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Ceramic materials have been used in various human health-related applications for considerable time. One of the important
applications of ceramic materials is in electronics. Our work focuses on calcium titanate (CaTiO3). CaTiO3 is typically created via
sintering. Gypsum particles is used to form calcium hydroxide, which is then combined with titanium dioxide to form rutile
crystals. 'ereafter, calcination is performed at 900°C, 1000°C, and 1100°C for 2 h. X-ray diffraction is employed to track the
evolution of the CaTiO3 phase. Scanning electronmicroscopy is used to characterize the morphologies of the different preparation
steps. As the calcination temperature increases from 900°C to 1000°C, the crystallite size of CaTiO3 increases from 35 nm to 45 nm.
Furthermore, the energy gaps of the CaTiO3 powders obtained after calcination at 900°C and 1000°C are 5.32 eV and 5.43 eV,
respectively, and their particle sizes are 150–200 nm and 200–300 nm, respectively.

1. Introduction

'e general formula of perovskites is ABO3 (A is a rare or
alkaline earth metal and B is a first-row transition metal).
Calcium titanate (CaTiO3), which is considered as the
“founding father” of the perovskite family of titanium-based
perovskite-type oxide photocatalysts [1–7], is attracting
increasing attention. CaTiO3 is a chemically stable n-type
semiconductor with a broad bandgap of 3–3.5 eV [8]. Ca
ions are located at the corners (1/2, 1/2, 1/2), Ti at the body
center (0, 0, 0), and oxygen at the face center (1/2, 0, 0; 0, 12,
0; 0, 0, 1/2) [9]. CaTiO3 is an alkaline earth metal titanate
composed of earth-abundant nontoxic elements. It is fab-
ricated using various methods [10], e.g., solid-state, copre-
cipitation, mechanochemical, sol-gel, hydrothermal, and
solvothermal processes. Among these, the sol-gel process is

the most widely used method. CaTiO3 exhibits excellent
qualities as a multifunctional material, including optical
properties, high dielectric constant, ferroelectricity, chem-
ical stability, small dielectric loss, low cost, and environ-
mental friendliness [11]. Several properties of CaTiO3 have
been explored owing to its broad applications. CaTiO3 shows
electrical properties when it is applied to electronic devices
such as capacitors and thermistors. Hence, it has been ex-
tensively explored as an electroceramic material. In addition,
it is known as a microwave ceramic owing to its dielectric
response in the microwave spectrum. 'e photocatalytic
activity and dynamic efficiency of CaTiO3 have been in-
vestigated in decomposing organic dye waste in aquatic
environments and water splitting for H2 production, CO2
reduction, and other applications. CaTiO3 has been devel-
oped as an implant material for biomedical applications in
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composites with hydroxyapatite [12]. Furthermore, it is a
good substitute for the commercial titanium dioxide (TiO2)
catalyst in photocatalytic applications. 'e property of
volume growth caused by water absorption is observed in
rocks containing clay minerals and anhydrite. Rock swelling
is a term used to describe this phenomenon. 'e origin of
swelling in anhydrite is chemical, and it depends on the
transformation of anhydrite into gypsum [13]. 'e solid-
solid reaction of CaO or Ca(OH)2 with TiO2 at a specific
molar content is the basic principle of the synthesis of
CaTiO3 perovskite material [14]. Calcium can be obtained
from a low-cost source such as gypsum. Aside from the
benefits of using gypsum as a low-cost calcium source, this
research attempted to manufacture CaTiO3 perovskite
material from gypsum and test it on a laboratory scale as a
simple and low-cost ceramic material.

'e goal of this study was to synthesize CaTiO3 using a
sol-gel technique with calcium hydroxide (Ca(OH)2) and
TiO2 as starting materials and ethanol as the dispersion
medium. Gypsum rock samples were collected from a
specified site in Gebel Elba National Park in southeastern
Egypt, as shown in Figure 1, and Ca(OH)2 was obtained
from treated gypsum rocks. 'e gels disintegrated into
CaTiO3 precipitates. Crystalline CaTiO3 powders were ob-
tained by calcining the precipitate at 900°C, 1000°C, and
1100°C for 2 h. Transmission electron microscopy (TEM),
X-ray diffraction (XRD), and scanning electron microscopy
(SEM) were performed to study the microstructural and
morphological behavior of dried CaTiO3 sol-gel powders.

