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In this study, copper oxide nanoparticles (CuO NPs), zinc oxide nanoparticles (ZnO NPs), and copper oxide/zinc oxide
nanocomposites (CuO@ZnO NPs) were synthesized by green synthetic route where bioactive compounds inherently present in
the leaf extract of Artemisia vulgaris act as stabilizing and reducing agents. Phytochemicals present in leaf extract were assessed by
qualitative chemical tests and spectroscopic measurements. UV-visible spectroscopy, Fourier Transform Infrared (FTIR)
spectroscopy, Energy Dispersive X-ray (EDX) spectroscopy, X-ray Difraction (XRD), and Field Emission Scanning Electron
Microscopy (FESEM) were used to characterize the as-synthesized nanomaterials, i.e., CuO, ZnO, and CuO@ZnO NPs. XRD
pattern revealed the crystalline nature of nanoparticles. Based on the Debye–Scherrer formula, the sizes of CuO NPs, ZnO NPs,
and CuO@ZnONCs were found to be 17.24, 20.74, and 22.50 nm, respectively.Te band gap of the as-prepared nanomaterials was
measured using the Tauc plot. Using the nanomaterials, MB degradation was studied at room temperature under exposure to UV
light. Te degradation efciency of CuO, ZnO, and 2% CuO@ZnO was found to be 52%, 68%, and 98%, respectively. Kinetic
degradation process reveals that the CuO@ZnO NCs showed a better photocatalytic activity on MB dye with the degradation
constant of 0.04124min−1 compared to those of either constituent. Based on the fndings, it was found that CuO@ZnO
nanocomposites have the potential to degrade MB as an organic dye and can be used for wastewater treatment.

1. Introduction

Organic dye is a major class of environmental contaminant
in surface as well as groundwater systems [1]. Tese types
of pollutants cause detrimental efects on human health as
well as on the entire aquatic ecosystem due to their higher
stability, persistent nature, and difculty in the de-
composition in the natural environment. Commonly used
organic dyes include methylene blue (MB), methyl red,
and Congo red [2]. Among these, methylene blue is
commonly used as a dye to color paper, silk, wool, and

cotton or stain indicator in various industries and bi-
ological science. After the uses, methylene blue remnants
are released into the water streams which ultimately
pollute the environment and ecological system [3]. MB has
negative impacts on receiving water resources, and
treating of MB dye is very crucial and of considerable
interest. Te increasing frequency of MB dyes in aqueous
solution has emerged as one of the signifcant environ-
mental contaminants. Presence of dyes in water develops
color which is severely hazardous to aquatic life as it
disrupts the photosynthesis and partially blocks the
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sunlight irradiation. In humans, methylene blue is known
to exhibit various harmful efects such as serotonin poi-
soning, bladder irritation, and lightheadedness [4].

Diferent methods of water purifcation, such as fltra-
tion, oxidation, adsorption, and photocatalytic techniques,
have been developed [5–8]. One of the most efective
methods for alleviating harmful organic pollutants is pho-
tocatalysis, a nicely shaped ofshoot of sophisticated oxi-
dation process [9]. Its efectiveness and economic viability
are further attested by executing a low-cost resource, in-
cluding semiconductor materials and photons for creating
O2

− and OH− [10]. Recently, nanostructured semi-
conducting materials have been used as photocatalysts for
the degradation of organic dyes or their oxidation into
benign products [11, 12]. Pursuing the arguments, metal
oxide nanoparticles such as TiO2, ZnO, SnO2, and Fe2O3
have been intensively studied as photocatalysts due to their
appropriate band gap, high photocatalytic efciency, and
stability against optical corrosion. Basssim et al. synthesized
ferric oxide nanoparticles through the green synthesis
method using extract of Citrus aurantium and employed
them for the degradation of MB [13]. Wang et al. exhibited
that Graphdiyne composite TiO2 nanofbers combat against
implant infection through increased photocataysis and an-
tibacterial ability [14]. Besides this, ZnO/g-C3N4 hetero-
junction photocatalysts and perovskite-type NiTiO3
decorated with reduced GO and g-C3N4 nanosheets have
been used for photocatalytic phenomenon [15, 16]. Amidst
many nanoparticles, ZnO is superior in use because of its
distinct advantages over others, such as direct band gap,
simple customized structure, ease of crystallization, aniso-
tropic growth, and higher exciton binding energy and
electron mobility [10]. However, high recombination ef-
ciency of photogenerated electrons and holes and the need
for ultraviolet light with photon energy greater than the
band gap energy limit its use. Tese key difculties are
required to be resolved in order for ZnO material to be used
as a viable photocatalyst [17].

