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Nanocomposites give an innovative method to increase the mechanical, thermal, and barrier performance of polymers. However,
properly dispersing the nanoparticles in the polymer matrix is often key in achieving high performance, especially in the case of
hydrophilic nanoparticles and hydrophobic polymers. For that purpose, nanoparticles may be functionalized with organic groups
to increase their affinity with the polymer matrix. Compatibilizing agents may also be included in the nanocomposite formulation.
,is paper aims at identifying parameters relative to the compatibilizer polarity that would allow predicting nanoparticle
dispersion in the polymer nanocomposite. ,e analysis used published data on nanocomposite samples combining clay
nanoparticles, polyolefins, and various compatibilizing agents. We studied the correlations between the nanoclay exfoliation ratio
and five different parameters describing the compatibilizer hydrophilic-lipophilic balance: the acid value, the mole, and weight
fraction of polar groups, the number of polymer chain units per polar group, and the number of moles of polar groups per mole of
compatibilizer. ,e best correlation was observed with the number of polymer chain units per polar group in the compatibilizer.
,is parameter could be used as a tool to predict the dispersion of organoclay nanoparticles in polyolefins. Another important
result of the study is that, among the compatibilizers investigated, those with a low acid value provided a better nanoclay
exfoliation compared to those with a high acid value. ,is may indicate the existence of a maximum in the nanoclay exfoliation/
compatibilizer polarity curve, which would open new perspectives for nanocomposite performance optimization.

1. Introduction

Polyolefin/nanoclay nanocomposites have raised a large at-
tention because of the improvement obtained in mechanical,
thermal, and barrier properties as well as dimensional stability
[1–6]. A key element to get a good dispersion of the clay
nanoparticles into the polymer matrix is the affinity between
the polymer chains and the nanoclay platelets. Indeed, the
nanoclay particles should be at least intercalated and ideally
exfoliated to produce the desired performance improvement
[1]. For that purpose, the nanoclay particles are generally
organically modified by ionic exchange with organic cations
such as those of an ammonium salt to improve their com-
patibility with the hydrophobic polymer matrix [7]. In ad-
dition, the process of dispersion may be facilitated by the use

of compatibilizers [8]. Compatibilizer molecules with sur-
factant ability can interact with the hydrophobic polymer and
the hydrophilic nanoclay particles at the same time. ,e
efficiency of the compatibilizer molecule depends on the type
and polarity of the hydrophobic part of the molecule and the
composition and dimension of the nonpolar lipophilic sur-
factant part. ,is hydrophilic/lipophilic balance may be
measured and used to predict the surfactant capability of the
compatibilizer.

,emost commonly used compatibilizers are obtained by
grafting polar groups on polymers and copolymers. Examples
of these compatibilizers include maleic anhydride grafted on
polyethylene (PE-g-MA) [9–27], on linear low density
polyethylene (LLDPE-g-MA) [28–30], on polypropylene (PP-
g-MA) [8, 10, 19, 31–55], and on styrene/ethylene-butylene/
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styrene (SEBS-g-MA) [51, 56, 57]. Other polar groups grafted
on polymers are itaconic acid [58–60], glycidyl methacrylate
(GMA) [54], and acrylic acid (AA) [54, 61, 62]. A second type
of compatibilizers is synthetized by polymer oxidation: oxi-
dized polyethylene (OxPE) [22, 23, 25, 63–65], oxidized
polypropylene (OxPP) [66, 67], and oxidized paraffins
[68–73]. Some compatibilizers are also obtained by copoly-
merisation, for example ethylene-acrylic acid copolymers
(EAA) [27, 61, 62, 74, 75] and ethylene-methacrylic acid
copolymers (PE-PMM) [17, 27, 76–79].

