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Bismuth oxide (Bi2O3) has attracted considerable research interest in test thin flms made utilizing the reactive plasma sputtering
(RPS) technology-assisted annealing treatment, allowing the development of diverse BixOx thin flms. SEM, phase X-ray dif-
fraction patterns, UV-Vis spectrometers, and D.C. two-probes are used to identify the crystallographic structure and assess the
flms’ optical-electrical properties. Te XRD examination showed that forming Bi2O3 flms with an amorphous to multiphase
crystalline structure for sputtering time of 40min was due to soda glass substrate temperature at a range of 30–35°C. Tin flms of
Bi2O3 crystal structures improved with annealing heat treatment at 200, 300, 400, and 500°C. Yet the formation of crystalline phase
(β-Bi2O3 with δ-Bi2O3) Bi2O3 nanostructures occurred at higher temperatures. SEM images showed transparent particles highly
afected by annealing temperatures.Te nanostructures were about 102–510 nm long, and the diameter was 50–100 nm.Te Bi2O3
flm optical band gaps and nanostructures ranged from 2.75 to 3.05 eV. Te annealing temperature diferences afected the
crystallite sizes, optical band gaps, and surface roughness.Te fndings showed that these diferences caused the phase transition in
Bi2O3 structures. Te electrical calculation revealed that the electrical conductivity improved with annealing temperatures of
150–250°C while declining with temperature (300–500)°C with typical semiconductor flms.

1. Introduction

Tere is a considerable number of Bi2O3 flms which are very
striking. Te same is true with nanostructures because they
are optical and electrical, including their wide energy band
gap, the dielectric permittivity refractive index, Bi2O3, im-
pressive photoluminescence, photoconductivity optoelec-
tronics, gas sensors, Schottky barrier optical coatings, and
metal-insulator-semiconductor capacitors. Furthermore,
solar cells and microwaves are also integrated into the
circuits [1–11]. Generally, physical [12, 13], and chemical
[14–16], and electrodeposition methods [17] were developed
for preparing diferent bismuth nanostructures like

nanoparticles [16], triangular nanoplate [18], nanotubes
[19, 20], nanowires [21], and nanospheres [22]. Bi2O3
contains the following vital polymorphic phases: α-, β-, c-, δ,
and ε-Bi2O3. According to the crystal structures, the Bi2O3
optical band gap ranges from 3.6 eV to 1.7 eV [3, 23]. Te
phases show various forms and diferent physical or elec-
trical features. Tus, the use of Bi2O3’s other main appli-
cations is practical. Te annealing temperature diferences
afect the crystallite sizes, optical band gaps, and surface
porosities [3, 23]. Te phases show various forms and dif-
ferent physical or electrical features. Tus, the use of Bi2O3’s
other main applications is practical. Te annealing tem-
perature diferences afect the crystallite sizes, optical band
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gaps, and surface porosities. Some studies [24, 25] showed
that these diferences (often in oxidation) caused the tran-
sition in Bi2O3 structures. Yet, investigating reactive plasma-
assisted annealing’s ability to form Bi2O3 flms or nano-
structures has been a lonesome feld [26, 27]. Some works
discuss extensively, such as flm-based transistors using
indium zinc tin oxide (IZTO) semiconducting thin flm by
Bak et al. [28] and low-temperature growth of crystalline tin
(II) monosulfde thin flms using atomic layer deposition
(ALD) by Ansari et al. [29] Authors studied the infuence of
postannealing on the structural optical and electrical
properties of SnNx thin flms [30]. Moreover, researchers are
investigating bismite nanoisland thin flms for optoelec-
tronics, which have a narrow bandgap of 1.95 eV with
suitable properties for nonlinear optoelectronics [31].
However, various flm deposits obtain specifc properties.
For gas sensors, Rasheed et al. [32] developed (NiO : Zn) thin
flms by easy chemical spray pyrolysis, and for optical
properties, Najim [33] and Hassan [34] created nano-
crystalline Ba-doped Mn3O4 and Co-doped ZnO thin flms,
showing that the band gap decreases with increasing Co
doping concentrations for ZnO thin flms and is improved
by increasing Ba doping for Mn3O4.