Many eforts have been made to improve the photo-
catalytic efcacy of ZnO nanostructures by changing their
morphology, modifying ZnO with nonmetal doping, and
adding transition metals or making composite [18]. Te
formation of nanocomposites is raising attention in the feld
of photocatalysis because of their stability, efciency, and
synergistic eforts [19]. In addition, formation of nano-
composite also widens the wavelength range for the mate-
rials to work in both UV and visible region. For this wider
application, CuO@ZnO nanocomposite is at the forefront
but its synthesis demands sophisticated instrumental and
toxic chemicals [17, 20]. In this context, it is imperative to
develop efective and efcient photocatalytic materials
without causing detrimental efects on humans and the
environment. In this direction, green synthesis of nano-
materials can be a good alternative in terms of cost, re-
liability, performance, and environmental friendliness.

In this method, nanomaterials are produced by utilizing
nonhazardous, renewable, and low-cost raw materials.
Preparation of large-scale materials with minimal contam-
ination has resulted from the synthesis of nanomaterials

employing a variety of sources, including bacteria, fungi,
algae, and plants, due to growing popularity of green syn-
thesis [21] which fnds ways to create the best chemical
products and processes under the aegis of the principle of
green chemistry [22]. However, the synthesis of nano-
materials using bacteria, fungi, algae, and biological tem-
plates is limited because of their superspecifcity towards
nanoparticles. So, in the broad-spectrum synthesis of
nanomaterials, plant extracts are highly recommended
where phytochemicals in the extract act as reducing agents,
capping agents, and stabilizing agents [23, 24].

Hitherto, the synthesis of CuO/ZnO nanocomposites
(NCs) has been described utilizing plant extracts from
various plant sources such as Clerodendrum infortunatum
[25], Melissa ofcinalis L. [26], Vaccinium arctostaphylos
L. [27],Ginkgo biloba [28],V. sinaiticum [5],Aegle marmelos
[29], bark of Teobroma cacao [30], Dovyalis cafra [31],
Mentha longifolia [7], and nettle leaf [32]. Tough the
processes were efcient and environmentally friendly, the
percentage yield was found to be low. In addition, ag-
glomerated nanomaterials were obtained from these
methods. One of the reasons for this happening could be due
to the selection of inappropriate reducing and stabilizing
agents. Furthermore, the phytochemical constituents for the
same chemical species may vary qualitatively and quanti-
tatively with the variation of seasons, climate, and soil
chemistry. In this work, a methanolic extract of Artemisia
vulgaris leaf of Nepal origin has been used for the prepa-
ration of CuO@ZnO nanocomposite. Phytochemicals like
favonoids, triterpenoids, glycosides, polyphenols, saponins,
and proteins are expected to serve as green product-based
reducing agents as well as capping agents for the synthesis of
CuO@ZnO nanocomposites. Te degradation efciency of
CuO, ZnO, and 2% CuO@ZnO against methylene blue was
found to be 52%, 68%, and 98%, respectively, exhibiting the
best performance of as-prepared nanocomposite. As-
prepared CuO@ZnO nanocomposites would be applicable
for the photocatalytic degradation of other organic
pollutants.