,e polarity of the hydrophobic part of compatibilizers is
generally represented by its acid value (mg·KOH/g) or the
weight percent of its polar component. ,ese two values are
weight-based and can be obtained from each other. ,e
calculations involve themolecular weight of the polar groups
and the number of polar functions in the polar groups
capable of reacting with KOH. For compatibilizers with the
same polar groups, the acid value and the weight percentage
of polar groups are linked by a simple mathematical co-
efficient. However, these two values only provide a partial
representation of the compatibilizer polarity. Indeed, the
information about the molecular weight of the compati-
bilizer and its polymer chain units is needed to access a more
realistic representation of its polarity and, in particular, its
hydrophilic-lipophilic balance. ,ree other methods have
been proposed in the literature to estimate the hydrophilic-
lipophilic balance of compatibilizers. ,e first one is based
on the calculation of the mole and weight fraction of polar
groups [76]. ,e second one computes the number of
polymer chain units (e.g., PP or PE) per polar group [80].
,e third method suggests calculating the number of moles of
polar groups per mole of compatibilizer [55]. It will be in-
teresting to know which of these parameters better correlates
with the compatibilizer nanoclay dispersion efficiency.

Two main types of techniques are available to evaluate
the degree of dispersion of clay nanoparticles in polymer
matrices, i.e., if they are intercalated and/or exfoliated: X-ray
diffraction (XRD and wide angle XRD (WAXD)) and
transmission electron microscopy (TEM). Our choice for
this study is X-ray diffraction since it offers the possibilities
to quantify the dispersion. In particular, it can be used to
provide a measurement of the basal spacing d001 of the
nanoclay particle after dispersion in the polymer matrix
[13, 21]. ,ese data can give an estimate of the degree of
intercalation of the nanoclay in the polymer matrix. In
addition, X-ray diffraction also allows estimating the extent
of nanoclay exfoliation using the area under the d001 peak
[9, 46]. Based on the degree of intercalation and exfoliation,
it is thus possible to assess the nanoclay dispersion capacity
of the compatibilizer.

In this study, correlations between different parameters
characterizing the compatibilizer polarity—the acid value,
mole and weight fraction of polar groups, number of
polymer chain units per polar groups, and number of moles
of polar groups per mole of compatibilizer—and the quality
of the nanoclay dispersion in the polyolefin matrix are
analysed for a series of data from the scientific literature.,e
nanoclay dispersion quality is expressed in terms of degree
of intercalation and exfoliation provided by X-ray diffraction

data (XRD or WAXD). ,e ultimate objective is to identify
the compatibilizer polarity parameters that could be used as
tools for predicting and optimizing organoclay dispersion in
polyolefin nanocomposites.

2. Experimental Approach

Over 100 papers dealing with the utilisation of compatibilizers
for dispersing organoclay in polyolefin nanocomposites were
analysed. Among them, 20 papers provide X-ray diffraction
results (XRD or WAXD) and all the information required
about the compatibilizer (acid value and molecular weight).
,e nanoclay dispersion also depends on the type of clay and
organic modification. Only two types of nanoclay were taken
into consideration: octadecylamine-modified montmoril-
lonite (OCT) and dimethyl dihydrogenated tallow ammo-
nium modified montmorillonite (DMDHTA). ,e
compatibilizer/clay ratio also affects very strongly the de-
gree of intercalation and exfoliation of the clay nanoparticles.
For this reason, one compatibilizer/clay ratio was selected for
the study: 3/1 (wt./wt.). ,e extrusion temperature was also
considered during the data selection: it is situated between
165–210°C depending on the type of nanoclay and polymer.
In the end, results for 17 nanocomposite samples obtained
from eight papers were used for the analysis.

Table 1 presents the characteristics of the nanocomposite
samples included in the analysis. ,e compatibilizers are
characterized by the molecular weight and acid value. ,e
compatibilizer molecular weight values were directly ob-
tained from the corresponding papers. ,e acid values listed
in Table 1 were either also available in the corresponding
papers or have been calculated based on the polar group
content provided in the papers according to the following
equation:

AV �
PGC · NAG · MwKOH · 1000

100 · Mwpg
, (1)

where AV is the acid value in mg KOH/g; PGC is the polar
group content expressed in wt%; NAG is the number of
polar groups in the compatibilizer monomer unit; MwKOH is
the molecular weight of KOH; and Mwpg is the molecular
weight of the polar groups.