Te current work examined the temperature of the
substrate infuence on growing, phase compositing, and
electrical and optical features of Bi2O3 structures made
through reactive plasma-assisted annealing treatment. Te
approach is straightforward and economical with no addi-
tives, including surfactants, template agents, and more metal
oxides with ions following the transition.

2. Experimental Setup

Te plasma sputtering devices are fully illustrated in
Figure 1(a), which consists of a chamber of ionization linked
to a chamber of sputtering by one aperture with a pressure
decrease (see Figure 1(b)). A heated tantalum flament
discharges the electrons into the ionization chambers and
the argon gas emission onsets by the auxiliary anodes. An arc
discharge is latched between the hot cathodes and anodes in
the sputtering chamber. To hasten the arc plasma quickly to
the Bi bulk aim to sputter the material, a negative voltage is
applied on the target, driving the ions.

Tere is a deposition of Bi2O3 thin flms onto soda lime
glass substrates through the reactive plasma helped by the
annealing step with a 10°C min−1 heating over 2 hours in the
air furnace and then cooled to ambient temperatures (see
Figure 1(c)). Te glass substrates are fxed 50mm from the
target and with temperature substrate during sputtering at
a range of 30–35°C and 1.5×10−2mbar pressure with a 5%
O2 fow rate. Te sputtering process would involve bom-
barding the Bi target with high-energy ions to sputter Bi
atoms from the target to deposit Bi2O3 thin flms. Te
sputtered Bi atoms would then interact with an oxygen
source, such as a reactive oxygen gas, in the vacuum chamber
to form Bi2O3 molecules. Tese Bi2O3 molecules would then
deposit onto the substrate to start a thin flm. It is important
to note that the deposition conditions, such as the power
input, gas pressure, and substrate temperature, would need

to be optimized to obtain the desired Bi2O3 flm properties,
such as the composition, thickness, and microstructure.
Additionally, the resulting Bi2O3 thin flms are characterized
using various analytical techniques to confrm their prop-
erties. Te samples applied to annealing treatment tem-
peratures (200, 300, 400, and 500°C) were signed as S1, S2,
S3, and S4. Metallic Bi bulk disc (Kurt J. Lesker Company-
UK, 99.999% purity) of 50 gm was used as the target ma-
terial. We cleaned the glass substrates ultrasonically for
20minutes with acetone and deionized water before drying
them in the nitrogen fow. Te creation of Ar-O plasma
resisted the bismuth boat shield, and the substrate holders
heated from room temperature to 35°C and negative during
sputtering with the 2 kV bias voltage. Te annealing process
formed whitish yellow-coloured glass slides, as shown in
Figure 1(c). A quartz crystal thin flm monitor controls flm
thickness during deposition, while a Tencor Alpha Step
profler measures Bi2O3 flm thickness following up the
annealing process. SEM was utilized to examine the mate-
rial’s surface morphology (RAITH-e-LiNE, Raith GmbH)
[35–40]. Te voltage for the SEM images was 10 kV, and the
distances used were 5.6mm and 10.6mm, respectively. By
applying (Bragg–Brentano) geometry and monochromatic
Cu-Kα radiation in X-ray difraction (XRD) (Bruker D8
Advance) [36, 37, 41–47], we examined the thin flm crys-
tallographic structure. We calculated the flm absorption
spectra with UV-Vis spectrophotometers (ocean Optics USB
4000) [48–51] and determined the optical band gap Eg.