2. Experimental

2.1. Chemicals and Reagents. All the chemicals used in re-
search, such as methanol (99.8%, EMPARTA), cupric nitrate
trihydrate (99%, Qualigens), zinc nitrate hexahydrate (99%,
Fisher Scientifc), sodium hydroxide pellets (97%, LOBA
CHEMIE), and methylene blue (70%, Fine-Chem), were of
analytical grade and used in asreceived condition without
further purifcation. Te sample leaves of Artemisia vulgaris
used in this study were collected from Sainamaina munic-
ipality ward No 11 (27°41′31.9″ N and 83°15′39.4″ E),
Rupandehi, Nepal, in September 2022.

2.2. Extract Preparation. Artemisia vulgaris leaves were
washed with distilled water, dried in the shade for 10 days,
and then crushed into a fne powder using a herbal medicine
disintegrator (Model FW 177). Te leaf extract was prepared
by soaking 100 g of leaf powder in 750mL methanol for
10 days followed by fltration.
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2.3. Synthesis of Nanoparticles and Nanocomposites.
Firstly, 5.0 g of Cu(NO3)2.3H2O was taken and dissolved in
20mL distilled water (DW). Ten, the content was heated at
70°C under a constant magnetic stirring. While it was being
stirred, 25mL of plant extract was percolated into the so-
lution, and 2mL (5M) NaOH was added to adjust the al-
kaline pH (pH∼8.5) range, followed by stirring for 60min.
Subsequently, the mixture was sonicated for 10minutes.
After that, the mixture was centrifuged, fltered, and washed
with distilled water (DW) and ethanol. Tus, the obtained
precipitate was dried at 80°C for 12 h in vacuum and crushed
to make powder with a mortar and pestle. Eventually, the
powder form was calcined for 3 h at 400°C using a mufe
furnace with a ramping rate of 5°C/min. Te resulting
product was labelled as CuO NPs.

For the synthesis of ZnO nanoparticles, 5.0 g of Zn(NO3)
2.6H2O was taken, and a similar process for the synthesis of
CuO NPs was applied. Te resulting product was labelled as
ZnO NPs.

Ten, diferent percentage compositions of CuO@ZnO
were synthesized in the same way.

For the synthesis of 50%CuO@ZnO nanocomposite, 2.5 g
of Cu(NO3)2.3H2O and 2.5 g of Zn(NO3)2.6H2O were taken,
and a similar protocol as mentioned in the synthesis of CuO
NPs was applied. Te resulting product was labelled as 50%
CuO@ZnO NCs. CuO@ZnO nanocomposites of 2, 5, and
25% by weight of CuO were prepared using Cu(NO3)2.3H2O
(0.1 g, 0.25 g, and 1.25 g) and Zn(NO3)2.6H2O (4.9 g, 4.75 g,
and 3.75 g), respectively.

2.4. Physicochemical Characterization. Te phytochemical
test of the methanolic extract of Artemisia vulgariswas based
on the visual change upon chemical test. UV-visible spec-
troscopy was used to assess the formation of CuO NPs, ZnO
NPs, and CuO@ZnO nanocomposites. Te absorbance of
the sample solution (at a concentration of 1mg/10mL
distilled water) was measured using a double beam
UV-visible spectrometer (Labtronics, model LT2802) in the
wavelength range from 200 to 800 nm.

Fourier Transform Infrared (FTIR, PerkinElmer 10.6.2)
Spectrometer was used to identify the functional group as-
sociated with the sample used as a stabilizing and reducing
agent. Te FTIR spectra were recorded at the cutof range of
4000−400 cm−1 with a scan interval of 4 cm−1. Te crystal-
linity and crystal phase of the obtained materials were probed
by an X-ray difraction (XRD, Rigaku difractometer, Cu Kα,
λ� 1.5406 Å) performed at JNCASR, Bengaluru, India. Te
crystal structure of the synthesized CuO, ZnO, and CuO@
ZnO was examined in terms of peak intensities. Te surface
morphology of the composite materials was studied using
Field emission scanning electron microscopy (FESEM, S-
7400, Hitachi, Tokyo, Japan) equipped with energy dispersive
X-ray spectroscopy (EDS). Te transmission electron mi-
croscopy image of as-synthesized composite nanoparticles
was studied using high-resolution transmission electron
microscopy (HR-TEM, JEM-2200, JEOL, Ltd, Japan). Band
gap of the materials was measured using a UV-Vis/NIR
Spectrophotometer (Model: JASCO V-770, Japan).