For the matrix, the type of polymer and the extrusion
temperature are reported in Table 1. ,e organoclays are
characterized by the type of clay and organic modification as
well as by the initial basal spacing d001. Finally, data reported
for the nanocomposite samples are the organoclay/polymer
ratio and the organoclay basal spacing in the composite.

In addition to the acid value, four other parameters
characterizing the compatibilizer polarity were calculated for
each compatibilizer: the mole and weight fraction of polar
groups (according to [76]), the number of polymer chain
units (PP or PE) per polar group (according to [80]), and the
number of moles of polar groups per mole of compatibilizer
(according to [55]).

,e calculation of the weight fraction of polar groups
used the compatibilizer acid value according to the following
equation:
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Weight fraction of polar groups �
AV · Mwpg

NAG · MwKOH · 1000
.

(2)

,e determination of the mole fraction of polar groups
involved traditional chemical calculations based on the
compatibilizer acid value and the molecular weight of the
polymer units in the compatibilizer chain. ,e number of
polymer chain units per polar group was computed from the
acid value according to the following equation:

Number of polymer chain units per polar group

�
MwKOH · 1000
AV · Mwpolymer

,
(3)

whereMwpolymer is the molecular weight of PP or PE units in
the compatibilizer chain.

Finally, the number of moles of polar groups per mole of
compatibilizer is also obtained from the acid value and
includes the molecular weight of compatibilizer Mwc:

molpg
molcomp

�
AV · Mwc

NAG · MwKOH · 1000
. (4)

In some rare instances, not enough information was
available to compute some of these parameters as indicated
by notes to Table 1.

,e degree of intercalation and exfoliation of the
nanoclay was estimated using the X-ray diffraction data
found in the papers. ,e basal spacing d001 of the clay
nanoparticles in their original condition and after dispersion
in the polymer matrix was used to compute the information
about the degree of nanoclay intercalation. It is represented
by the difference between the position of d001|initial, the initial
organoclay basal spacing, and the position of d001|composite,
the organoclay basal spacing in the composite.

In the case of the degree of nanoclay exfoliation, since the
shape of the d001 peak is very similar for the different
samples, the peak height was used for the calculation instead
of the peak surface area. ,e degree of exfoliation of the
nanoclay was computed according to the following equation:

% exfoliation � 1−
H| d001|composite 

H| d001|initial 
⎛⎝ ⎞⎠ · 100, (5)

where H|(d001|initial) is the height of the d001 peak for the
nanoclay in their original condition and H|(d001|composite) is
the height of the d001 peak in the nanocomposite.

3. Results

A comparison of data for the organoclay basal spacing in the
initial condition and in the nanocomposite, d001|initial and
d001|composite in Table 1, shows that intercalated structures are
present in almost all nanocomposites. However, it would be
difficult to estimate the exact ratio of intercalated structures
since there is no direct relation between the intercalation
ratio and the basal spacing shift. It can be noted that one
nanocomposite sample was possibly completely exfoliated

(sample 10) since no organoclay basal spacing d001|composite
peak was observed in the corresponding XRD/WAXD
spectrum.

Table 2 provides the compatibilizer acid values (in mg
KOH/g) for the different nanocomposite samples. It also
gives the result of the calculation of the other parameters
used to describe the polarity of the compatibilizer: mole and
weight fraction of the polar groups, number of polymer
chain units per polar group, and ratio of number of moles of
polar groups per mole of compatibilizer. Finally, the results
in terms of degree of exfoliation for each nanocomposite
sample are presented. ,e values of degree of exfoliation
vary from 58 to 100%.

Figures 1–5 show the variation of the nanoclay exfoli-
ation ratio as a function of, respectively, the acid value, the
mole and the weight fraction of polar groups, the number of
polymer chain units per polar group, and the ratio of the
number of moles of polar groups per mole of compatibilizer.

