic diameter of CeO2 NPs at
1mM CaCl2 increased only by 25.28% at ∼1 hr (97.02Æ
2.96 nm) when compared to the hydrodynamic diameter
during the first 100 s (77.44Æ 4.25 nm) (Table S5). The par-
ticle size distribution of CeO2 NPs during the first 100 s and
at ∼1 hr at pH value of 10.2 and in the presence of monova-
lent NaCl or divalent CaCl2 salts as well as SRFA, all at
various concentrations, is presented in Figures S5(c), S5(d),
S5(i), and S5(j). The k11 was less than 0.02 nm/s at pH 10.2
for all suspensions in the presence of FA (Table 2).

However, at pH 10.2, the net energy barrier existed in the
presence of FA and NaCl/CaCl2, except that the net energy
barrier was 0 kT at 1mM CaCl2 (Figures 14(b) and 14(e)).
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FIGURE 14: Net energy versus interparticle distance according to DLVO theory, showing the influence of FA (0.14mg/L) and representative
monovalent electrolyte NaCl or divalent electrolyte CaCl2 concentrations varying from 0 to 1mM at pH 8.2, pH 10.2, and pH 12.2, for CeO2

NPs suspended in aqueous systems: (a) FA, NaCl, and pH 8.2; (b) FA, NaCl, and pH 10.2; (c) FA, NaCl, and pH 12.2; (d) FA, CaCl2, and pH
8.2; (e) FA, CaCl2, and pH 10.2; and (f ) FA, CaCl2, and 12.2. Calculation of DLVO theory includes the contributions of the van der Waals and
electric double layer (EDL) interactions. The net energy (Net) shown is the sum of EDL repulsion and van der Waals attraction between two
approaching particles.
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This finding indicates that CeO2 NPs are not stable at 1mM
of CaCl2.

3.5.3. Negatively Charged CeO2 NPs in the Presence of FA
(pH = 12.2> pHPZC). The aggregation profiles and average
zeta potentials of CeO2 NPs at pH value of 10.2 and in the
presence of monovalent NaCl or divalent CaCl2 salts as well
as SRFA, all at various concentrations, are presented in
Figures 9(f) and 10(f) and Figures 13(e) and 13(f), respec-
tively. At pH 12.2 (pH> pHPZC), at 0–1 hr, the average zeta
potential varied from −24 to −38mV for all suspensions in
the presence of FA (Figures 13(e) and 13(f) and Table S2), a
finding that shows the stability of CeO2 NPs at pH 12.2. The
Pearson’s correlation coefficients for the ξ potential values of
CeO2 NPs and time at pH 12.2 in the presence of FA in
concentration of NaCl 0, 0.1, and 1mM, CaCl2 0.1 and
1mM are 0.78, −0.96, 0.46, −0.33, and −0.72, respectively.
The same prediction is obtainable from results of all the param-
eters below as the result of zeta potential measurements.

The average hydrodynamic diameter of the CeO2 NPs
grew at low rates in the presence of FA, and the average
hydrodynamic diameter was less than 120 nm (Figures 9(f)
and 10(f)). For example, in the presence of FA, the hydrody-
namic diameter of the CeO2 NPs at 1mM NaCl only
increased by 14.36% at ∼1 hr (94.35Æ 3.49 nm) when com-
pared to the hydrodynamic diameter during the first 100 s
(82.50Æ 1.77 nm) (Table S5). The particle size distribution of
CeO2 NPs during the first 100 s and at ∼1 hr at pH value of
10.2 and in the presence of monovalent NaCl or divalent
CaCl2 salts as well as SRFA, all at various concentrations,
is presented in Figures S5(e), S5(f ), S5(k), and S5(l). The k11
was less than 0.02 nm/s at pH 12.2 for all suspensions in the
presence of FA (Table 2). In the presence of FA, net energy
barriers existed under all electrolyte concentrations at pH
12.2 (Figures 14(c) and 14(f)).

4. Discussion

The stability of NPs derives from their ability to remain
unchanged over time under certain conditions. The impor-
tance of studying the stability of the CeO2 NPs is that their
stability affects their transport, retention, bioavailability, and
toxicity while posing potential risks to the environment and
human health.