2.5. Photocatalytic Activity. Photocatalytic activities of the
CuO/ZnO NCs were investigated by exposing 50mL of
5 ppm methylene blue (MB) dye (Scheme 1) containing
30mg of CuO/ZnO nanocomposite with constant magnetic
stirring in a glass beaker under constant irradiation of UV
light source (a series of six Philips UV lamps of 15W power
having a center wavelength of 254 nm positioned at 20 cm
distant over the suspension surface). In order to ensure
adsorption/desorption equilibrium, the solution was stirred
for 30min in the dark prior to the irradiation. Te absor-
bance of the irradiated sample solution was recorded using
a UV-visible double beam spectrophotometer in each
15-minute interval up to 90minutes. Te percentage of
photocatalytic degradation (D%) was evaluated by using the
following equation:

D% �
C0 − Ct

C0
× 100, (1)

where C0 and Ct represent the concentration of solution at
initial (t� 0min) and fnal (time� t).

3. Results and Discussion

3.1. Phytochemical Analysis. A phytochemical test of the
methanol extract of Artemisia vulgaris leaves was carried out
in order to explore the possible reducing and capping agents
for nanomaterial synthesis. Te results obtained based on
standard protocol (Supplementary information, Table S1) are
shown in Table 1. Tese bioactive phytoconstituents were
believed to act as reducing as well as stabilizing agents for the
synthesis of nanomaterials. Similar fndings are reported in
a study by Tangjam et al. [33].

3.2. UV-Vis Spectroscopy Measurement. UV-Vis spectro-
scopic measurement was performed to study the absorption
pattern of as-synthesized nanoparticles. Figure 1(a) shows
the UV-Vis spectra of CuO, ZnO, and CuO@ZnO nano-
composites. It is found that all of the produced materials,
including ZnO, CuO, and CuO@ZnO, show absorbance at
325 nm. Nevertheless, the CuO@ZnO nanocomposites also
exhibited shoulder peaks in UV-Vis spectra at around
430 nm. Te red shift in the UV-Vis absorbance of the
composite could be associated with relatively larger particle
sizes of nanoparticles [32]. In comparison to ZnO, CuO and
CuO@ZnO showed a broad peak. Te absorption peaks
widened with the percentage increase of CuO. It has been
reported that the presence of CuO causes larger adsorption
in the visible region [5].

3.3. Functional Group Analysis. Functional groups present
in plant extracts and remnants of such plant extracts in NPs
or nanocomposites were studied by FTIR spectroscopy. Te
FTIR spectra of plant extract and synthesized nanostructure
are shown in Figure 1(b). In the spectra of leaf extract, the
broad spectrum at 3323 cm−1 was due to the O-H bond
stretching. Similarly, the C–H stretching of alkane has
resulted in a band at 2945 cm−1 and 2833 cm−1. Similarly, the
C�O stretching of carbonyl compounds resulted in a band at
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Scheme 1: Structure of methylene blue.

Table 1: Phytochemicals present in the methanol extract of Artemisia vulgaris leaves.

Phytochemicals Alkaloids Flavonoids Saponins Terpenoids Quinones Polyphenols Glycosides Proteins
Results − + + + + + + +
+ sign indicates the presence, and − sign indicates the absence.
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Figure 1: Physicochemical characterization: (a) UV-visible spectra of extract, CuO, ZnO, 50%CuO@ZnO, 25%CuO@ZnO, 5%CuO@ZnO,
and 2% CuO@ZnO nanocomposites, (b) FTIR spectra of plant extract, as-synthesized CuO, ZnO, and CuO@ZnO NPS, and (c) XRD
patterns of the as-synthesized samples—CuO, 50% CuO@ZnO, 25% CuO@ZnO, 5% CuO@ZnO, 2% CuO@ZnO, and ZnO.
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1656 cm−1. Te C–H bending of alkane gives rise to the band
at 1449 cm−1 and 1413 cm−1. An absorption band at
1114 cm−1 was ascribed to C-N stretching, and the band at
1022 cm−1 was attributed to –C-O and –C-O-C- stretching
of ester and tertiary alcohol. Tese assigned peaks were
carried out in accordance with the spectrometric identif-
cation of organic compounds [34]. All in all, these peaks are
indicative of their role as capping agents. Te functionalities
present in the methanolic extract of leaves of Artemisia
vulgaris were found to be well indexed with some previously
published reports [35].