Figure 1 shows that the acid value is relatively well
correlated with the exfoliation ratio (R2 � 0.5558). ,ere
appears to be a negative relationship between the nanoclay
exfoliation ratio and the acid value of the compatibilizer.
,is may indicate that, for compatibilizers with an acid value
situated between 6mg·KOH/g and 52mg·KOH/g, those with
lower acid values provide a better nanoclay dispersion than
those with a high acid value.

,e compatibilizer mole and weight fraction of polar
groups were calculated for 14 of the 17 nanocomposite
samples. For the three remaining samples with OxPE-type
compatibilizers, no information was available about the type
and ratio of polar groups. Downward trends can be observed
in Figures 2 and 3 for the variation of the nanoclay exfo-
liation ratio with, respectively, the compatibilizer mole and
weight fraction, similar to what was observed for the ex-
foliation ratio/acid value relation. ,erefore, for studied
compatibilizers with an acid value situated between
6mg·KOH/g and 52mg·KOH/g, lower values of the mole
and weight fraction of polar groups in the compatibilizer
lead to an improved nanoclay dispersion. Similar or slightly
higher values of the coefficient of determination R2 were
obtained here compared to the exfoliation ratio/acid value
relationship.

A better correlation was observed for the number of
polymer chain units per polar group (R2 � 0.742 in Figure 4).
It shows that, within the studied range of values, compa-
tibilizers with a higher number of polymer chain units per
polar group lead to a better nanoclay dispersion in polyolefin
matrices.

Figure 5 presents the exfoliation ratio as a function of the
number of moles of polar groups per mole of compatibilizer.
No correlation is observed between this compatibilizer
polarity parameter and the exfoliation ratio.

4. Discussion

,e basic parameter describing the compatibilizer polarity is
its acid value. From this parameter, other parameters taking
into account additional characteristics of the compatibilizer
can be computed. ,e number of polymer chain units per

4 Journal of Nanotechnology



polar group includes the molecular weight of polymer units
in the compatibilizer chain. ,e number of moles of polar
groups per mole of compatibilizer includes the molecular

weight of compatibilizer. Two other parameters were in-
vestigated: the weight fraction, which uses the molecular
weight of the compatibilizer and the molecular weight of the

Table 2: Parameters describing the compatibilizer polarity and characterizing the quality of the nanoclay dispersion.

Sample
number

Compatibilizer
type (Trade

name)

Acid value
(mg KOH/g)

Molar
fraction of
polar groups

Weight
fraction of
polar groups

Number of polymer
chain units per polar

group

Mole of polar groups
per mole of
compatibilizer
(molpg/molcomp)

Degree of
exfoliation (%)

1 PP-g-MA 11 0.0041 0.0096 121 11.76 78
2 PP-g-MA 14 0.0053 0.0122 95 7.61 72
3 PP-g-MA 6 0.0023 0.0052 222 17.64 79
4 PP-g-MA 52 0.0200 0.0454 26 13.90 58
5 PP-g-MA 52 0.0200 0.0454 26 13.90 57
6 PP-g-MA 26 0.0099 0.0227 51 9.27 72
7 PP-g-MA 11 0.0041 0.0096 121 8.63 74
8 PP-g-MA 11 0.0041 0.0096 121 9.39 75
9 SEBS-g-MA 20 —b 0.0176 —b 17.41 92
10 LLDPE-g-MA 9 0.0023 0.0079 222 10.02 100
11 LLDPE-g-MA 9 0.0023 0.0079 222 5.53 83
12 LLDPE-g-MA 9 0.0023 0.0079 222 16.04 86
13 PP-g-AA 46 0.0177 0.0402 29 66.61 64
14 PP-g-GMA 7 0.0053 0.0177 190 23.75 89
15 OxPE 16 —a —a 125 3.69 75
16 OxPE 30 —a —a 67 4.73 60
17 OxPE 42 —a —a 48 6.29 74
aCould not be calculated because the nature and ratio of polar groups are not known. bCould not be calculated because the ratio of polymer units in the
copolymer chain is not known.
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polar groups, and the mole fraction, for which the calcu-
lation also includes the molecular weight of the polymer
units in the compatibilizer chain.