4.1. Effect of pH on the Stability of CeO2 NPs (Homoaggregation).
The pH is one of the water chemistry parameters that affect
NPs aggregation by altering the charge on the surface of NPs
[69]. At both low and high pH levels, the aggregation
was extremely constrained but was enhanced as the pH
approached pHPZC [92].

Homoaggregation, a term which refers to the aggregation
of two similar CeO2 NPs [93], was affected by the changing
pH conditions presented in this study. The stability of CeO2

NPs in aqueous systems differed at various pH domains.
Although the CeO2 NPs were stable at pH<pHPZC (except for
1mM of NaCl/CaCl2) and at pH>pHPZC (except for 0.5mM
CaCl2), the aggregation was enhanced at pH=pHPZC.

The phenomena and explanations of the aggregation and
stability of CeO2 NPs in three pH domains (pH< pHPZC,
pH= pHPZC, and pH> pHPZC) in our research are summa-
rized below.

At pH< pHPZC, the average hydrodynamic diameter of
CeO2 NPs at 1mM of salt during the first 100 s (approxi-
mately 165 nm) was much lower than that at ∼1 hr (above
1,000 nm) (Figures 4(b) and 7(b)). The CeO2 NPs were stable
at either no or low concentration of electrolytes (<1mM)
and were unstable at higher concentration (1mM) of elec-
trolytes. This conclusion was demonstrated by the results of
DLVO theory analysis on the net energy interaction among
CeO2 NPs: the repulsive energy barriers were found at 0–0.5
mM NaCl/CaCl2 but not shown at 1mM NaCl/CaCl2
(Figures 6(a) and 6(d)).

One possible explanation is that at pH< pHPZC, surface
protonation occurs when the protons adsorb to the hydra-
tion layer capped on CeO2 NPs, thus preventing the further
aggregation of CeO2 NPs. The occurrence of suspensions in
either the absence of electrolyte or in the presence of low
electrolyte results in a dominance of the repulsive interaction
from the large distance separations between CeO2 NPs.
However, the increase in electrolyte concentration led to
the compression of the double layer of CeO2 NPs and
reduced the stability of CeO2 NPs. The strongly positively
charged surface of CeO2 NPs at pH< pHPZC resulted in the
predominated role of electrostatic repulsion over attraction;
thus the stability of CeO2 NPs was enhanced. Similarly, due
to the same mechanism above, the low pH enhanced the
CeO2 NP mobility, a result that is attributable to the
increased stability of the CeO2 NPs [40]. The similar influ-
ence of electrolyte on the stability of CeO2 NPs was also
noted in that the CeO2 NPs were stable at low NaCl concen-
trations (<10mM) and unstable at higher NaCl concentra-
tions (>10mM). Further, the positive zeta potentials
determined for three different synthesized CeO2 NPs had
isoelectric points at pH 5.8, 7.6, and 6.5 [52]. The uncoated
CeO2 NPs exhibited positive zeta potentials at pH less than
its pHPZC (pH 6.8Æ 0.1) [44]. In addition, at pH 4.5 (i.e.,
pH< pHPZC), TiO2 NPs nanoaggregate size was substan-
tially greater, and the size distribution became broader at
a higher IS (0.165M) in the presence of NaCl/CaCl2 [79].
However, no obvious aggregation was evident at a lower IS
(0.0045M).

At a pH= pHPZC, the largest aggregation sizes were
obtained. This finding was in correlation to the close-to-
zero average zeta potentials (Table S2), the large values of
the average hydrodynamic diameter of CeO2 NPs (1,300–
3,600 nm) at ∼1 hr (Figures 4(c) and 4(d), Figures 7(c) and
7(d), and Table S3), and the lack of a repulsive energy barrier
(0 kT) (Figures 6(b) and 6(e)). This outcome suggests that at
pH= pHPZC, the electrostatic attraction is predominant over
the repulsion, and destabilization behavior exists in the sus-
pensions. Similarly, a pH level approximate to the pHPZC

(pH 6.5) increased the protons that then reacted with the
functional groups (e.g., carboxyl groups) with a negative
surface charge, thus reducing the CeO2 NP surface charges
to the benefit of the aggregation [40]. However, in their