In the spectra of ZnO NPs, O-H bond stretching of the
phenolic group was observed at 3450 and 3369 cm−1. Te
–OH group could be associated with the phytochemicals
remnant with the nanoparticles. Likewise, the absorption
band at 1745 cm−1 and 1370 cm−1 was attributed to C�C
stretching of alkenes and stretching modes of nitrate anions,
respectively.

In the same way, in the spectra of CuO NPs, the peak at
3451 cm−1 was assigned as O-H stretching, 1656 cm−1 as
C�O stretching and 1465 cm−1 as C-H bending [10, 36].
Furthermore, in all spectra of synthesized NPs and NCs, the
bands that appeared in the range of 500–650 cm−1 were
assigned as metal-oxygen (M-O) stretching vibrations,
which were well indexed to some reports [10].

3.4. Crystallinity Study. Te crystallinity of the synthesized
materials was examined by using XRD. Te comparison of
the XRD patterns of the as-synthesized nanostructure is
shown in Figure 1(c). Te XRD pattern of zinc oxide
nanostructure appeared at 2θ values of 31.7°, 34.38°, 36.2°,
47.52°, 56.52°, 62.8°, and 67.9° which were well indexed to the
(100), (002), (101), (102), (110), (103), and (112) planes of
hexagonal ZnO, respectively, with JCPDS card no: 05–0664,
space group: p63/mc, and cell constant: a� b� 3.249 Å and
c� 5.205 Å [37]. Similarly, the XRD patterns of copper oxide
nanostructure appeared at 2θ values of 32.62°, 35.70°, 38.88°,
48.92°, 53.34°, 58.40°, 61.7°, 66.46°, and 68.16° which were in
good agreement to (110), (11-1), (111), (20-2), (020), (202),
(11-3), (31-1), and (220) planes of monoclinic CuO, re-
spectively, with JCPDS card no: 41–05682, space group:
C12/C1, and cell constant: a� 4.6949 Å, b� 3.4382 Å, and
c� 5.187 Å [38]. Te difraction peaks of CuO@ZnO at 2θ
values matched with the difraction peak of ZnO and CuO,
confrming the formation of CuO@ZnO NCs.

Te XRD patterns of these ZnO and CuO nanostructures
showed no extra peaks, indicating that the materials were
single-phase and, hence, extremely pure. Additionally, the
Debye–Scherrer equation (2) was used to compute the av-
erage grain size of the zinc oxide, copper oxide, and com-
posite nanoparticles [39].

D �
Kλ

β cos θ
, (2)

where D� crystallite size of materials; λ�wavelength of Cu
Kα radiation (0.15406 nm); θ�Bragg’s angle; β� corrected
half width of the difraction peak (in radian); and K� shape
factor, which usually equals to 0.94.

Te average grain size of as-synthesized CuO, ZnO, and
CuO@ZnO nanostructures was found at around 17.24 nm,
20.74 nm, and 22.5 nm, respectively.

As seen in Figure 1(c), the intensity of ZnO peaks was
signifcantly decreased with an increasing percentage of CuO
in the CuO@ZnO nanocomposite structures. Hence, among
the nanocomposites, the intensity of ZnO peaks was maxi-
mum at 2% CuO@ZnO nanocomposite, whereas the mini-
mum was at 50% CuO@ZnO. Meanwhile, the intensity of
CuO peaks increased with increasing percentage of CuO in
the CuO@ZnO nanocomposite structures, and the intensity
of the CuO peaks was found to be maximum at 50% CuO@
ZnO while minimum at 2% CuO@ZnO nanocomposites.
CuO peaks were found to be negligible for the amount less
than that for 2% CuO@ZnO NCs. Tese fndings are in good
agreement with other fndings [5, 7, 38, 40].

