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Chronic wounds, which include venous leg ulcers, diabetic foot ulcers, and pressure ulcers, are a global health issue that affects
between 1% and 2% of the developed world’s population. Chronic wound healing necessitates extensive medical intervention at
costly healthcare expenses. Wound care management is mainly dependent on the discovery of new and appropriate chronic wound
dressing materials, and it remains a focus of research in chronic wound care. Biocompatible metallic nanoparticle-loaded wound
dressing offers a novel opportunity for effectively overcoming the inherent drawbacks of traditional wound dressing materials,
particularly in overcoming nonhealing chronic wounds due to their clinical complexity, for example, wound infections, chronic
irritation, and trauma, persistence of foreign body or bacterial proteins, and ischemia. In this review, we will primarily focus on the
advancements in nanoparticle-based antibacterial and antioxidant wound dressing materials (e.g., hydrogels, electrospun scaffolds,
sponges, and films) for the treatment of chronic wounds, which overcome the limitations of traditional dressings.

1. Introduction

Skin is the body’s most important and largest organ [1]. It
completely surrounds the outside of the body and protects us
against radiation, mechanical blows, external pressures, tem-
perature changes, microorganisms, and chemicals [2, 3]. Skin
wounds (e.g., chemical burns, thermal injuries, cuts, and
scratches) have an impact on various skin functions, includ-
ing neuropathy, bacterial infections, failure of thermoregu-
lation, and so on [4–8]. Wounds are generally classified as
acute and chronic [9]. Acute wounds (such as, surgical
wounds, traumas, superficial burns, and irradiation) heal
in 1–12 weeks, whereas chronic wounds (such as, pressure
ulcers, vascular ulcers, and diabetic ulcers) are a significant
healthcare burden in the world because they do not heal in
the expected time (it takes more than 2 months), are more
susceptible to infection, and are more difficult to cure (non-
healing) [10–13]. Normal wound healing is a complicated
biological operation in the human body that involves four
phases such as hemostasis, inflammation, cell proliferation,
and tissue remodeling (Figure 1) [14]. (i) During the hemo-
stasis phase, the body’s healing and blood-clotting systems

are activated, and a barrier is formed to stop the bleeding.
(ii) The inflammatory phase, which kills microorganisms and
prepares the wound bed for future tissue formation. (iii) In the
proliferation phase, the wound is filled with newly formed
tissue, the wound edges are contracted, and the wound is
covered with epithelium. (iv) During the remodeling of scar
tissue phase, the newly formed tissue becomes stronger and
more flexible [15–17].

Due to the complexity of healing chronic wounds, any
single therapeutic strategy is unlikely to result in satisfactory
recovery. Another important issue is bacterial infection at the
wound site, which can delay wound healing and possibly lead
to life-threatening putridity. As a result, in chronic wound
dressings, it is necessary to design a wound dressing material
with antibacterial and enzyme inhibitory capabilities in com-
bination with high hydrophilicity, elasticity, tensile strength,
air permeability, and biodegradation in order to restore nor-
mal skin integrity and speed up the wound healing process
[19, 20]. Currently, there are numerous wound dressings
available, including dry gauze, sponge, film, ointment, hydro-
gel, fiber, solution, and electrospun membrane (scaffold)
[21–26]. These various wound dressing materials have been
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created utilizing a range of materials, including biopolymers
such as alginate (ALG), collagen (COL), dextran (DEX), cel-
lulose (CL), gelatin (GEL), and chitosan (CS), as well as syn-
thetic polymers, such as polyvinyl alcohol (PVA) [27]. This
review comprehensively presented the purpose and conse-
quences of polymer-based wound dressing materials (e.g.,
hydrogels, electrospun membrane, film, and sponge) loaded
with metallic and metallic oxide nanoparticles (e.g., Ag, Au,
ZnO, CuO, CeO2, and TiO2) in order to accelerate the healing
process of chronic wounds, with the purpose of providing a
theoretical reference for chronic wound healing.

2. Polymeric Wound Healing Biomaterials

Various polymers, such as natural polymers (e.g., cellulose,
chitosan, hyaluronic acid, gelatin, alginate, and chitin) or
synthetic polymers (e.g., polyurethanes, poly(vinyl alcohol),
and polylactide), can be utilized to prepare effective and ideal
wound healing dressing materials [28, 29]. Polymer-based
wound dressings that have been loaded with bioactive agents,
nanomaterials, or drugs may have better therapeutic effects,
such as strong antibacterial or antioxidant activity [28, 30].
Hybrid-based wound dressings are produced by combining
natural and synthetic polymers in the design of wound dres-
sings [31]. Enhanced mechanical capabilities, superior flexibil-
ity, quicker wound healing, biodegradability, biocompatibility,
and high adsorption capacity are all excellent features of
hybrid wound dressings [32].

Collagen (COL) is the most common protein found in
animal bones, muscle, and skin [33, 34]. COL is considered
one of the most valuable biomaterials for wound dressing
due to its great biocompatibility, biodegradability, and mini-
mal antigenicity [35, 36]. However, COL application is limited
due to its weak physicochemical and perishable characteris-
tics [37].