3. Results and Discussion

Sputtering of Bi particles in the oxygen atmosphere formed
the Bi2O3, as Bi +O2⟶Bi2O3 [52, 53]. Te sputtering rate
of Bi2O3 rises when the oxygen pressure increases to
1.5×10–2mbar for 40min. Te temperature of substrate
annealing has a signifcant infuence on the Bi2O3 flm
surface morphology. Te surface structures in the SEM
pictures are of Bi2O3 at various temperatures, as shown in
Figure 2. Te flm was grown at an annealing temperature of
200°C and showed identical and quite dense structures with
various grain sizes of 100–200 nm (Figure 2(a)). When the
annealing temperature reached 300°C (see Figure 2(b)), the
grain size shrank to 11–20 nm, and the gaps in the grain
boundaries disappeared with a rise in the density. At
temperatures of 200°C and 500°C, the thickness of Bi2O3
flms was 606 nm and 571 nm, respectively. When the de-
position was completed at higher temperatures of 400°C (see
Figure 2(c)) and 500°C (see Figure 2(d)), nanostructures
were formed on the surface. At 400°C, 3D nanostructures
covered the surface with an irregular, branching morphol-
ogy. Bi2O3 nanostructures have a length range of 100 to
500 nm and in diameter of 50–100 nm, as shown in
Figure 2(d).Te results show that changing the annealing
temperature during the formation of the Bi2O3 structure
changed the surface morphology of dense layers from one of
low temperature to that of high temperature, leading to
a lower nanostructure and its crystal.

Te data for the XRDwere obtained over the range of 20°
to 70° with a 0.02° step and 0.2 s for data acquisition. Te
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phase identifcation process used the JCPDS PDF database
42. Figure 3 shows the amorphous Bi sample (S1 and S2)
preannealing treatment, but S3 and S4 show some peaks in
the transformation to crystallite phases. Annealing Bi2O3
flms at 200°C showed the XRD pattern of low-intensity
broad peak as shown in Figure 4. Elevating the temperature
to 400°C creates the β-Bi2O3 phase with δ-Bi2O3 phase
impurity. At 27.95°, a strong difraction line with a tetragonal
structure was ascribed to the (201) plane of β-Bi2O3. Ad-
ditionally, at 2θ� 31.66°, the low-intensity peaks, with the
(002), (220), (222), (203), (421), and (402) planes are re-
sponsible for the angles of 32.69°, 46.22°, 54.25°, 55.51°, and
57.80°, respectively. When Bi2O3 nanostructure formation
happened at 400°C, the (201) direction was favoured.

Te XRD demonstrated the formation of the single
nanocrystalline phase of δ-Bi2O3. Te appearance of the
single nanocrystalline phase of δ-Bi2O3 was shown by the
XRD nanowire patterns deposited at 500°C on a glass
substrate (Figure 2(d)). Te use of the face-centred cubic
(fcc) structure at peaks 2θ= 27.86° and 32.24° is possible for
the identifcation of this phase, 49.29°, 54.92°, and 57.60°,
which correspond to the (111), (200), (220), (311), and (222)

orientation of one δ-Bi2O3 phase with a 5.4754 nm lattice
parameter (JCPDS data fle no. 47–1056). Te XRD data
determine crystallite sizes by conventional Scherer’s formula
for the average crystallite sizes of nanostructures made at
400°C and 500°C temperatures, respectively, 50.5 nm and
37.7 nm. Yet, the Bi2O3 stayed in an amorphous phase at
a temperature less than 200°C; the peak narrowing of
2θ = 27°-28° showed atom rearrangement in bulk, and the
energy stayed decreased for the flm crystallizations, which
conforms with previous research [54, 55].Te evaporation of
the electronically excited, ionized plasma produces the
working gas atoms. In addition, the molecules are also
produced. Te nanosized droplets agglomerate into bigger
grains during the Bi and Bi2O3 evaporation on the low-
temperature forms, creating the continuous amorphous
flms. Te amorphous phase’s transformation into the
crystalline phase reduces grain sizes for the deposited flm at
200°C. Te frst nanoscale crystallite nucleation centres have
begun to emerge.

Te substrate temperatures provide the crystallization of
the flm using the energy supplied by the modifcation
applied by annealing treatment. Te oxygen concentration
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Deposition chamber
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Target
Roughing valve

Vent valve
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Water
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Figure 1: (a) Te reactive plasma sputtering system diagram, (b) the image of in-site lab system, and (c) glass lab slide samples with Bi2O3
thin flms.