Journal of Nanomaterials 21



study, Oriekhova and Stoll [44] reported that the average
hydrodynamic diameter of CeO2 NPs was near 2,000 nm at
pH= pHPZC. Quik et al. [63] also noted a discrepancy in
pHPZC that was equal to pH 8 in 10mg/L CeO2 NP samples.
The differences in these studies of the pHPZC of CeO2 NP are
perhaps due to the purchasing of nanoparticles created with
various synthesizing techniques, and a difference in the con-
centrations, solution/suspension conditions, and mediums
used in the experiments. Similarly, the pHPZC values for
the TiO2 NPs also varied due to the technique used and
constituents introduced during the synthesis [94]. In addi-
tion, the enhanced aggregation behavior of other types of
NPs also occurred when the surface charge of the NPs was
near the pHPZC. When the pH reached the range of 5–8, large
TiO2 nanoaggregates formed, suggesting neutralization as
the primary catalyst in nanoaggregate formation [95].

The enhanced aggregation behavior at pH= pHPZC in
our research is explained by the occurrence of the surface
charge neutralization of CeO2 NPs from the interaction of
hydroxyl ions with the CeO2 NP surfaces. The condensation
reaction, which is the inverse of hydrolysis, is expressed
below [96]:

M-OH2
þ þ OH− ¼M-OHþH2O: ð2Þ

with M-OH2
+ indicating the products after the interactions

among CeO2 NPs—water interface and H+.
The hydrolysis reaction mechanism was used to demon-

strate the impact of pH on aggregation of TiO2 NPs by adding
FeCl3 [97] and on aggregation of iron oxide nanoparticles [98].
The hydrolysis complex structure of C60 NPs was also consid-
ered as the reason for the initial decrease in pH caused by the
decrease of the absolute zeta potential [99]. In addition, at pH
=pHPZC, the maximum aggregation sizes were observed for
TiO2, titanate nanotubes, and titanate nanotubes-TiO2

(800–1,300 nm) [100] and for ZnO NPs (1,802 nm) [101].
The destabilization was also present for ZnO NPs at pH 9,
which was close to pHPZC (9.2) [102].

At pH> pHPZC, the surface deprotonation continues
processing the large amount of OH− interacting with surface
of CeO2 NPs. The large amount of OH− adsorbed on the
CeO2 NP surfaces in turn yields strongly negatively charged
and stable CeO2 NPs (close to or less than −30mM) at pH
12.2 (Table S2). Small CeO2 nanoaggregates were present
after an hour incubation, which was less than 190 nm, as
shown in Figures 4(e) and 4(f ) and Figures 7(e) and 7(f ).
Similarly, the homoaggregation of CeO2 NPs at pH 11, which
was larger than its pHPZC, was enhanced with the increase of
NaCl and CaCl2 until they reached their CCC values [52]. In
addition, the negatively charged TiO2 NPs (with an approxi-
mate zeta potential of −55mV) were stable (with an average
hydrodynamic diameter near 120 nm) at a high pH [95]. In
correspondence to the small CeO2 nanoaggregates, we
obtained small aggregate rates (<0.02 nm/s) in our study.
A low aggregation rate (i.e., close to 0 nm/min) was also
obtained for negatively charged TiO2 NPs (with a zeta poten-
tial of −38.7mV) at pH> pHPZC [103]. At pH 11–12 (pH>
pHPZC= 7.8), small nanoaggregates (<50 nm) formed at a

low concentrations of iron oxide NPs (<50mg/L) [104].
Moreover, at pH 9 (pH> pHPZC), the Fe3O4 NPs were
more unstable in the presence of divalent cations (e.g., Ca2
+) than in the presence of monovalent cations (Na+) [105].
The size of Ag NPs was below 100 nm—at pH 8 because of
the negative zeta potential from the negatively charged
OH− [106].

4.2. Effect of HA and FA on the Stability of CeO2 NPs
(Heteroaggregation). Although the HA stabilized CeO2 NPs
under pH> pHPZC, the aggregation was enhanced at pH=
pHPZC and in the presence of 0 and 1mM of NaCl/CaCl2 at
pH< pHPZC. Further, the FA stabilized CeO2 NPs at all three
pH levels (pH>,= , and <pHPZC) and under all electrolyte
concentrations (0–1mM of NaCl or CaCl2).