Gelatin (GEL) is a solid, colorless, tasteless, and semitrans-
parent substance composed of denatured proteins generated
by partial hydrolysis of collagen under specified reaction con-
ditions [38, 39]. Gelatin is most commonly found in the skin
and bones of land animals, although it can also be found in

fish and pesticides [40, 41]. Due to GEL superior biocompati-
bility, nonimmunogenicity, biodegradability, cell interactivity,
and commercial availability, gelatin is commonly utilized as
biomaterial for tissue engineering and other biomedical
applications [42–45].

Chitosan (CS) is a linear polysaccharide that is derived
from acetyl chitin and is found in the cell walls of anthropoids
like crabs and shrimp [46, 47]. CS possesses antibacterial,
antifungal, and antiyeast activities, as well as being biodegrad-
able, biocompatible, water absorbent, and nontoxic [48, 49].
It may be even more antimicrobial at lower pH levels. As a
result, CS has a great deal of promise for use as a wound
dressing for the treatment of skin scars and tissue damage
[50, 51]. More significantly, chitosan’s capacity to mix with
other materials and produce composites with sponge topolo-
gies is the polymer’s most intriguing feature [52].

Dextran (DEX) is a natural glucose-based polymer with
reactive hydroxyl groups that provide hydrophilicity and
being able to be manufactured, changed, or functionalized
for various medicinal and biological purposes, as well as
promising wound dressing due to its excellent antimicrobial
activity [53–56]. DEX has been widely explored as a safe
biomaterial for the targeted and sustained delivery of drugs,
enzymes, and proteins due to its outstanding biocompatibil-
ity and biodegradability [57].

Bacterial cellulose (BC) is a type of microbial polysaccha-
ride produced by aerobic bacteria that has distinct physio-
chemical properties from plant cellulose [58–62]. Due to its
great mechanical strength, crystalline nature, biodegradability,
biocompatibility, hydrophilic nature, flexibility, nontoxicity,
and water retention ability, BCmembranes (BCM) are utilized
in wound dressings, drug delivery, bone transplants, tissue
engineering, artificial arteries, and dental implants [63–66].

Sodium alginate (SA) is a linear polysaccharide and
copolymer generated from brown marine algae that is neutral
and water soluble [67, 68]. SA’s antibacterial and antifungal
activity, strong hydrophilicity, outstanding biocompatibility,
biodegradability, affordability, and ability to absorb wound
exudate make it ideal for application as a polymeric wound
dressing [69, 70].
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FIGURE 1: (a–d) Schematic representation of normal wound healing stages [18].
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Poly(vinyl alcohol) (PVA) is a mild water-soluble syn-
thetic biodegradable linear polymer that is utilized in a variety
of commercial, industrial, medicinal, and dietary applications
[71]. PVA is one of the most appealing synthetic polymers for
wound dressing application due to its good properties, such as
biocompatibility, highmechanical strength, high hydrophilic-
ity, and providing moisture conditions for wound healing
applications [72–74]. The same dressing materials are often
loaded with various nanomaterials in the most sophisticated
designs, such as silver nanoparticles (AgNPs), cerium oxide
nanoparticles (CONPs), and others to improve their antibac-
terial and antioxidant activities, and hence accelerate wound
healing [75–77].

3. Nanoparticles for Potential Wound
Healing Applications

Nanotechnology has recently provided an excellent approach
to enhancing acute and chronic wound healing by encourag-
ing proper mobility throughout the numerous stages of heal-
ing [78]. Nanoparticles (NPs) have been highlighted as an
effective wound healing therapy technique among all other
nanomaterials due to their ability to function as both a ther-
apeutic and carrier system, as well as many other unique
properties [79, 80].

Cerium oxide (CeO2) nanoparticles (CONPs) are employed
in a variety of medicinal applications due to their anti-
inflammatory, anticancer, and proangiogenic characteristics
[76, 81–84]. CONPs-loaded wound dressings have been
shown to enhance wound healing in vitro and in normal
animal models due to their cell infiltration, antibacterial,
and antioxidant/anti-inflammatory activity via the redox
interaction between Ce3+ and Ce4+, according to recent
findings [20, 85–88].

Silver nanoparticles (AgNPs) have gained importance in
wound dressing due to their extensive antibacterial activity
and ability tomeet the requirements for therapeutic resistance
[89, 90]. The mechanism of action of AgNPs is unknown, but
the most widely accepted theory is that Ag+ could attach to
the bacterial cell wall via interactions between Ag+ and the
thiol part of proteins on the cell membrane, impacting bacte-
rial cell viability by preventing DNA replication [91]. AgNPs,
whether in the metallic form (Ag0), oxides (mostly Ag2O), or
cationic forms (Ag+), have a strong antibacterial effect [92–95].

Gold nanoparticles (AuNPs) have also been widely used
in medicinal and biological applications as a promising anti-
bacterial and antioxidant agent [96]. Certain AuNPs were
utilized to improve wound dressings for acute and chronic
wounds [97, 98]. However, the preparation and administra-
tion of AuNPs in vivo might result in cytotoxicity, and their
toxicity is highly correlated with the dosage, size, concentra-
tion, and exposure period [99, 100]. As a result, while employ-
ing it for biomedical purposes, its possible long-term negative
consequences should be carefully evaluated. When employed
in certain environments, uncoated AuNPs are sensitive to
temperature, pH, electrolyte balance, and solvent, and they
are also prone to aggregation, which is a key challenge that
must be solved before a nanoparticles can be integrated into a

biological molecule [101, 102]. In addition, gold is too expen-
sive to be used as a wound healing material, thus alternative
metallic nanoparticles (NPs) with cheaper prices and superior
antibacterial properties are used in its stead.