(a) (b) (c) (d)

200 nm 500 nm

Figure 2: SEM Bi2O3 flms and nanostructures being deposited at various substrate temperatures: (a) 200°C, (b) 300°C, (c) 400°C, and (d)
500°C.
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Figure 3: Bi2O3 sample XRD pattern (S1, S2, S3, and S4) preannealing treatment.
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Figure 4: Bi2O3 flm plasma XRD patterns sputtered on glass substrates assisted diferent annealing treatments.
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increases in droplets with annealing in air, completely ox-
idizes, and functions as the centre nucleation of Bi2O3
nanostructures [56]. However, the under-study plasma
sputtering system and conditions still need to be improved
to develop crystalline Bi2O3 flms in one step.

Te bismuth thin flm Ultraviolet-V’s absorbance
spectrum forms camel-like fgures at 280 and 320 nm,
with a little shift to the red region at 540 nm for the
surface plasm on resonance and the light scatters (see
Figure 5). Te absorption coefcient with the annealing
temperature is the postannealed thin flm optical ab-
sorbance spectra at various annealing temperatures at the
wavelength range of 300 to 1100 nm. Tere are many
studies on high annealing temperature infuence on
BixOx flms [57, 58]. According to the data, the annealing
of the flms at 300°C maximizes absorbance when there is
extra annealing to 400°C, absorbance decreases in the
annealed flms at 500°C because of the rise of the flm’s
roughness, and the following formula has been used to
evaluate the bandgap [44, 59–64]:

(αh])2 � B(h] − Eg)n. (1)

Here, α is the absorbance coefcient, h] is the beam
energy, B is the proportion constant, and Eg refers to
energy gaps. Regarding Bi2O3 flms, n equals 2 for direct
allowed transition [65–67]. Te Tauc method was used for
the Bi2O3 optical band gaps to extrapolate the linear curve
portions in the plot (αhυ)2 versus hυ [67]. Te annealing
temperature of the glass substrate changes the band gap of

Bi2O3 formations. Te flm gap deposited at 30°C is 3 eV.
As the Bi2O3thin-flms glass slide annealing temperature
rose to 200°C, the band gap shrunk to 2.70 eV. Te band
gap and temperature reached 3.05 eV and 500°C, re-
spectively. Te crystal structure, flm thickness, and
substrate temperature signifcantly impact the band gap
values of Bi2O3 nanostructures and flms confrmed by
Salih et al. [68].

Te exact mechanism by which the bandgap decreases
during annealing can depend on the specifc material and
the annealing conditions, such as the annealing temperature
and duration. However, it is essential to note that the re-
lationship between band gap and grain size is only some-
times straightforward and can depend on several factors,
including the specifc material and the processing condi-
tions used. Terefore, while a decrease in band gap and an
increase in grain size coincide during annealing, it is not
necessarily a universal rule that applies to all materials based
on the current study data and, other studies [58, 59, 68]. In
addition, upon flm annealing at 500°C, the bandgap drops
because of the nonstoichiometric Bi2O3 with a smaller
bandgap [69, 70]. Te rise in substrate temperature from
400°C to 500°C modifes the morphology of the surface,
lowers the crystallite size, and transitions from β- Bi2O3 with
a little amount of δ- Bi2O3 phase to pure δ- Bi2O3, which is
the fundamental reason of Bi2O3 structures having excellent
band gap values [67].

3.1. Electrical Characterization. Te use of the D.C. two-
probe method is to examine electrical resistivity as the
sample temperature from (30–500)°C as Table 1 shows, and
flm preannealing at room temperature showed a resistivity
of 1.2×10–3Ωcm due to the charge carriers in Bi thin flms
scattered at the flm surface and grain boundaries, keeping
the same magnitude orders, and the lowest bismuth flm
resistance is (0.67×10−3Ωcm) of 200–250°C, where the
growth of bismuth flms is possible even with no large
particulates and segregating surfaces. Te 250–280°C shows
a considerable inconsistency in the calculated specimen.Te
properties of surface nucleation and adsorption transition at
this range of temperatures and the bismuth flm’s electrical
conductivity slightly enhanced only at 250°C. It is believed

0

1

19
0.