Heteroaggregation is a phenomenon that is characterized
by dissimilar particle aggregation [93], the mechanisms of
which between SRHA or SRFA and CeO2 NPs differ from the
mechanisms of homoaggregation between CeO2 NPs. The
adsorbed NOM on the NP surface was not only found to
increase electrostatic repulsive forces between NPs but also
cause steric forces, thus reducing NP aggregation [107–109].
In addition, the NOM sorption on the particles can facilitate
the cation bridging and enhance both NOM and particle
heteroaggregation (e.g., graphene oxide) [110]. Moreover,
NOM can also neutralize the positive surface charge of
NPs and enhance the aggregation [94]. Therefore, the com-
plex nature of the heteroaggregation state and stability of
CeO2 NPs in the presence of HA or FA was also affected
by both the pH and ionic composition and concentration.

4.2.1. Stable CeO2 NPs with HA. The CeO2 NPs under study
here exhibited stability after a 1 hr incubation period in terms
of the zeta potential (with the absolute value either near, or
larger than, 30mV). Further, the average hydrodynamic
diameter was less than 120 nm for CeO2 NPs in the presence
of HA at all NaCl/CaCl2 concentrations (0–1mM) at pH 12.2
(Figures 9(c) and 10(c) and Table S2). The dispersion of
CeO2 NPs by HA at pH> pHPZC may account for the elec-
trosteric stabilization, which is caused by the steric repulsion
between the complexes of CeO2 NPs and negatively charged
HA. This finding agrees with the studies involving the use of
NOM and particularly HA in CeO2 NP stabilization [47, 49]
and other types of NPs [68, 69, 97, 111, 112]. Both the elec-
trostatic and steric stabilization mechanisms were also deter-
mined as catalysts for enhancing the NP stabilization
[101, 113–116]. Further, the low average hydrodynamic
diameter (<1,000 nm) of CeO2 NPs in the presence of
NOM was present at a high pH and a low IS [49]. HA was
an important catalyst in stabilizing the TiO2 NPs and form-
ing small-size nanoaggregates (of approximately 250 nm) in
natural waters due to the effects of both the electrostatic and
steric repulsion [69]. The TiO2 NPs surface was covered by
the HA molecules, and the aggregation was inhibited at a
high pH [97]. We also found that the stability of CeO2 NPs
was higher in the presence of HA at pH> pHPZC than at
other pHs in our study. At a pH> pHPZC, the increase of
HA (from 0 to 1mg/L) decreased the zeta potentials from
<−20 to −25.8mV and −30 to −35.65mV for both the
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anatase and rutile TiO2 NPs, with a 120 nm size at 1mg/L
HA, indicating that HA stabilized these TiO2 NPs [94]. How-
ever, at pH< pHPZC, the increase of HA (0–1mg/L) neutral-
ized the positively charged TiO2 NPs, resulting in close to
0mV zeta potentials (−4mV for the anatase TiO2 NPs and
−9mV for the rutile TiO2 NPs) and unstable TiO2 NPs. In
another example, at basic pH (pH 8 and 10), Ag NPs were
stable with a small hydrodynamic diameter (around 120 nm)
in the presence of SRHA [117].

Inhibited aggregation was also in the presence of HA at
0.1mM of salt (NaCl or CaCl2) at pH 8.2 (Figures 9(a) and
10(a) and Table S2) due to the low k11 values of CeO2 NPs
(less than 0.05 nm/s). The stability of CeO2 NPs is higher
than predicted by the values of average zeta potential at
pH< pHPZC, a finding that indicates that steric stabilization
inhibits the growth of CeO2 nanoaggregates [17].

4.2.2. Unstable CeO2 NPs with HA. Four concepts indicated
the instability of the CeO2 NPs in the presence of HA under
0 and 1mM of salt (NaCl or CaCl2) at pH 8.2 and in the
presence of HA at all NaCl/CaCl2 concentrations (0–1mM)
at pH 10.2. These are (i) an average hydrodynamic diameter
larger than 1,500 nm (Figures 9(a) and 9(b) and Figures 10(a)
and 10(b)); (ii) an absolute average zeta potential value less
than 20mV (Table S2); (iii) an aggregation rate larger than
0.35 nm/s (Table 2); and (iv) the values of repulsive energy
barriers smaller than 7 kT (Figures 12(a), 12(b), 12(d), and
12(e)). A summary of the possible mechanisms and explana-
tions for the unstable CeO2 NPs at different pH and salt
concentrations is below.