Zinc oxide (ZnO) nanoparticles (ZONPs) are antimicro-
bial, biocompatible, affordable, nontoxic, and environmen-
tally friendly, which stimulate keratinocytes by releasing Zn
ions on the wound surface and hence speeds up wound
healing [103–105]. More importantly, the antibacterial activ-
ity of ZnO nanoparticles with smaller particle sizes is greater
[106]. ZnO contains the micronutrient Zn, which is known
to stimulate angiogenesis (the creation of new blood vessels),
which leads to tissue repair and recovery [107]. The release of
Zn2+ ions in aqueous suspension from the breakdown of
ZnO particles enhances ZnO’s antibacterial activity [108].

Titanium dioxide (TiO2) nanoparticles (TONPs) have
attracted the attention of many researchers among various
antibacterial nanoparticles due to their biocompatibility,
nontoxicity, strong antibacterial activity, and exceptional
physical and chemical stability [109]. TiO2 has shown high
biocompatibility with tissue and blood, making it an attrac-
tive material to investigate for a variety of blood-compatible
coatings for biomedical applications [110, 111].

Copper NPs (CuNPs) and copper oxide (CuO) nanopar-
ticles (CuO-NPs) show exceptional effectiveness as antibac-
terial agents, thus accelerating wound healing [112–114].
They serve a complicated role in a variety of cells, control
the actions of multiple cytokines and growth factors, producing
important growth proteins, and are fundamentally engaged in
all four stages of wound healing processes. However, CuNPs
and CuO-NPs have demonstrated significant toxicity in
numerous investigations, when compared to several other
metal and metal oxide nanoparticles [115–118]. Various sub-
stances were found to delay the release of copper ions, such as
folic acid, reducing cytotoxicity and enhancing cell motility,
hence enhancing wound healing process [119].

Strontium nanoparticles (SrNPs) have attracted a lot of
attention in recent years due to their distinctive physical and
chemical characteristics. SrNPs offer a wide range of uses,
including drug delivery, bioimaging, cancer treatment, wound
dressings, and more [120]. Personalized SrNPs-loaded scaf-
folds can be used to accommodate any size dental implant and
may aid in patients’ healing and tissue attachment [121]. Sr2+

ions are also one kind of inorganic angiogenic agent that can
promote blood vessel development, according to a study
[122]. Thus, their inclusion in wound dressings will promote
faster regeneration and accelerate wound healing.

In addition to the metal and metal oxide NPs presented
in this prospective, other NPs such as silica NPs (SiNPs), iron
oxide NPs (IONPs), cobalt ferrite NPs (Co–FeNPs), and
others have gained a lot of attention recently due to their
biocompatibility and biodegradation in the biomedical field.

4. Polymer-Based Dressings Loaded
with Nanoparticles

4.1. Hydrogels. Hydrogels (hydrophilic gels) are cross-linked
polymeric 3D networks that have the capability of absorbing
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a large volume of water (wt. 20%) without dissolving in water
(aqueous medium) [123–126]. The presence of hydrophilic
functional groups on the polymeric backbone is the reason
behind absorption of substantial amount of water, while
hydrogen bonding and ionic interaction between polymeric
chains (cross-linked structure) help them resist dissolution
in aqueous medium [127]. Since the invention of synthetic
hydrogels in 1954, natural hydrogels have been ruled out in
favor of synthetic hydrogels, which have a higher water absorp-
tion capacity, strength, shelf life, and self-healing [124, 128, 129].
Synthetic hydrogels are utilized in wound dressing, medicines,
biotechnology, tissue engineering, therapeutic agents, and
other biomedical applications [124].

Based on hydrogel’s 3D structure, high moisturizing
capabilities, good permeability, excellent biocompatibility,
and transparency, it is commonly used as wound dressing
materials for chronic wound healing [27, 130, 131]. Hydro-
gels are soft, easy-to-change polymers that absorb wound
exudate and clean the wound bed while also reducing wound
temperature and calming the wounded area, making them
particularly useful in the treatment of dry wounds [132]. As a
result, these materials can be used in all four stages of wound
healing. However, most hydrogels have been enhanced with
various nanomaterials to improve their healing potential
such as antioxidant/anti-inflammatory activity and antibac-
terial activity for chronic wounds.

Natural and/or synthetic hydrophilic polymers are chem-
ically or physically cross-linked to form hydrogels. Figure 2
lists themost often utilized natural and synthetic polymers for
hydrogel production [132].

4.1.1. Antioxidant Hydrogels. The antioxidant hydrogel can
eliminate excess ROS form chronic wounds, minimizing oxi-
dative stress, enhancing the wound microenvironment, and
facilitating potentially rapid wound healing [133]. Low amounts
of reactive oxygen species (ROS) promote normal wound
healing by encouraging cell migration and angiogenesis, while
high levels of ROS can delay or even compromise chronic
wound healing [134, 135]. A persistent inflammatory response

in chronic wounds results in a massive production of ROS,
which surpasses the antioxidant capacity of the cells, prevent-
ing the wound from transitioning from the inflammatory to
the proliferative phase [133, 136]. Thus, many hydrogel dres-
sings with antioxidant activities have evolved with the intent of
accelerating chronic wound healing, providingmore andmore
favorable conditions for the treatment of chronic wounds
[133, 137].