2. Materials and Methods

First, the raw material was collected from gypsum stones
washed using distilled water and then ground with a heavy
grinder. Next, the small stone pieces weremilled using a ball-
milling machine to obtain gypsum powder with the chemical
formula of CaSO4.2H2O. Commercially available rutile ti-
tanium dioxide (TiO2) was used to synthesize CaTiO3
powders via combustion. Calcium sulfate (CaSO4) powder
was obtained by calcining the gypsum powder at 500°C to
evaporate H2O particles. 'en, the powder was mixed with
potassium hydroxide (KOH) for 1 h using a magnetic stirrer
at a temperature of 80°C. 'e mixture was filtered to obtain
Ca(OH)2. Figure 2 shows the preparation steps.

'e sol-gel method was used to produce CaTiO3 powder
from Ca(OH)2 powder and TiO2. 'ese were added to
distilled water and stirred for 2 h at 80°C to obtain all re-
actants in the form of a gel.'e gel was dried at 70°C for 20 h
to obtain a powder, which was sintered at 900°C, 1000°C, and
1100°C for 2 h. 'e final powder was pressed into pellets and
sintered at 1000°C. 'e powder samples were characterized
using XRD, SEM, and TEM, as shown in Figure 3.

2.1. Measurements. All prepared particles were character-
ized by XRD. Particles were observed with a Zeiss LEO 912
OMEG operated at 100 kV accelerating voltage. Crystal
structures of the particles were measured with an X-ray
diffractometer (Rigaku RU-200A) operated at 40 kV and

30mA with CuKα radiation using a monochromator. Op-
tical properties of the nanoparticles were studied by a UV-
visible spectrophotometer (UV2300II). 'e Fourier trans-
mission infrared (FTIR) spectra of the samples were
recorded by using FTIR (Shimadzu, model DF 803) in the
wave range 400–4000 cm. Scanning electron microscopy
(JEOL, JSM 5500LV) and transmission electron microscopy
(JEOL, JEM 1010) were employed to reveal the micro-
structure of the synthesized powders, whereas the elemental
analysis was studied using energy dispersive spectroscopy
(Oxford Instruments, ISIS Link).

3. Results and Discussion

3.1.XRDCharacterization. Figure 4 shows the XRD patterns
obtained at different steps during the preparation of CaTiO3.
Broad XRD peaks suggest the presence of nanocrystalline
particles. 'e XRD patterns were used to calculate the
crystallite sizes and strain were using Scherrer’s formula and
the Williamson–Hall equation. 'e results are given in
Table 1.

Figure 4(a) shows the XRD patterns of gypsum
(CaSO4·2H2O). XPert HighScore was used to analyze the
XRD results to obtain theMiller indices and crystallographic
parameters of mineral gypsum, as given in Table 1.

Figure 4(b) shows the XRD patterns for CaSO4. 'e
Match software was used to identify CaSO4 peaks.
Figure 4(c) shows the main compounds present in the three
analyzed Ca(OH)2 samples. 'e peaks are assigned to KOH
(α) in addition to Ca(OH)2. 'is may be because KOH and
CaSO4 did not fully react. 'is indicates that the reactants
may need to be stirred for longer than 2 h. However, this step
of the preparation was not returned because of the expec-
tation that KOH will evaporate during calcination.

CaSO4 + 2KOH⟶ Ca(OH)2 + K2SO4. (1)

In this reaction, calcium sulfate joins with potassium
hydroxide, a base. 'e OH− from the base joins to form
calcium hydroxide, while the SO−

4 and K+ ions join to form
potassium sulfate. A chemical filter paper is used to separate
calcium hydroxide and remove potassium sulfate, as shown
in Figure 2.

'e XRD patterns were analyzed to assess the crystal
structure. Figure 4(d) shows the XRD patterns of the CaTiO3
powder produced after calcination at 900°C for 2 h. 'e
diffraction patterns of CaTiO3 are consistent with the JCPDS
card (no. 22-0153). A few minor peaks (denoted by β) are
caused by TiO2 impurities, which are associated with an
incomplete reaction. In addition, we assume an ortho-
rhombic phase because of the Pbnm space group. 'e
crystallographic variables obtained from the XRD analysis
are given in Table 2.

'e XRD patterns were analyzed to assess the crystal
structure. Figure 4(e) shows the XRD results of the CaTiO3
powder produced via calcination at 1000°C for 2 h. 'e
diffraction patterns are consistent with the JCPDS card (no.
22-0153). Additionally, a few small peaks (denoted by β) are
due to the presence of TiO2 impurities, indicating an
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Figure 1: Site map of the collected gypsum samples (Gabal Elbah) [15].
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Figure 2: Preparation of CaTiO3 powders via the sol-gel technique.
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incomplete reaction. 'e Pbnm space group indicates the
orthorhombic phase. 'e crystallographic parameters ob-
tained from the XRD analysis are given in Table 2.