3.5. Surface Morphology Study. Surface morphology of as-
prepared nanoparticles and nanocomposites was studied in
terms of feld emission scanning electron microscopy
(FESEM) equipped with energy dispersive X-ray spectros-
copy (EDS) and elemental mapping. As the MB adsorption
or dye degradation occurs on the surface of nanomaterials,
high surface area increases the photocatalytic activity.
Terefore, nanostructured materials with high surface area
can enhance the rate of photocatalytic activity. Te surface
morphology of as-synthesized CuO NPs, ZnO NPs, and 2%
CuO@ZnO nanocomposite with various magnifcations is
shown in Figure 2.Te images show the particles of nanosize
dimension in agreement with those calculated using the
Debye–Scherrer equation. Small size nanoparticles avail
high surface area with afuent interparticle space which is
useful for the channeling of MB solution in photocatalytic
degradation process. As there is no signifcant aggregation of
composite nanoparticles, the leaf extract of Artemisia vul-
garis serves as a good capping agent.

Energy Dispersive X-ray spectroscopy (EDS) was
employed to further demonstrate the presence of corre-
sponding metal and oxygen in the composites as shown in
Figures 3(a)–3(d). EDS layer mapping of diferent elements in
as-synthesized 2% CuO@ZnO is shown in Figure 3(a).
Figures 3(b)–3(d) represent the elemental mapping of the
as-synthesized product, which revealed the presence of O, Zn,
and Cu.Te formation of nanocomposites is explicitly shown
in the TEM image (Figures 3(e) and 3(f)). Te particles seen
in TEM image are explicitly within the nanorange domain.
Figure 3(g) shows the EDS spectrum of the nanocomposites
with the atomic percentage and weight percentage of each
constituent element. Also, it shows a higher percentage of zinc
(34.30 At%) compared to copper (4.79 At%) in the 2%CuO@
ZnO nanocomposites. In a similar study, AbdulRazak et al.
synthesized 3.5 wt% Cu-doped TiO2 NPs and employed them
for the degradation of anti-infammatory drugs used by public
health sector [41]. Compared to this fnding, 2 wt% CuO@
ZnO nanocomposites prepared in this research work reveal
the formation of nanomaterials without any signifcant ag-
gregation. In addition, the size of the nanomaterials in this
work is smaller. Tis avails the higher surface area for the
photocatalytic degradation of MB. Small size of
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nanocomposites with high interparticle space can obviously
avail the high surface area of the material which would be
benefcial for surface catalytic phenomena such as photo-
catalytic degradation of MB dyes.

3.6. Band Gap Measurement. In order to calculate the band
gap energy of CuO NPs, ZnO NPs, and CuO@ZnO, a curve
of (αhυ)2 versus energy (eV) (Tauc plot) was plotted and
ftted the linear region as shown in Figure 4. Tis shows that
the band gap of 2% CuO@ZnO nanocomposites (2.93 eV)
lies between that of CuO (1.62 eV) and ZnO (3.16 eV). Tis
value of band gap energy corresponds to the visible light of
lower frequency region.

3.7. Photocatalytic Activity

3.7.1. Wavelength Scanning. Te absorbance spectra of MB
solution containing CuO, ZnO, and various ratios of CuO@

ZnO nanocomposites are shown in Figures 5(a)–5(f). A
prominent peak at 665 nm of pure MB solution was
recorded. Pure MB solution with the addition of diferent
catalysts was subjected for 90minutes to UV light irradia-
tion. A subsequent decrease in the absorbance of the solution
in each successive interval was observed.Te rate of decrease
in the absorbance of the solution with subsequent time
intervals is diferent for diferent composites. For instance,
the absorbance of MB solution at 0minutes is about 1 ab-
sorbance unit. After 90minutes, it is reduced up to half, i.e.,
up to 0.5 absorbance unit by ZnO. Similarly, for the same
period, it is about 0.4 by CuO. Under the same condition, the
absorbance is 0.24 for 50% CuO@ZnO and 0.16 for 25%
CuO@ZnO nanocomposites. Tis is quite an improved
condition but not signifcant.Te rate of MB degradation for
5% and 2% CuO@ZnO is signifcantly more than others.
Under the same exposure time, the absorbance shown by
MB solution is 0.1 and 0.02 absorbance unit for 5% and 2%