(1) Gelatin-Based Nanoparticle Loaded Antioxidant-
Hydrogels. Gelatin-based hydrogels are being significantly
utilized for biomedical and pharmaceutical purposes due to
their excellent biodegradability, porosity, and biocompatibil-
ity [138]. However, gelatin with alginate, gelatin with hyalur-
onan, gelatin with chitosan, gelatin with sericin, gelatin with
fibrinogen, gelatin with alginate and fibrinogen, and gelatin with
alginate, fibrinogen, and hyaluronan are all used to increase the
quality of gelatin-based hydrogels [139]. Additionally, different
nanoparticles are put into gelatin-based hydrogels to increase
their antioxidant activity. For example, CONPs can be com-
bined with a variety of natural polymers to create antioxi-
dant/anti-inflammatory hydrogels, such as gelatin, which
has been widely employed as a wound dressing material due
to its unique properties by numerous studies [140].

Thus, Augustine et al. [141] developed a biodegradable
gelatinmethacryloyl (GelMA) hydrogel patch containingCONPs
to promote diabetic wound healing by scavenging free radicals
and reducing oxidative stress (Figure 3). The presence of
numerous inflammatory cells in diabetic wounds causes an
increase in matrix metalloproteinase formation, which leads
to the breakdown of biomolecules that coordinate wound-
healing pathways [142–144].

Curcumin (CUR) nanoparticles have also been used tra-
ditionally as a powerful anti-inflammatory drug for wound
healing for years, and they also have antioxidant, antibacte-
rial, anticancer, and other medicinal properties [145, 146].
Thus, recently, a nanohybrid gelatin/dextran-based amphi-
philic hydrogel material with curcumin and CONPs was
developed by Andrabi et al. [86] for chronic wound healing
applications (Figure 4).
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4.1.2. Antibacterial Hydrogels. During an injury, the risk of
microbial contamination at the wound site rises, leading to
the development of a chronic wound. Furthermore, due to
the wet and nutrient-rich conditions, implants used during
surgeries and biomaterials utilized in medical applications
may raise the risk of bacterial infection [147]. Antimicrobial
agents such as antibiotics, antiseptics, herbal therapies, and
enzymes are used to minimize microbial infections at the
wound site. Silver nanoparticles (Ag NPs), zinc oxide nanopar-
ticles (ZnO NPs), and cerium oxide nanoparticles (CONPs)
loaded hydrogels, for example, have long-lasting antibacterial
action [148–150].

(1) Gelatin-Based Nanoparticles Loaded Antibacterial
Hydrogel. Gelatin-based hydrogels loaded with AgNPs and
AuNPs are being significantly utilized in biomedical and
tissue-engineering applications due to their antibacterial
activities. Using acrylamide (AM) and biodegradable gelatin
(Gel), Reddy et al. [151] created an Ag nanocomposite hydro-
gel. This biodegradable poly(Gel-AM) silver nanocomposites
hydrogel showed significant antimicrobial property against
Gram-positive bacteria (bacillus) and hence has potential
applications in wound and burn treatments [151]. In another
study, Zhou et al. [152] developed a multifunctional AgNPs/
phosphotungstic acid–polydopamine nanocomposite embed-
ded in a CS/GEL biocomposite hydrogel that showed excellent
antibacterial activity as well as accelerating wound healing.

Gelatin methacryloyl (GelMA) hydrogels have been uti-
lized in a variety of biomedical applications due to their high
biological qualities and physical characteristics. In the pres-
ence of photoinitiators, GelMA hydrogels have been shown
to have more effective gelation reaction mechanism and

contribute for better mechanical stability of hydrogel.
GelMA gels have been shown to be beneficial in wound
healing in several trials; thus, Jahan et al. [153] developed
soft methacrylated gelatin (GelMA) hydrogels entrapped
with AgNPs. This hydrogel has been shown to be a promis-
ing antibacterial scaffold for wound healing (Figure 5). It was
demonstrated that cells spread more widely and moved more
quickly when 15% GelMA soft gels were cross-linked with 1
min of UV irradiation. It was also proven that 10 nm AgNPs
encapsulated in 15% GelMA gels release over a 72 hr time
scale and display antibacterial action against Gram-positive
and Gram-negative bacteria at cell-safe concentrations [153].

Lu et al. [102] developed AuNPs-loaded CS–Gel wound
dressings (CS-Au@MMT/gelatin) for biomedical purposes.
They initially synthesized 2-mercapto-1-methylimidazole
(MMT)-capped gold nanocomposites (CS-Au@MMT) by
employing chitosan (CS) as a reducing and stabilizing agent,
then combined it with gelatin (Gel) and freeze dried it for the
development of desired hydrogel dressing material [102].
This biocompatible wound dressing material demonstrated
good mechanical qualities, effective water absorption and hold-
ing capacities, and antibacterial potential against methicillin-
resistant S. aureus-associated wound infection [102].