Figure 4(f) shows the XRD patterns of the powder
produced via calcination at 1100°C for 2 h. 'ese patterns
show that CaTiO3 is not formed. 'is may be because the
bonds between Ca(OH)2 and TiO2 are destroyed at a high
temperature. 'e XRD patterns show calcium (Ca) ions and
TiO. We can assume that the phase of the Ca ions is cubic
with the Im-3m space group. 'e crystallographic param-
eters obtained from the XRD analysis are given in Table 2.

'e expected reaction may be as follows:

Ca(OH)2 + TiO2⟶ Ca + TiO + 2H2O↑. (2)

Understanding the tolerance factor aids in the devel-
opment of novel perovskite compounds. Goldschmid’s
tolerance factor t was used to classify the synthesis of pe-
rovskite-type compounds:

t �
rA+rO�

2
√

rB + rO( 􏼁
, (3)

where rA, rB, and rO are the effective ionic radii of A and B
sites and the oxygen ion sites, respectively, where
rCa2+ � 1.48 Å, rTi4+ � 0.745 Å, and rO2− � 1.21 Å indicate
radii values. A site and B site cations’ bonding requirements
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Figure 3: Block diagram of the sol-gel preparation method.
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Figure 4: XRD patterns obtained at different CaTiO3 preparation
steps.

Table 1: Crystal size values derived using the average Scherrer,
Scherrer straight line, and Williamson–Hall methods.

Material Scherrer
(nm)

Williamson–Hall
(nm) Strain

CaSO4.2H2O 40 45.4 2.2×10−3

CaSO4 68.7 60 8.5×10−5

Ca(OH)2 39.9 40.2 1.5×10−3

CaTiO3 (900°C) 35.4 30.2 1.006×10−6

CaTiO3
(1000°C) 45.2 46 7.3×10−4
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in the ABO3 perovskite is measured quantitatively by the
tolerance factor which reflects the distortion structure that
contains the octahedral rotation and tilt. As the substituent
radii Ca2+ ion is at A site and radii Ti4+ ion at B site, the
tolerance factor calculated values of the CaTiO3 is 0.972.
Hence, the general the structures tend to be in the perovskite
structure as the calculated tolerance factor t∼ 1 [16].

'e cubic structure of CaTiO3 is shown in Figure 5(b),
with Ca ions occupying the A site, Ti ions occupying the B
site, and O representing the oxygen anion [17–19]. However,
with CaTiO3 calcined at 900C, the perovskite structure
deviates from cubic symmetry and transitions to ortho-
rhombic phase, as given in Table 2, in order to fit the Ca2+
cations, which are smaller in size than the ideal ions for site
”A.” 'e tolerance factor is used to calculate the degree of
distortion in the ideal cubic structure (t).

3.2. SEM Characterization. Figure 5(a) shows the SEM
micrographs of gypsum powder; the particles are either
rectangular or rod shaped. Figure 5(b) shows the SEM
micrographs of Ca(OH)2; the particles are either rectangular
or rod shaped.

Figures 6(c) and 6(d) show the microstructures of
CaTiO3 obtained after calcination at 900°C and 1000°C,
respectively. We can deduce that this substance appears
foamy. 'e microstructures of the particles are almost
nonexistent. All of the CaTiO3 powders had an ultra-ag-
glomeration powder, and because of the chemically active
particles, they agglomerate quickly. 'is is why it was so
difficult to achieve greater magnifications, as we had pre-
viously done with gypsum and calcium hydroxide samples,

where increased magnification resulted in visual blurring at
higher magnifications.

3.3. TEMCharacterization. Figures 7(a) and 7(b) show the
TEM micrographs of CaTiO3 powders obtained after
calcination at 900°C and 1000°C, respectively, and a
spherical morphology is observed. Figures 6(c) and 6(d)
show the length distribution histograms of these powders.
In the CaTiO3 powder obtained after calcination at 900°C,
the size of most particles is 150–200 nm, and there are a
few agglomerated particles. 'e average particle size of the
CaTiO3 powder obtained after calcination at 1000°C is
200–300 nm.

3.4. Optical Properties. 'e UV-vis absorbance spectra (at
room temperature) of CaTiO3 powders are shown in
Figure 8. 'e wavelength of the spectra is 200–800 nm.
'e absorption decreases rapidly for a wavelength of
200–250 nm but remains almost constant for
250–800 nm.