(a) (b) (c)

(d) (e) (f )

(g) (h) (i)

Figure 2: FESEM images with diferent magnifcations of (a–c) CuO NPs, (d–f) ZnO NPs, and (g–i) 2% CuO@ZnO NCs, respectively.
(a), (d), and (g) are of ×50 k magnifcation with a scale bar of 1 μm. (b), (e), and (h) are of ×100 k magnifcation with a scale bar of 500 nm.
(c), (f ), and (i) are of ×200 k magnifcation with 200 nm scale bar.
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Figure 3: Continued.
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CuO@ZnO, respectively. From this observation, 2% CuO@
ZnO is found to be the best-suited photocatalyst for the
degradation of MB.

3.7.2. Photocatalytic Degradation and Degradation
Efciency. Figure 6(a) illustrates the efect of copper con-
centration in the photodegradation of MB.Te deterioration
rate increased as the quantity of copper decreased, reaching
its peak at 2% CuO@ZnO. Figure 6(b) compares the deg-
radation efciency at 90min of all the green synthesized
catalysts, evaluated using the following relation.

Degradation efficiency (D%) �
C0 − Ct

C0
× 100. (3)

Te order of degradation efciency of diferent nano-
materials is as follows: CuO (52%)<ZnO (68%)< 50%
CuO@ZnO (75%)< 25% CuO@ZnO (83%)< 5% CuO@
ZnO (87%)< 2% CuO@ZnO (98%).

In comparison to bare ZnO NPs, all CuO@ZnO nano-
composites showed a better performance of photocatalytic
degradation towards methylene blue. With a 98% degradation
efciency, 2% CuO@ZnO displayed the highest photocatalytic
activity in this experiment. Tis shows a good result compared
to other works regarding dye degradation (Table 2). It is be-
lieved that the coupling of CuO and ZnO to form a nano-
composite increases the photocatalytic performance by the
mutual transfer of charge carriers, i.e., electron (e−) and hole
(h+) from one semiconductor to another.Tis fnding is also in
good agreement with those of similar fndings [44]. Te
transfer of e− and h+ from CuO to ZnO is energetically
prohibited at higher amounts of CuO levels (50% CuO@ZnO),
where the majority of photons may be directly absorbed by
CuO.Tus, more amount of CuO in nanocomposites results in
the reduction of superoxide anion radical production (•O2

−)
and the catalyst’s degradation activity, whereas with a lower
amount of CuO coating, NCs have signifcant potential to
generate superoxide and hydroxyl radicals due to the potential
of excited electron transfer from the conduction band of thin
layer CuO to that of ZnO and transfer of holes from valence
band of ZnO to that of CuO, which is also an energetically
allowed process. Moreover, in moderate CuO-coated NCs, the
production and reduction of superoxide radicals and hydroxyl
radicals are both afected by the energetically preferred process
of transfer of electrons and hole pairs [45–47]. Hence, it was
found that the activity of the composite increased with a de-
creased amount of copper content.

3.7.3. Kinetic Degradation Process. Te kinetic equation can
be expressed as ln (Ct/C0)� −kt, where k is the reaction rate
constant, t is the time, Ct is the concentration of dye at
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diferent time intervals, and C0 is the initial concentration of
dye. Te rate constant (k) calculated from the linear ftted
plots of ln(Ct/C0) versus time was found to be 0.0093,
0.01419, 0.01572, 0.01919, 0.02014, and 0.04124min−1 for
CuO, ZnO, 50% CuO@ZnO, 25% CuO@ZnO, 5% CuO@
ZnO, and 2% CuO@ZnO NCs, respectively (Figure 7). Te
larger value of rate constant refers to the high photo-
degradation of MB dyes. Te rate constant results suggest
that the CuO@ZnO NCs showed a better photocatalytic
activity on MB dye.