(2) Cellulose-Based Nanoparticles Loaded Antibacterial
Hydrogel. Although BC membranes are natural wound dress-
ing material, they lack antibacterial activity. However, the
presence of considerable number of hydroxyl groups on cel-
lulose surface enables it to be functionalized with a wide range
of nanomaterials. It is therefore recommended to functiona-
lize BC with an antimicrobial agent in order to make it rele-
vant in wound healing and to avoid subsequent infection. Pal
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et al. [154] coated AgNPs (size between 5 and 12 nm) on
nanofibrillated bacterial cellulose (Ag/BC) using a photo-
chemical reduction technique with UV light, and they were
effective in killing Gram-negative bacteria (E. coli) (Figure 6).

Hydrogels made of carboxymethylcellulose (CMC) and
copper oxide nanoparticles (CuONPs) were synthesized and
described by Yadollahi et al. [155]. The antibacterial activity
of these bionanocomposite hydrogels (CMC/CuONPs) against
E. coli and S. aureuswas excellent. As a result, the carboxymethyl
cellulose/CuO nanocomposite hydrogels produced may be
employed successfully in biomedical applications [155].

In a study, Yadollahi et al. [156] used a mixture of carbox-
ymethyl cellulose (CMC), layered double hydroxides (LDH),
and AgNPs to create antibacterial nanocomposite hydrogels

(Ag/CMC-LDH). The antibacterial activity of this hydrogel
was good against both types of bacteria (E. coli and S. aureus).
However, due to the combined antibacterial action of Cu
and Ag, the modified hydrogel (Ag/CMC-Cu-LDH) demon-
strated improved antibacterial activity [156]. In a separate
work, Gupta et al. [157] reported the synthesis of AgNPs-
loaded BC hydrogel wound dressing that exhibited excellent
antimicrobial activity against Pseudomonas aeruginosa, Staph-
ylococcus aureus, and Candida aureus.

(3) Chitosan-Based Nanoparticles Loaded Antibacterial
Hydrogel. Li et al. [158] prepared a novel chitosan loaded with
AgNPs and AuNPs (CS–Au–Ag) using egg white (Figure 7).
The CS–Au–Ag hydrogels showed excellent antibacterial
activity against E. coli and S. aureus bacteria and were also

Alkylated dextran CDNp

Nanohybrid hydrogel system

+

+

+

Oxidized dextran
Dextran (hydrophilic OH group )

1-Bromohexadecane (hydrophobic domain)

Curcumin powder Gelatin CHO group Cerium oxide nanoparticles

Curcumin loaded amphiphilic nanoparticles (CDNp)

FIGURE 4: The production of the composite hydrogel loaded with curcumin NPs and CONPs is shown in this diagram [86].

Wound

Subcutaneous tissue Subcutaneous tissue

Subcutaneous tissueSubcutaneous tissue

Closure of wound and
synthesis of matrix

Migration of fibroblast
into wound area

Dermis

GelMA + AgNPs
UV (365 nm) 60 s In situ gelation

FIGURE 5: The hypothesized method of action of AgNPs-entrapped GelMA gels is depicted in this diagram [153].

6 Journal of Nanomaterials



nontoxic to L929 cells [158]. Thus, CS–Au–Ag nanocompo-
site can be used as an effective wound dressing material due to
its enhanced antibacterial activity, better mechanical proper-
ties, and high porosity.

Nonetheless, chitosan’s low mechanical strength is its
fundamental flaw, and blending chitosan with other poly-
mers is one of the simplest solutions to approach this issue
[159]. A wound dressing composite has been developed by
Kalantari et al. [85] utilizing a green process using a PVA-
chitosan hydrogel integrated with CONPs and a Zingiber
officinale extract as a reducing, capping, and stabilizing
agent. Zingiber officinale is an organic herb that has been
utilized as a flavoring agent in a variety of beverages and
foods since ancient times. The extract’s major ingredient,
zerumbone, is currently being utilized and researched for
anticancer and antiviral activities [160]. The antimicrobial
activities of the hydrogels were tested against (MRSA) as a

Gram-positive bacteria and (E. coli) as a Gram-negative bac-
teria. The hydrogels containing 0.5% CONPs efficiently
reducedMRSA growth, with an 85% reduction in colonization
after just 12 hr, according to the findings, but did not inhibit
E. coli colonization [85]. This hydrogel has improved swelling
properties, enhanced porosity, good water absorption effi-
ciency, and was biocompatible and nontoxic to skin fibroblasts
up to 5 days [85].

Farhoudian et al. [161] used sodium tripolyphosphate
(STPP) as the cross-linker and sodium hydroxide (NaOH)
as the oxidizing agent to physically cross-link CuO nanopar-
ticles (CuONPs) with chitosan (CS) hydrogel beads. In com-
parison to plain hydrogel, the produced nanocomposite
hydrogels beads (CS/CuONPs) displayed pH-sensitive swell-
ing behavior in several aqueous solutions and revealed strong
antibacterial activities against S. aureus and E. coli bacteria
and can be used for various biomedical applications [161].
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The antibacterial activity of PVA/chitosan/ZnO compo-
sites has been observed to be higher than antibiotics like met-
ronidazole and erythromycin [162]. Thus, to further improve
its antibacterial activity, as a wound dressing, a PVA/CS/
ZONPs/heparin hydrogel was created by Khorasani et al.
[163]. Heparin has been utilized to increase the bioactivity
and biocompatibility of wound dressings by acting as an
anti-inflammatory and anticoagulant drug [164, 165]. The
produced hydrogel had excellent mechanical strength, high
water vapor permeability and swelling properties, and an
increased number of pores in the hydrogel scaffold [163].
The hydrogels created have minimal toxicity and have ade-
quate antibacterial action, particularly at high ZONP concen-
trations. Hydrogel had a 70% antibacterial efficacy against
E. coli and S. aureus bacteria [163]. Based on the polymers
(natural and synthetic) and types of nanoparticles listed in
Table 1, hydrogel has been evaluated.