Wood and Tauc [20] demonstrated the relationship
between the absorption curve and energy gap of a material.
'e bandgap values were obtained by extrapolating the
linear region of the curve. According to this method, the
energy dependence of the gap and optical absorbance can be
expressed as follows:

hvα � hv − E
opt
g􏼐 􏼑

2
, (4)

where α is the absorbance, h is Planck’s constant, m is the
frequency, and E

opt
g is the bandgap of a material.

Table 2: Crystallographic parameters of different materials.

Material Crystal system Space group Space group number a � b( _A) c( _A) c/a α � Y(°) β(°)

Gypsum Monoclinic 12/a 15 5.6 6.51 1.16 90 118.4
CaSO4 Orthorhombic Bmmb 63 6.992 6.24 0.89 90 90
Ca(OH)2 Orthorhombic Bmmb 136 4.58 2.95 0.69 90 90
CaTiO3 (900°C) Orthorhombic Pbnm 136 4.58 2.95 0.46 90 90
CaTiO3 (1000°C) Cubic Im-3m 229 4.47 4.47 1 90 90

(a)

Ca2+

Ti4+

O2- (O)
(B)

 (A)

(b)

Figure 5: (a) Ideal cubic perovskite structure for ABO3 (cyan, BO6 units; yellow, A atoms) (Reprinted with permission from reference
[18]-[11] copyright from Elsevier). (b) Illustration of the crystal structure of CaTiO3.
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(a) (b)

(c) (d)

Figure 6: SEM micrograph of (a) gypsum, (b) Ca(OH)2, (c) CaTiO3 obtained after calcination at 900°C, and (d) CaTiO3 obtained after
calcination at 1000°C.
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Figure 7: Continued.

6 Journal of Nanotechnology



0.7

0.6

0.5

0.4

0.3

0.2

200 300 400 500 600 700 800

Ab
s (

%
)

Wavelength (nm)

900 °C
1000 °C
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Figure 9 shows the calculated bandgaps for CaTiO3
powders obtained after calcination at 900°C and 1000°C,
which are 5.32 and 5.43 eV, respectively.

Egap values were measured in previous research, and the
results were calculated by extrapolating the linear section of
the curve using linear regression to arrive at Egap values of
about 3.51 eV [21]. An increase in the bandgap may be
identified for the current CaTiO3 when compared to pre-
vious works, which can be due to the existence of TiO2
secondary phase, which can cause defects such as distortions
along CaO linkages, which result in localized electronic
levels in the band gap.

3.5. Fourier-Transform Infrared Spectroscopy Analysis.
Fourier-transform infrared spectroscopy (FTIR) analyses
were performed for CaTiO3 powders obtained after cal-
cination at 900°C and 1000°C. 'e results are shown in
Figure 10. 'e band at 570 cm−1 is assigned as the sig-
nature peak of the CaTiO3 bond. 'e absorption peak at
460 cm−1 is due to the bending mode of the Ti-O-Ti bond.
'e absorption peak at 567 cm−1 is characterized as Ti-O
stretching vibration. 'is implies the existence of TiO6
octahedra and the formation of a CaTiO3 perovskite-type
structure [22]. For the CaTiO3 powder obtained at 1000°C,
the broad bands observed above 3644 cm−1 and 3429 cm−1

are related to the superposition of the vibration band of

the hydroxyl group and the stretching vibration of the
adsorbed OH group.

4. Conclusions

CaTiO3 was successfully prepared from gypsum using a sol-
gel method and characterized via TEM, XRD, and SEM.
XRD analysis confirmed the presence of the pure crystalline
CaTiO3 phase after calcination at 900°C and 1000°C for 2 h,
along with unreacted TiO2 particles. According to TEM
observations, the CaTiO3 powder obtained after calcination
at 900°C had a particle size of 150–200 nm and exhibited
agglomeration of nanoparticles. 'e CaTiO3 powder ob-
tained after calcination at 1000°C had a particle size of
200–300 nm. SEM observations showed that CaTiO3 par-
ticles did not have a specific microstructure. 'e energy gaps
for CaTiO3 powders obtained after calcination at 900°C and
1000°C were 5.32 eV and 5.43 eV, respectively. Infrared
bands were analyzed to identify the functional groups of
CaTiO3. 'e bands at approximately 570 cm−1 were due to
the signature peak of the CaTiO3 bond.'e band at 567 cm−1

was due to Ti-O stretching vibration. Furthermore, the
bands close to 460 cm−1 were attributed to the Ti-O-Ti
bending mode.
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