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We propose a new structure, one plate with a hole above the ellipsoid and the other plate with a hole below the ellipsoid, to obtain a
repulsive Casimir force.The force was obtained numerically by using the in-house FDTDmethod, based onMaxwell’s stress tensor
and harmonic expansion. The code can be verified by calculating the force of a perfect-metal ellipsoid centered above a perfect-
metal plate with a hole. Our numerical method can effectively simulate the Casimir force by reducing the total simulated time.
The further numerical results of realistic dielectric material immersing in fluids or adding other plates above the ellipsoid are also
presented. It is not surprising to find that the larger differences can be achieved by varying the parameters such as the center-center
separation, medium immersed, and the dielectric material of the structure. Thus, it is possible to tune these parameters relatively
in the realistic microelectromechanical systems to overcome stiction and friction problems.

1. Introduction

The Casimir force [1], arising from quantum fluctuations of
the electromagnetic field, has been widely studied over the
past decades [2, 3]. Nowadays Casimir force plays a pivotal
role in “stiction,” which is indispensable to the progress in
the field of nanotechnology [4], especially in the fabrication
of microelectromechanical systems (MEMS).

An idealized geometry was established in vacuum [5],
a perfect-metal ellipsoid centered above a perfect-metal
plate with a hole, as depicted in Figure 1. The repulsive
phenomenon occurs when the plate is close to the ellipsoid.
The ellipsoid was assumed to be electrically polarizable only
in the 𝑧 direction. When the plate lies in the 𝑧 = 0 plane, the
Casimir-Polder energy for such an ellipsoid at position 𝑥 is

𝑈 (𝑥) = − 12𝜋 ∫∞
0

𝛼𝑧𝑧 (𝑖𝜉) ⟨𝐸𝑧 (𝑥) 𝐸𝑧 (𝑥)⟩𝑖𝜉 𝑑𝜉, (1)

where 𝛼𝑧𝑧 is the electric polarizability of the ellipsoid in
the 𝑧 direction and ⟨𝐸𝑧(𝑥)𝐸𝑧(𝑥)⟩𝑖𝜉 is the mean-square 𝑧
component of the electric field fluctuations at position 𝑥with
imaginary frequency 𝜔 = 𝑖𝜉.

Since the considering geometry is a 3D structure, the
calculation is more complex and time consuming. To speed
up the computation time, a harmonic expansion technique
was applied, which allows Casimir force to be efficiently
computed.

2. Maxwell’s Stress Tensor and
Harmonic Expansion

Themethod to calculate Casimir forces presented in the time
domain involves the modification of Maxwell’s stress tensor
[6, 7]. Through suitable integration of stress along a close
surface with structure enclosed, the force can be obtained as

𝐹𝑖 = ∫∞
0

𝑑𝜔∯
𝑆
∑
𝑗

⟨𝑀𝑖𝑗 (𝑟, 𝜔)⟩ 𝑑𝑆𝑗, (2)

where 𝑟 is position and 𝜔 is frequency. If 𝜔 is imaginary
frequencies, that is, 𝜔 = 𝑖𝜉, the force can be rewritten as

𝐹𝑖 = Im∫∞
0

𝑑𝜔𝑑𝜉 𝑑𝜉∯𝑆∑𝑗 ⟨𝑀𝑖𝑗 (𝑟, 𝜔)⟩ 𝑑𝑆𝑗. (3)
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Figure 1: Geometry for achieving Casimir repulsive force: a metal
ellipsoid above a thin metal plate with a hole in the center. 𝑑 is the
center-center separation,𝑤 is the plate hole width, 𝑡 is the thickness
of the plate, 𝑟𝑟 is the minor diameter of the ellipsoid, and 𝑟𝑧 is the
major diameter of the ellipsoid.

The stress tensor can be explicitly expressed in terms of
correlation functions of the field operators ⟨𝐸𝑖(𝑟, 𝜔)𝐸𝑗(𝑟, 𝜔)⟩
and ⟨𝐻𝑖(𝑟, 𝜔)𝐻𝑗(𝑟, 𝜔)⟩ as

⟨𝑀𝑖𝑗 (𝑟, 𝜔)⟩ = 𝜇 (𝑟, 𝜔)

⋅ [⟨𝐻𝑖 (𝑟, 𝜔)𝐻𝑗 (𝑟, 𝜔)⟩ − 12𝛿𝑖𝑗∑
𝑘

⟨𝐻2𝑘 (𝑟, 𝜔)⟩]
+ 𝜀 (𝑟, 𝜔)
⋅ [⟨𝐸𝑖 (𝑟, 𝜔) 𝐸𝑗 (𝑟, 𝜔)⟩ − 12𝛿𝑖𝑗∑

𝑘

⟨𝐸2𝑘 (𝑟, 𝜔)⟩] .

(4)

The average of the fluctuating electric andmagnetic fields
in the ground state can easily be obtained as stated in [7, 8].