4.2. Films. Free-standing films have widely been used as bio-
materials in wound healing, medication delivery, tissue
repair, and even artificial organ regeneration [166]. Such
films made of hydrophilic polymers are also biodegradable
and absorbable into bodily fluids via the skin without causing
any harmful effects, making them a perfect solution for the
wound healing process [167]. Polymeric films are containing
nanoparticles with antibacterial and antioxidant properties,
such as chitosan, collagen, silk fibroin, alginate, poly(b-amino
esters), and alginate sodium.

Skin inflammation (sunburn), redness, and itching can
all be caused by ultraviolet (UV) light [168]. As a result, sun
exposure or irradiation should be avoided all through skin
wound healing process [169]. However, zinc oxide NPs
(ZONPs) are more effective UV blockers than TONPs, but
both ZONPs and TONPs are photosensitive and can interact
with light, reducing their effectiveness or potentially causing
tissue damage [170, 171]. The 3M Cavilon No Sting Barrier
Coating spray is a polymeric solution that forms a homoge-
nous film when sprayed on the skin. Thus, Lin et al. [172]
added the spherical ZONPs to 3M cavilon no sting barrier
coating spray due to their larger specific surface area than
that of other different ZONPs shapes. The developed spray
may protect wounded skin from UV irradiation, and during
wound healing, 80% of Hs68 cells survive after 1 hr of UV
irradiation, compared to 55%without photoprotection [172].

In another experiment, Wang et al. [173] made a chit-
osan (CS) film containing arginine (Arg) and gold nanopar-
ticles (AuNPs). The CS–Arg/AuNP dressing promoted
wound closure and showed exceptional antibacterial proper-
ties against E. coli and S. aureus bacteria, hydrophilic nature,
mechanical strength, and biocompatibility, making the sug-
gested film a potential option for skin tissue engineering in
the near future [173].

Furthermore, using chitosan, polyvinylpyrrolidone (PVP),
and silver oxide nanoparticles (AgONPs), Archana et al. [174]
created a wound healing film based on chitosan (CS–PVP/
AgONPs). Apart from the capacity to swell, it also has antimi-
crobial properties. The transparency of the film allows for
regular wound monitoring without having to remove it from

the wound site. It was also demonstrated that this AgONPs-
loaded CS film had better wound healing properties than all
chitosan-based dressings and gauze [174].

In 2020, Razali et al. [175] created the first biocompatible
titanium dioxide (TONPS) loaded gellan gum (GG) biofilm
wound dressing material. This (GG/TONPs) biofilm has
excellent antibacterial activity against E. coli and S. aureus
bacteria, as well as significant swelling and a moderate water
vapor transmission rate [175].

Chen et al. [176] used strontium doped TONPs (Sr-TONPs)
onCS polymer to create a biocompatible chitosan-based nano-
composite film (CS/Sr-TONPs) for wound healing applica-
tions. After 12 days, this CS/Sr-TiO2 demonstrated a high
wound healing rate of about 93% as well as good antibacterial
action against E. coli and S. aureus bacteria [176]. Puccetti et al.
[177] reported the synthesis of alginate-based composite films
containing Ag/AgCl NPs that showed good antibacterial and
antibiofilm activities. Table 2 evaluates several natural and
synthetic polymer types and nanoparticles utilized in film
preparation.

4.3. Sponge. Biodegradable sponge composites composed of
natural polymers such as collagen, chitosan, cellulose, gelatin,
and SA have a highly interconnected and porous structure,
excellent elastic properties, adequate water vapor transmittance,
cytocompatibility, antibacterial actions, and rapid hemostasis.
Wang et al. [178] investigated the biochemical and biophysical
properties of chitosan-crosslinked collagen sponge (CCCS)
comprising recombinant human acidic fibroblast growth factor
(CCCS/FGF) sponge in boosting diabetic wound healing. In
another work, curcumin was incorporated into the chitosan
(CS) and SA sponge (CA sponge) to prevent wound infection
and enhance wound healing [179]. Nguyen et al. [180] prepared
and tested a sponge composite comprised of two natural poly-
mers, chitosan and gelatin, loaded with curcumin in varying
quantities for wound healing applications. Wu et al. [181] fabri-
cated a multifunctional hemostatic sponge with effective and
long-lasting properties. The sponge has a complicated longitu-
dinal staggered structure that allows red blood cells and platelets
to be enriched. A series of studies also showed that the sponge
has good hemostatic performance, safety, biodegradability, anti-
bacterial properties, and the ability to enhance wound heal-
ing [181].