The predominance of protons that neutralize the CeO2 NP
surface charges may cause the CeO2 NP instability in the pres-
ence of HA at all Na+ or Ca2+ concentrations (0–1mM) at
pH=pHPZC, though negatively charged HA exists in the sys-
tems. This instability also indicates the insufficiency of 5mg/L
HA in stabilizing the CeO2 NPs (25mg/L) at pH 10.2.

HA adsorption on the partial surface of CeO2 NPs may
be the cause of CeO2 NP destabilization at pH< pHPZC in the
presence of HA and the absence of salt, thus increasing the
CeO2 NP hydrophobicity while promoting aggregation, also
stated by Ghosh et al. [68] and Chen et al. [94]. HA neutral-
ized the positive charges on the CeO2 NP surfaces at pH<
pHPZC, which decreased the repulsive forces between the NPs
and increased aggregation. HA can also lead to charge neu-
tralization and NP destabilization [118, 119]. Similar phe-
nomena and mechanisms were also identified for magnetite
NPs [120]. In their study, Hu et al. [120] determined that HA
increased the magnetite NP aggregation under changing pH
conditions. In the presence of low HA concentrations (2 and
3mg/L), the aggregation was enhanced at low pHs. The
enhanced aggregation of CeO2 NPs at 1mM NaCl, as com-
pared to the 0.1mM NaCl, is from the compression of EDLs
caused by an increase in IS. Similarly, Quik et al. [63] found
that the steric repulsion of NOM had little effect upon the
stability of the CeO2 NPs. The aggregation of CeO2 NPs was
enhanced (i.e., the average hydrodynamic diameter increased
from 173 to 253 nm) with the increase of electrolytes content
in NOMs [63]. Also, a study of transport and deposition of

SRHA-formed Ag NPs noted a marked instability of Ag NPs
at a low acidic pH and a high IS [117]. In their study of CeO2

NP destabilization, Li and Chen [47] noted an enhanced CeO2

NP aggregation in the presence of HA, at a high CaCl2 con-
centration of (80mM) and a 5.7 pH (pH< pHPZC). This type
of CeO2 NP aggregation is due to the bridging effect. In the
bridge effect, interactions between HA and Ca2+ result in
the formation of large HA aggregates via Ca2+ complexation
which can bridge NPs and induce their aggregation [121]. In
our study, we noted the enhanced aggregation in the presence
of HA at 1mM of Ca2+ at pH 8.2. Here the average zeta
potential was approximately 10mV (Table S2), the average
hydrodynamic diameter was larger than 1,300 nm after a 1 hr
incubation period (Figure 10(a)), and the slope of growth of
CeO2 NPs in the hydrodynamic diameter was larger than
0.10 nm/s (Table 2). Similarly, the bridging attraction between
CeO2NPs induced by the aggregation of HA via Ca2+was also
found when the CeO2 NPs were in the presence of HA and
under high concentrations of Ca2+ [47]. The CeO2 NPs were
more unstable at a higher IS in the presence of NOM, and the
CeO2 nanoaggregates were larger than 1,000 nm [49]. Similar
aggregation behaviors due to the inter-molecule bridging
effect has been found among other types of NPs, such as
C60 NPs [121] and Ag NPs [122]. In addition, NPs (e.g., Ag
NPs or C60) in the systems of SRHA or SRNOM were more
unstable with high divalent cations than with monovalent
cations [123, 124]. The bridging effect of NOM and Ca2+

increased the aggregation of other types of NPs, such as
citrate-coated gold nanoparticles [125], iron oxide NPs
[126], and other types of NPs [127]. In another example,
the aggregation of silicon NPs was enhanced in the presence
of SRHA and Ca2+ due to the bridging effect of SRHA with
Ca2+ overweighing the compression of the EDL between NPs
by Ca2+ [128].