In a cylindrical symmetry, a practical harmonic expan-
sion basis with 𝑓𝑛(x)𝑒𝑖𝑚𝜙 should be adopted. Thus the
resulting fields are separable with 𝜙, and the equations only
contain the (𝑟, 𝑧) coordinates. Now the three-dimensional
(3D) problem can be reduced to a two-dimensional problem
for each𝑚. Once the fields are determined, the force for each𝑚 can be expressed as

𝐹𝑖;𝑚 = ∫2𝜋
0

𝑑𝜙∫
𝑆
𝑑𝑠𝑗 (x) 𝑟 (x) 𝑒−𝑖𝑚𝜙 ∫2𝜋

0
𝑑𝜙 ∫
𝑆
𝑑𝑠 (x)

⋅ 𝑟 (x) 𝑒𝑖𝑚𝜙𝛿𝑆 (x − x) Γ𝑖𝑗;𝑚 (𝑡; x, x) ,
(5)

where x is three-dimensional coordinates. Now consider that𝑆 consists of plane with 𝑧 = const and 𝑟 = const, and the
detailed expression can be found in [7].

The point source in 3D can be expressed as 𝑓𝑛(x)𝑒𝑖𝑚𝜙 =𝛿(x − x)𝑒𝑖𝑚𝜙, so the field must have a 𝜙 dependence of the
form 𝑒𝑖𝑚𝜙 as follows:

Γ𝑖𝑗;𝑛𝑚 (𝑟, 𝑧, 𝜙, 𝑡) = Γ𝑖𝑗;𝑛𝑚 (𝑟, 𝑧, 𝑡) 𝑒𝑖𝑚𝜙, (6)

where D𝑖𝑗;𝑛𝑚 are functions of the electromagnetic fields on the
surface 𝑆.

Now, we need a geometry-independent function 𝑔(−𝑡),
resulting from the Fourier transform of 𝑔(𝜉), which is

𝑔 (𝜉) = −𝑖𝜉 (1 + 𝑖𝜎𝜉 ) 1 + 𝑖𝜎/2𝜉
√1 + 𝑖𝜎/𝜉Θ (𝜉) , (7)

where Θ(𝜉) is the unit-step function.
Once 𝑔(−𝑡) is known, it can be used in time domain

to obtain the Casimir force. As discussed in [8]. In the
cylindrical system, the time domain 𝑔(−𝑡) can be obtained
as

Im𝑔 (−𝑡) = 12𝜋 ( 2𝑡3 + 3𝜎2𝑡2 + 𝜎22𝑡 ) . (8)

The key point of the approach is to compute the force
via a series of independent FDTD calculations in which
sources are separately placed at each point on 𝑆, calculate
the entire frequency spectrum in a single simulation for each
source, and then integrate the electromagnetic response in
time domain against a predetermined function 𝑔(−𝑡) [9, 10].
The final expression of the Casimir force is

𝐹𝑖 = ∫∞
0

𝑑𝑡 Im [𝑔 (−𝑡)]
⋅ ∑
𝑛

∫
𝑆
𝑑𝑠𝑗 (𝑟, 𝑧) 𝑓𝑛 (𝑟, 𝑧) Γ𝑖𝑗;𝑛 (𝑟, 𝑧, 𝑡)

(9)

with

Γ𝑖𝑗;𝑛 (𝑟, 𝑧, 𝑡) = Γ𝑖𝑗;𝑛,𝑚=0 (𝑟, 𝑧, 𝑡)
+ 2 ∑
𝑚>0

Re [Γ𝑖𝑗;𝑛,𝑚 (𝑟, 𝑧, 𝑡)] . (10)

3. Numerical Results

To demonstrate the validation of our code, we first study
a well-known structure of a finite size metallic ellipsoid as
sketched in Figure 1. Figure 2 shows the Casimir force with
parameters 𝑟𝑟 = 50 nm, 𝑟𝑧 = 250 nm, the thickness of plate𝑡 = 100 nm, the diameter of circular hole on the plate 𝑤 =2 𝜇m, considering both perfect metal and realistic gold in
three different mediums (vacuum, ethanol, and bromoben-
zene) [11–13]. The force can be computed by our FDTD
method in the cylindrical coordinates, with the gold permit-
tivity described by 𝜀(𝜔 = 𝑖𝜉) = 1 + 𝜔2𝑝/𝜉2, where the plasma
frequency 𝜔𝑝 is 1.37 × 1016 rad/s. From Figure 2, we find that
the Casimir interaction in golden structure is stronger than
metallic objects immersed in vacuum and bromobenzene,
and the differences between ethanol are minor, which is in
well agreement with the result given in [5].
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Figure 2: Casimir force for ellipsoid-plate geometry with perfect
metal and realistic gold in three different mediums, including vac-
uum, bromobenzene, and ethanol; negative sign represents repulsive
force. For 𝑑 > 3.5 𝜇m, forces are close to 0.
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Figure 3: The repulsive Casimir force as a function of different
minor radius of ellipsoid and different separation between metallic
ellipsoid and plate.