Liang et al. [182] prepared a sponge-like silver nanopar-
ticles (AgNPs)/chitosan wound dressing with asymmetrical
wettability that might be used to treat burn, chronic, and
diabetic wound infections. This nanocomposite dressing
has a high porosity, blood-clotting capacity, and increased
moisture retention duration, which promotes wound heal-
ing. More significantly, antibacterial tests in vitro and in vivo
show that the compound has good antibacterial activity
against both drug-sensitive and drug-resistant pathogenic
microorganisms [182].

Ye et al. [183] developed antibacterial sponges containing
AgNPs by freeze-drying cellulose composite sponges, which
exhibited outstanding antibacterial activity against S. aureus
and E. coli (Figure 8). The cellulose/AgNPs composite
sponges demonstrated good mechanical qualities and
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FIGURE 8: Photographs show the cellulose solution used in the manufacture of regenerated cellulose sponge and cellulose/AgNPs composite
sponges (top), as well as the graphic architecture of the cellulose hydrogel, composite hydrogel, and sponge (bottom) [183].
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FIGURE 9: The preparation of oleylamine-protected CONPs and then creation of a cross-linked gelatin–CeO2 composite (G-ONp) from a
mixture of CONPs, gelatin, and genipin have been graphically depicted [20].
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biocompatibility, making them suitable for use in the treat-
ment of infected wounds [183].

In another study, Raja and Fathima [20] generated a
Genipin cross-linked gelatin hydrogel sponge material with
an optimum concentration of cerium oxide nanoparticles
(G-CONPs) for wound healing application (Figure 9). Geni-
pin is a geniposide aglycon derived from Gardenia jasmi-
noides Ellis fruits. The concentration of CONPs in G-
ONPs hydrogel has been tuned to 250 g/mL, resulting in
over 80% cell survival in a cytotoxicity investigation, and
thus, lyophilized sponge of G-ONPs can be considered as a
wound dressing material in the future [20].

Wu et al. [181] developed a multifunctional hemostatic
sponge with effective hemostatic, long-lasting antibacterial activ-
ity, and great biocompatibility (Figure 10. This immobilized
AgNPs composite sponge (TMC/AgNPs) based on thiol-
modified chitosan (TMC) demonstrated good antibacterial

activity against S. aureus, P. aeruginosa, and E. coli, as well
as rapid and effective hemostatic performance [181].

Sponges based on nanoparticles made of both natural
and synthetic polymers have demonstrated remarkable efficacy
in wound healing applications. A few polymer–nanoparticle
sponge wound dressing materials are evaluated in Table 3.

4.4. Electrospun scaffolds. The electrospinning technology
may turn polymeric solutions or melts into continuous fibers
with diameters as tiny as a few nanometers [184–187]. Elec-
trospinning has recently attracted a lot of attention for the
development of wound dressing scaffolds due to the rela-
tively high permeability of the materials, as well as the pres-
ence of different pore diameters, a surface area, and a texture
that is similar to the natural extracellular matrix in the skin
[50, 188, 189]. Polylactic acid (PLA), PVA, polyacrylonitrile
(PAN), poly(vinyl acetate) (PVAc), poly(-caprolactone) (PCL),

AgNPs

Thiol-modified chitosan: TMC 
Chitosan: CS
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pH5, N2, 24 hr
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O
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O C
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O
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FIGURE 10: The manufacture and application of thiol-modified chitosan-immobilized AgNPs hemostatic sponges are depicted schematically
[181].
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chitosan, and polyurethane (PU) are indeed different types of
electrospinning nanofibers that can be used as wound dres-
sings [185, 190]. Electrospun nanofibers act as a medication
delivery system for wound healing therapies (e.g., anti-
inflammatory, antimicrobial agents, growth factors, drugs,
and anesthetics) [191, 192]. Integrating active ingredients
into electrospun fibers, such as metallic or metal oxide NPs,
is a prospective way to enhance their biological functions
[193, 194]. In addition, nanofibers with various 3D structures
may be generated by replacing the spinnerets with various
configurations (coaxial, Janus, triaxial, etc.), which frequently
result in distinct drug-releasing behaviors [195].

4.4.1. Antibacterial Electrospun Nanofibers. AgNPs in elec-
trospun nanofibers exhibit significant antibacterial activity
that is useful to wound healing [196, 197]. Augustine et al.
[194] reported a simple one-step electrospinning procedure
for making poly(dopamine methacrylamide-co-methyl meth-
acrylate) (MADO), an electrospun mussel-inspired copoly-
mer with increased antimicrobial property due to surface
functionalization with AgNPs. The MADO-AgNPs compos-
ite nanofibers containing 1% NPs were found to have good
antibacterial action against bothGram-negative bacteria (E. coli)
andGram-positive bacteria (MRSA) while having no effect on
mammalian cell viability. Then, Yang et al. [198] prepared
Janus electrospun wound dressing composed of ethyl cellu-
lose (EC) and polyvinylpyrrolidone (PVP) polymer matrices,
in which ciprofloxacin (CIP) and AgNPs were loaded on the
two sides. The Janus nonofibers were shown to have excellent
antibacterial activity against the growth of both S. aureus and
E. coli.