4.2.3. Stable CeO2 NPs with FA. In this research, the CeO2

NPs were very stable in the presence of FA (0.14mg/L) at all
three pHs (8.2, 10.2, and 12.2) and under all electrolyte con-
centrations (0–1mM of NaCl or CaCl2) (Figures 9(d)–9(f )
and Figures 10(d)–10(f)). This finding indicates that lower
concentration of FA in our study can completely coat the
surface of CeO2 NPs and strongly stabilize CeO2 NPs due to
steric hindrance and increased electrostatic repulsion as indi-
cated by the high absolute zeta potential values. Recent stud-
ies on the influence of FA upon the stability of CeO2 NPs
also noted the similar prevention of CeO2 NP aggregation.
Specifically, Oriekhova and Stoll [44] found that CeO2 NPs
were stable at pH 8 (the average hydrodynamic diameter
< 210 nm) in the presence of 2mg/L of FA. They also
reported that the negative zeta potential and the small aver-
age hydrodynamic diameter (no larger than 220 nm) were
due to the formation of CeO2 NP–FA complexes, as indi-
cated on SEM imagery [45]. Similar stable nanoaggregates
were also present among other types of NPs. The increase of
surface charge and formation of surface coating caused by
FA was also evidenced in the study of cit-AgNPs, where
adsorption of FA on cit-AgNPs led to electrosteric stabiliza-
tion [89]. In the presence of FA and a high IS, the TiO2 NPs
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were stabilized [129]. Similarly, the FA adsorption to other
types of NPs (e.g., TiO2 NPs, C60 NPs, Ag NPs, iron oxide
NPs) and stabilizing effects of FA on NPs were attributed to
steric effects and compression of the diffusive layer of both
NPs and FAs [89, 129, 130].

It is known that FA has a lower molecular weight
(500–2,000 g/mol) than HA (1,000–10,000 g/mol) with HA in
many cases deemed more effective than FA in stabilizing NPs
[87, 115, 130–133]. However, in our research, CeO2 NPs in the
presence of FA (0.14mg/L) exhibited a greater degree of stability
than CeO2 NPs in the presence of HA (5mg/L) at all three
alkaline pH levels. This phenomenon suggests that FA has stron-
ger electrostatic interactions than HA at those alkaline pH levels.
The reason may be that FA is more aromatic and thus has
increased the phenolic groups ionization and low hydrogen
interaction-forming open structures than HA in alkaline pH
[134, 135].

5. Conclusion

Our research provides a framework for understanding col-
loid systems and interfaces stability of engineered nanopar-
ticles, CeO2 NPs, in aqueous environments. The authors
conducted a series of experiments to elucidate the physical
and chemical interaction mechanisms that govern the colloi-
dal stability and aggregation kinetics of CeO2 NPs under the
influence of soil and water abiotic factors—pH, ionic com-
position (monovalent NaCl and divalent CaCl2 salts), and
SRHA and SRFA. Experimental results showed that the solu-
tion chemistry affected the colloidal stability and aggregation
kinetics of CeO2 NPs. As a first key finding, this research
demonstrated the effects of pH and salt on colloid systems
and interfaces stability of CeO2 NPs. The zeta potential of
CeO2 NPs, with pHPZC of 10.2, decreased (from positive to
negative) with increasing solution pH. The diameter of CeO2

NP aggregates was ∼1,700 nm in the region of pHPZC, and
decreased with pH at pH< pHPZC or pH> pHPZC to ∼100
nm, except at pHs 1, 13, and 14, where it reached
∼1,500–2,250 nm. The impacts of Na+ and Ca2+ cations
and HA and FA on the levels and rates of aggregation
were pH-dependent.

Additionally, in the presence of salts, CeO2 NPs were
stable at pH< pHPZC (except for 1mM of NaCl/CaCl2)
and pH> pHPZC (except for 0.5mM CaCl2); however, the
aggregation was enhanced at pH= pHPZC, with a diameter
of CeO2 NPs in the ∼1,300–3,600 nm range. Next, HA stabi-
lized CeO2 NPs under pH> pHPZC; however, the aggregation
was again enhanced at pH= pHPZC with a diameter of CeO2

NPs in the ∼1,500–1,900 nm range, and in the presence of 0
and 1mM of NaCl/CaCl2 at pH< pHPZC. FA (0.14mg/L)
showed more efficiency in stabilizing the CeO2 NPs than
HA (5mg/L) at three pH levels (8.2, 10.2, and 12.2) and under
all different electrolyte concentrations (0–1mM of NaCl or
CaCl2). The diameter of CeO2 NPs in the presence of FA grew
at low rates and was ∼95–115 nm at all three pHs and under
all different electrolyte concentrations.