,e best correlation for the nanoclay exfoliation ratio
was observed with the number of polymer chain units per
polar group in the compatibilizer. It best expresses the
optimal balance between the hydrophilic groups connecting
with the nanoclay particles and the lipophilic groups
attracted to the matrix polymer chains to maximize the level
of exfoliation of the nanoclay in the polymer matrices. ,is
parameter could easily be used as a tool to perform a first
selection of best candidate compatibilizers for nanoclay
dispersion in polyolefin matrices.

,e coefficient of determination decreased slightly
when the mole fraction of polar groups in the compati-
bilizer was considered. A further decrease in the quality of
the correlation was observed with the acid value and the
weight fraction of polar groups. ,ere was no correlation
with the number of moles of polar groups per mole of
compatibilizer. It is interesting to note that taking into
account the molecular weight of compatibilizer seems to
have a detrimental effect on the quality of the correlation
with the nanoclay exfoliation ratio. ,e coefficient of
correlation R2 was at 0.7422 when the acid value was only
combined with the molecular weight of polymer units in
the compatibilizer chain.,is coefficient decreased to 0.692
when both the molecular weight of polymer units in the
compatibilizer chain and the molecular weight of com-
patibilizer and to 0.015 when only the molecular weight of
compatibilizer was combined to the acid value. More in-
vestigations are needed to better understand the phe-
nomena behind these observations.

,e surprise of this analysis has been the downward
relation between the nanoclay exfoliation ratio and the
compatibilizer polarity. All at once the acid value, the mole
fraction of polar groups, the weight fraction of polar groups,
and the number of polar chain units per polar group point
towards a better nanoclay exfoliation obtained with low
polarity compatibilizers. ,is result can only be explained if
one considers that the compatibilizer effect on nanoclay
exfoliation is the outcome of two opposing phenomena. On
one hand, the compatibilizer should have a good affinity
with the nanoclay particles, i.e., a large number of polar

groups; however, this will diminish its affinity for the
polymer matrix. On the other hand, the compatibilizer
should also have a good affinity with the polymer matrix,
i.e., a large number of nonpolar groups. Additional data
points corresponding to very low polarity compatibilizers,
i.e., with an acid value less than 6mg·KOH/g, are necessary
to complete the analysis regarding this hypothesis. However,
if confirmed, this could indicate that the optimal choice of
compatibilizer has not been reached with the set of published
data analysed: the choice of a compatibilizer with a better
fitted polarity may lead to an increased nanoclay dispersion,
resulting in improvements in mechanical and barrier per-
formance properties for instance.

5. Conclusions

A large interest for polyolefin/nanoclay nanocomposites has
been observed because of potential gains in mechanical,
thermal, and barrier performance as well as dimensional
stability at a limited cost. ,e first step in achieving these
gains is a good dispersion of the nanoparticles in the
polymer matrices. ,is study has provided tools to predict/
optimize organoclay dispersion in polyolefin nano-
composites through the analysis of the correlation of various
expressions of the compatibilizer polarity with the nanoclay
exfoliation ratio.

,e best correlation was observed with the number of
polymer chain units per polar group in the compatibilizer.
,is parameter, which is computed based on the compati-
bilizer acid value and the molecular mass of polymer units in
the compatibilizer chain, can be used to predict the dis-
persion of organoclay nanoparticles in aliphatic polymers
such as polypropylene and polyethylene.

Acceptable levels of correlation were also obtained with
three other polarity parameters: the acid value, and the mole,
and weight fraction of polar groups. In some instances, the
lower quality of the correlation observed with the nanoclay
exfoliation ratio seemed to be linked to the inclusion of the
molecular weight of compatibilizer into the calculation of
the parameter used to described the compatibilizer polarity.

Finally, the most important and at the same time the
most controversial conclusion of this study is that, for
compatibilizers with an acid value situated between 6 and
52mg·KOH/g, those with a low acid value provided a better
nanoclay exfoliation compared to those with a high acid
value. ,e addition of nanoclay dispersion data for com-
patibilizers with acid values lower than 6mg·KOH/g would
be necessary to better understand this phenomenon.
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