Treating a multidrug-resistant (MDR) bacterium wound
infection is difficult due to the inability of traditional anti-
biotics. As a result, creating wound dressings for wound care,
particularly against MDR bacteria, has sparked a lot of

interest. Thus, using 6-aminopenicillanic acid coated AuNPs
(APA-AuNPs) to prevent MDR bacteria infection, Yang
et al. [199] reported an approach in wound dressing design
in 2017 (Figure 11). They used the electrospun scaffold to
investigate the AuNPs’ antibacterial activity and wound-
healing potential. The APA-AuNPs we used are bacterium
resistant and have great biocompatibility. Gelatin and poly-
caprolactone (PCL), which are polymers loaded with the
pharmaceutical ciprofloxacin (CIP) and ZONPs, were uti-
lized by Xu et al. [200] to prepare electrospun films to be
employed as potential wound dressings. Excellent antibacte-
rial activity was demonstrated by the dressing against
S. aureus and E. coli. Wang et al. [201] used polycaprolactone
(PCL) and cellulose acetate (CA) polymers loaded with
AgNPs and lavender oil (LO), respectively, and processed
these into two-compartment Janus fibers. The obtained elec-
trospun nanofibers demonstrated good antibacterial activity
against S. aureus and E. coli.

4.4.2. Antioxidant Electrospun Nanofibers. Chronic diabetic
wounds are caused by a lack of cell proliferation, cell migration,
and angiogenesis. Recently, diabetes wounds are one of the
leading causes of mortality and morbidity in diabetic patients,
with complications including prolonged inflammation, severe
infections, and wound nonclosure, leading to surgery of limbs
and, in some cases, death. The use of appropriate antioxidant
and anti-inflammatory medicines helps hasten the healing of
diabetic wounds. Thus, electrospinning is an excellent way to
build extremely porous, submicrometer-diameter antioxidant
nanofibers from natural and synthetic materials.

In biological systems, CONPs have been shown to have
antioxidant and enzyme-mimetic actions. Thus, Augustine et
al. [202] used the therapeutic potential of CONPs for boosting
diabetic wound healing, created electrospun poly(3-hydroxy-
butyrate-co-3-hydroxyvalerate) (PHBV) membrane-based
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AuNPs
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FIGURE 11: The synthesis of antibacterial AuNPs and their application for wound healing are depicted in this diagram [199].
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new wound covering matrices to increase cell proliferation,
cell migration, and angiogenesis. In vitro cytocompatibility
and cell adhesion characteristics of created membranes
loaded with CONPs (particularly at 1% w/w) give positive
results. The CAM test revealed that membranes loaded with
CONPs increased angiogenesis andmay significantly improve
diabetic wound healing. Table 4 evaluates several types of
natural/synthetic polymers and different nanoparticles uti-
lized in electrospun scaffolds.

5. Conclusion and Future Directions

Millions of individuals are affected by acute and chronic
wounds each year, necessitating the development and testing
of therapeutic debridement and effective wound dressings.
Traditional dressings such as bandages, gauzes, and cotton
wool were formerly used for the healing of wounds to keep
the wound clean and dry with modest exudate levels. These
dressings, on the other hand, do not offer a moist environ-
ment, do not prevent microbial infections, and may adhere
to the wound bed, disrupting wound healing; consequently,
they have been replaced by modern dressings with more
sophisticated formulas. An optimal dressing should be able
to keep the wound wet and pH balanced, promote oxygen
exchange, isolate proteases, stimulate growth factors, avoid
infection, enable autolytic debridement, and promote gran-
ulation tissue and re-epithelialization.

In this study, we covered several advanced wound dress-
ing perspectives such as hydrogels, films, sponges, and elec-
trospun nanofibers loaded with various metallic and metallic
oxide nanoparticles. Due to their ability to influence the devel-
opment of biofilms and microbial colonization in wounds,
nanoparticle-coated wound dressings play a significant role
in the healing of chronic and diabetic wounds. They have also
been demonstrated to have strong antioxidant and antibacte-
rial activity.

ZONPs, CONPS, AuNPs, TONPs, and AgNPs are among
the numerous metals and metal oxides that might be used in
combination with biopolymers and synthetic polymers as a
wound dressing. The novel chronic wound healing nanoparticle-
loaded dressings are versatile systems that stimulate wound
healing with minimum scar formation, reduce wound oxida-
tive stress, cure bacterial infection, and even deliver active
biomolecules encapsulated at precise rates to fit wound heal-
ing requirements. Hydrogels can be a significant adjuvant in
the treatment of chronic and diabetic wounds, speeding the
healing process, and lowering consequences like infections
and necrosis of tissues around the wounds. In terms of anti-
bacterial activity, Ag NPs appear to have a better antimicro-
bial ability than other nanomaterials, whereas CONPs have
good antioxidant activity.

Thus, it is clear that using these metallic NPs can create a
new therapeutic approach for treating wounds, showing
strong results in reducing microbial infections, and minimiz-
ing the damage chronic inflammation causes, and speeding
up the healing process. The future objective is to create nano-
technology frameworks that are reliable, controllable, well-
monitored, and all FDA-approved components must be

utilized. To reduce the negative effects of these nanomaterials
in the human body, it is necessary to improve the production
and characterization of nanoparticle-based wound healing
systems with controlled nanoparticle delivery at specific
wound sites. Future strategies also involve creating NPs-based
dressings that combine the use of several growth factors that
aid in wound regeneration and also have the capacity to
penetrate biofilms, eliminate biofilms, or even stop biofilm
development.
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