The significant impact of the solution chemistry (i.e., pH,
salts, HA, and FA) in which CeO2 NPs were suspended is
linked to the development of interfacial complexation in
aqueous environments, this finding is the second key result
of this research. Particularly, besides the EDL compression
effect by Ca2+, between CeO2 NPs, the ion bridging effect
between CeO2 NPs in Ca2+-HA systems was a key control-
ling mechanism of the stability of CeO2 NPs. Furthermore,
FA inhibited the aggregation of CeO2 NPs by enhancing the
energy barrier, therefore allowing CeO2 NPs to remain stable
at pH values of 8.2, 10.2, and 12.2, and with NaCl and CaCl2
concentrations ranging from 0 to 1mM.

The risk assessment for CeO2 NPs contamination,
according to their aggregation and stability state in surface
water and in the subsurface soils and aquifers, is of great
importance for future regulation and evaluation of CeO2

NPs waste disposal and applications in products. In rivers
and oceans that are abundant with HA or FA, CeO2 NPs are
likely to be suspended and freely transported from one
aquatic region to another, posing risks for aquatic animals
and human swimming in a CeO2 NPs-contaminated water.
However, under some specific conditions with different solu-
tion chemistries, CeO2 NPs form aggregates, settle at the
bottom of the water compartments, become sediment con-
taminants uptake by sediment-dwelling animals, and enter
the food chains. Therefore, additional testing of the CeO2

NPs aggregation behavior and stability and other possible
interactions under different solution chemistry is required
to develop a data collection bank for CeO2 NPs for the accu-
rate and precise analysis, interpretation, and prediction for
environmental risk assessment and protection.
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Supplementary Materials

The supplementary materials contain additional information
on the hydrodynamic diameter of CeO2 NPs during the first
100 s and at ∼1 hr of around 1 hr measurements for each pH
(1–14); the particle size distribution of CeO2 NPs during the
first 100 s and at ∼1 hr of around 1 hr measurements for each
pH (1–14); the zeta potential of CeO2 NPs under varying
concentrations of NaCl/CaCl2 in the absence/presence of
HA/FA at three different pHs (8.2, 10.2, and 12.2) and dif-
ferent time intervals of around 1 hr measurements; the
hydrodynamic diameter of CeO2 NPs during the first 100 s
and at ∼1 hr of around 1 hr measurements at three different
pHs (8.2, 10.2, and 12.2) and each NaCl/CaCl2 concentra-
tion; the particle size distribution of CeO2 NPs during the
first 100 s and at ∼1 hr of around 1 hr measurements in the
presence of NaCl at three different pHs (8.2, 10.2, and 12.2);
the particle size distribution of CeO2 NPs during the first
100 s and at ∼1 hr of around 1 hr measurements in the pres-
ence of CaCl2 at three different pHs (8.2, 10.2, and 12.2); the
hydrodynamic diameter of CeO2 NPs during the first 100 s
and at ∼1 hr of around 1 hr measurements at three different
pHs (8.2, 10.2, and 12.2) and each NaCl/CaCl2 concentration
in the presence of HA; the particle size distribution of CeO2

NPs during the first 100 s and at ∼1 hr of around 1 hr mea-
surements in the presence of HA, NaCl, and CaCl2 at three
different pHs (8.2, 10.2, and 12.2); the hydrodynamic diam-
eter of CeO2 NPs during the first 100 s and at ∼1 hr of
around 1 hr measurements at three different pHs (8.2, 10.2,
and 12.2) and each NaCl/CaCl2 concentration in the pres-
ence of FA; and the particle size distribution of CeO2 NPs
during the first 100 s and at ∼1 hr of around 1 hr measure-
ments in the presence of FA, NaCl, and CaCl2 at three dif-
ferent pHs (8.2, 10.2, and 12.2). (Supplementary Materials)
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