0
23

0.
0

27
0.

0
31

0.
0

35
0.

0
39

0.
0

43
0.

0
47

0.
0

51
0.

0
55

0.
0

59
0.

0
63

0.
0

67
0.

0
71

0.
0

75
0.

0
79

0.
0

83
0.

0

Wave Length (nm)

S1
S2

S3
S4 S1

S2
S3
S4

-0.5

0.5

1.5

2.5

3.5

4.5

19
0.

0
22

5.
0

26
0.

0
29

5.
0

33
0.

0
36

5.
0

40
0.

0
43

5.
0

47
0.

0
50

5.
0

54
0.

0
57

5.
0

61
0.

0
64

5.
0

68
0.

0
71

5.
0

75
0.

0
78

5.
0

82
0.

0

A
bs

or
ba

nc
e

Wave Length (nm)

-0.1

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1.1
1.2
1.3

A
bs

or
ba

nc
e

Figure 5: Te UV-Vis spectrometer spectrum of the bismuth thin flm preannealing process.

Table 1: Te electrical resistivity of Bi2O3 flms sputtered for
40min with an annealing temperature for 2 hr.

Sample Annealing temperature (°C) Resistivity
(10−3Ωcm)

Bi preannealing

30 1.17
150 1.10
200 1.095
250 0.67
280 1.36
300 2.58
400 2.63
500 2.71
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that under our annealing conditions, changing the transport
properties was not wholly possible (temperature and du-
ration). Nevertheless, the electrical characteristics of the
bismuth flms exhibit an abrupt change when the temper-
ature exceeds 280°C. Te annealing was in the air atmo-
sphere to prevent the oxidation and reaction of bismuth
elements with oxygen adsorption on the flm surface or in
glass substrates; according to Leontie et al. [69], the thermal
oxidation of bismuth forms amorphous oxide layers at the
substrate-flm interfaces on glass. Yet, the optical and
electrical features were approximately between them, often
determined by the structure nanometric sizes, in which
intergrain faws ofer electrons to the optical transitions and
the electrical conductivity.

4. Conclusion

Bi2O3 flms are successfully deposited by bismuth target
reactive sputtering at room temperature with fxed Ar/O2
mixes. Also, the annealing treatment of bismuth flms afects
the deposited flms’ optical, structural, and electrical fea-
tures. Ten, the flm deposition at less than 200°C makes Bi
oxidized in Bi± 3 in completely amorphous transparent
Bi2O3 flms with the lowest conductivity responses. At
300–400°C, the place is the transition site where Bi reacts
competently with oxygen, gaining moderately organized
Bi2O3, which XRD examination proved. According to our
experimental results, vacancies form at B (1) and O (2) sites
in annealing where B (1) is possibly intrinsic while the
second has a signifcant role in the RTstabilizing c-Bi2O3. By
the annealing approach with reactive plasma, assistance
produces Bi2O3 flms. Also, it creates nanostructures on glass
substrates. Te amorphous phases transitioned to the
crystalline phase when the substrate temperature rose. Low-
temperature growth of amorphous Bi2O3 flms was followed
by the formation of Bi2O3 nanostructures at 400 and 500°C.
It was discovered that the temperatures of the substrate
signifcantly afect the phase characteristics and Bi2O3 band
gap. At 400°C, the mixed ß-Bi2O3 and δ-Bi2O3 phase 3D
Bi2O3 nanostructures were created. 3D nanostructures have
a 3.05 eV band gap for 500°C annealing temperature.
Nanowires formed and exhibited a 3.09 eV band gap made
entirely of the δ-Bi2O3 phase, whose mean crystallite size is
38 nm. Te electrical resistivity was boosted by 53% with
elevated annealing temperatures up to 500°C. However, the
absorbance also increased by annealing, which refers to an
increase in the band gap and the crystal size at the maximum
at 400°C.
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González, J. Peral, M. Villanueva-Rodŕıguez, and
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