3.7.4. Degradation Mechanism. CuO@ZnO has a higher
photocatalytic efectiveness than pure ZnO due to the in-
terfacial charge separation and strong charge separation.
Using a CuO@ZnO nanocomposite, the predicted process
for improved dye photodegradation is put forth in Scheme 2.
In this study, the green technique employing Artemisia
vulgaris leaf extract may have created a heterojunction
between the surfaces of ZnO and CuO semiconductors and
triggered the photodegradation of dyes, which is a key
component of the photocatalysis mechanism.
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Te schematic diagram of the CuO@ZnO hetero-
junction’s excitation and transfer of electrons and holes
under UV light irradiation is shown in Scheme 2. Te
heterojunction created by CuO and ZnO helped to separate
the photogenerated carriers [48].

ZnO and CuO were found to have valence band po-
tentials of 2.42 and 1.43 ev, respectively, and conduction
band potentials of −0.14 eV and −0.38 eV, respectively [28].
CuO is a narrow band gap semiconductor. In this work, the
band gap of CuO and ZnO was found to be 1.62 eV and
3.16 eV, respectively. Te band gap of 2% CuO@ZnO
nanocomposites was found to be 2.93 eV which is sufcient
to carry out the photoexcitation by the incident radiation of
∼423 nm. Te CuO@ZnO hollow sphere can produce
photogenerated electrons and holes after irradiation by
visible light. Te location of conduction and valence
bands of CuO is higher than those of ZnO, which is

thermodynamically benefcial for the transfer of charge
carriers created by light [49]. Te photogenerated electrons
will move from the conduction band of CuO to that of ZnO
when exposed to UV radiation, whereas the photogenerated
holes will move from the valence band of ZnO to that of
CuO. Tus, due to the buildup of charge carriers like e− in
ZnO’s conduction band and h+ in CuO’s valence band, the
oxidation and reduction mechanisms over the surfaces of
ZnO and CuO, respectively, result in the generation of
superoxide (_O2

−) and hydroxyl (_OH) radicals with the
interaction of dissolved oxygen (O2) and H2O, respectively.
Te dye (MB) molecules engage in interactions with pho-
togenerated radicals and fragment into more basic com-
pounds. Te dye molecules engage with photogenerated
radicals and break down into smaller, less harmful organic
compounds, which are then further transformed into CO2
and water molecules, respectively [50].
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Figure 7: Kinetics of methylene blue degradation process.
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4. Conclusions

Highly efcient CuO@ZnO NCs have been successfully
synthesized via green synthetic route using the leaf extract of
Artemisia vulgaris through a cost-efective, environmentally
friendly, and nonhazardous method. Tus, synthesized
CuO@ZnO NCs have been found to show signifcant
photocatalytic degradation of methylene blue (MB). Te
degradation efciency of CuO, ZnO, 50% CuO@ZnO, 25%
CuO@ZnO, 5% CuO@ZnO, and 2% CuO@ZnO was found
to be 52%, 68%, 75%, 83%, 87%, and 98%, respectively. Since
the nanocomposite with lower concentration of CuO coated
on ZnO exhibited efective separation and transport of
photo-induced electron-hole pairs than that of pure ZnO,
the composite with the lower amount of CuO coated on ZnO
nanostructures enhanced the yield of photocatalytic deg-
radation as compared to the higher amount of CuO coated
on ZnO nanostructures. Inspired from the result, it is
revealed that blending of high-cost copper materials with
relatively low-cost zinc materials can ofer several advan-
tages in commercial production. Further optimization and
some more detail tasks will be considered in the upcoming
research. Terefore, based on the fnding, it is found that 2%
CuO@ZnO nanocomposites have the potential to degrade
MB as an organic dye and can be used for wastewater
treatment.
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