Considering the structure in vacuumagain, both ellipsoid
and plate are perfect metal and realistic gold; by changing the
minor radius of the ellipsoid 𝑟𝑟 and the separation between
ellipsoid and plate 𝑑, the numerical results show that the
repulsion between metallic objects (see Figure 3) is stronger
than golden ones (see Figure 4).

Until now, the repulsive Casimir force that exists in this
special geometry would be appreciated and advocated [14]. It
is possible to tune some parameters to obtain applicable force,
which can be very useful in practical MEMS. In Figure 5,
a new configuration was proposed: one plate with a hole
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Figure 4: The repulsive Casimir force as a function of different
minor radius of ellipsoid and different separation between gold
ellipsoid and plate.
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Figure 5: New geometry with two plates separately.The parameters
are the same as the original geometry (see Figure 1), and the
separation between the top plate and ellipsoid is 𝑙.

above the ellipsoid and the other plate with a hole below the
ellipsoid.

In Figure 6, we discuss how the parameters 𝑑 and 𝑙 affect
the force in the new configuration. The center of ellipsoid
was fixed at (0, 0, 0), the top plate centered at (0, 0, 𝑙), and
the bottom plate centered at (0, 0, 𝑑). Figure 6(a) shows that
when the material is gold, we fixed the top plate at some
specified 𝑙 and changed 𝑑 range from 0 to 4 𝜇m. If 𝑙 <1.0 𝜇m, the amplitude of the repulsive force is decreasing
with the raise of 𝑙. The minimum value of the black line
shows that the repulsive force is approximately 10𝜇N at𝑑 = 0.9 𝜇m. The blue line indicates that if 𝑙 = 1.0 𝜇m, the
force becomes attractive; the maximum value suggests that
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Figure 6: The Casimir force in plate-ellipsoid-plate configuration: (a) the material is gold. The black line shows that fixing the ellipsoid and
the top plate at 𝑙 = 0.5 𝜇m, the force becomes repulsive with the increase of 𝑑. But the blue line indicates that as 𝑙 = 1.0 𝜇m, the force is
attractive. The red line and green line suggest that the force is almost attractive; (b) the material is perfect metal, and as 𝑙 = 0.75 𝜇m the force
is attractive; (c) shows the two different materials at two different points where the repulsive force becomes attractive; (d) as we fixed the
ellipsoid and varied 𝑑 and 𝑙 simultaneously, the Casimir force fluctuated between attraction and repulsion.

the attractive force is approximately 18 𝜇N at 𝑑 ≈ 0.2 𝜇m.
Increasing 𝑙 continually, as shown in red and green line,
the repulsion appears again; the situation of Figure 6(b) is
similar to Figure 6(a), but the material is perfect metal. This
blue line indicates that if 𝑙 = 0.75 𝜇m, the force becomes
attractive. Figure 6(c) shows the two differentmaterials at two
different points where the repulsive force becomes attractive.
The black dash line suggests that the point of gold material
is at 𝑙 ≈ 1.0 𝜇m; in contrast, perfect-metal material in red
dotted line is at 𝑙 ≈ 0.75 𝜇m. Figure 6(d) shows when we

fixed the ellipsoid, 𝑑 and 𝑙 varied simultaneously. With either
gold material or perfect-metal material, the repulsive force
and attractive force approach zero.

When we firstly fixed the top plate and the ellipsoid and
then started to move the bottom plate, we get the results
shown in Figure 6(b). In this case, the total force on the
ellipsoid𝐹 = 𝐹𝑏+𝐹𝑡,𝐹𝑡 (−𝑧 direction) has occurred by the top
plate and the ellipsoid; 𝐹𝑏 (+𝑧 direction) has occurred by the
ellipsoid and the bottom plate. Once 𝑙was set,𝐹𝑡 was constant
value.Thenwe varied 𝑑, the total force 𝐹 is 𝐹𝑏 plus a constant.
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The final result can be seen as a linear superposition; thus, the
trend of curves is the same as the curve in vacuum in Figure 2.
When we increase the separation 𝑑 and 𝑙 simultaneously,
because |𝐹𝑡| = |𝐹𝑏|, the two directions are opposite. Thus, the
total force on the ellipsoid 𝐹 = 0. But the force fluctuated
regularly between positive and negative values because there
is a remnant force on the ellipsoid as shown in (d); it is merely
the minor interference coming from the two interactive
plates. Based on the results of (d), we can make the ellipsoid
levitated in vacuum to overcome typical stiction and friction
problems in practical MEMS.

4. Conclusion

The FDTD method based on the modification of Maxwell’s
stress tensor was used to calculate the Casimir force in
a cylindrical system, transforming a 3D problem into a
2D problem, which undoubtedly increased the speed and
precision of the calculation. A new geometry was proposed
to make the ellipsoid levitated between two plates, and then
the ellipsoid can be seen as the bearing in practical MEMS.
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