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Tumor microenvironment is essential for multiple myeloma (MM) growth, progression, and drug resistance through provision of
survival signals and secretion of growth and proangiogenic factors.is paper examines the importance ofmacrophageswithinMM
bone marrow (BM) microenvironment, referred to as MM-associated macrophages, as a potential niche component that supports
tumor plasma cells. ese macrophages are derived from peripheral blood monocytes recruited into the tumor. Upon activation
by MM plasma cells and mesenchymal stromal cells, macrophages can release growth factors, proteolytic enzymes, cytokines, and
in�ammatory mediators that promote plasma cell growth and survival. Macrophages promote tumor progression through several
mechanisms including angiogenesis, growth, and drug resistance. Indeed, these macrophages are essential for the induction of an
angiogenic response through vasculogenic mimicry, and this ability proceeds in step with progression of the plasma cell tumors.
Data suggest that macrophages play an important role in the biology and survival of patients with MM, and they may be a target
for the MM antivascular management.

1. Tumor-AssociatedMacrophages

In the past decades, the major focus of cancer research
has been the malignant cell itself. In haematological malig-
nancies, including multiple myeloma (MM), this has led to
the identi�cation of molecular alterations affecting growth
control and apoptotic pathways [1]. Recent studies add yet
another facet to the complex multistep model of tumorige-
nesis by demonstrating that tumor cells carrying genomic
and epigenomic abnormalities also trigger changes in their
microenvironment [2]. Indeed, accumulating evidence sup-
ports the hypothesis that the tumor microenvironment or
“niche” ultimately determines the clinical behavior of the
disease and has direct impact on overall prognosis [3].

MM is characterized by the accumulation of monoclonal
plasma cells in the bone marrow (BM) where they grow and
expand. is suggests the importance of the BM microen-
vironment in supporting MM cell growth and survival [4].
e roles of BM stromal cells in supporting MM plasma
cells have been extensively studied. e interaction between

plasma cells and stromal cells confers plasma cell homing,
growth, survival, and resistance to chemotherapy [5]. Among
stromal cells, the in�ammatory cells play an indispensable
role in disease progression [6]. Within the tumor stroma,
the macrophage is the pivotal member of in�ammatory cells.
Tumor-associated macrophages (TAMs), which constitute a
signi�cant part of the tumor in�ltrating immune cells, have
been linked to the growth, angiogenesis, and metastasis of a
variety of cancers [7]. In MM, macrophages are an abundant
and important component of the stromal cells, contribut-
ing to tumor angiogenesis [8] in line with several reports
describing an association between macrophage in�ltration,
vascularity, and prognosis [9].

2. Macrophage Activation and Polarization

Macrophages constitute an extremely heterogeneous popu-
lation originating from blood monocytes, that are capable
of displaying different functional activities, some of which
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are antagonistic; for instance, they can be immunostimula-
tory or immunosuppressive and either promote or restrain
in�ammation [10]. is functional plasticity is regulated by
local cues to which the macrophages respond. Macrophage
heterogeneity has been simpli�ed in cell polarization concept
that discriminates macrophages into distinct types, schemat-
ically identi�ed as M1 (or “classically activated”) and M2 (or
“alternatively activated”). In general, M1 macrophages are
stimulated by bacterial products and cytokines secreted by
1 cells; they act as soldiers defending the host from viral
and microbial infections, �ghting against tumors, producing
high amounts of in�ammatory cytokines and activating
immune response [11]. On the other hand, distinct types of
M2 cells differentiate when monocytes are stimulated with
interleukin-4 (IL-4) and IL-13 or with IL-10 and gluco-
corticoids [12]. M2 macrophages are characterized by poor
antigen-presenting capability and wound-healing promotion
[13]. Further, these macrophages express speci�c change in
some metabolic pathways; arginine metabolism is oriented
toward the production of ornithine and polyamine instead of
citrulline and nitric oxide. M2 cells are workers of the host;
they promote scavenging of debris, angiogenesis, remodel-
ing, and repair of wounded/damaged tissues. Of note, M2
cells control the in�ammatory response by downregulating
M1 cell-mediated functions [14]. TAMs (including MM-
associatedmacrophages) resembleM2-likemacrophage pop-
ulation with little cytotoxicity for tumor cells because of
their limited production of nitric oxide and proin�ammatory
cytokines [15]. TAMs also possess poor antigen-presenting
capability and effectively suppress T cell activation. In
the majority of cancers, TAMs show mostly protumoral
functions, promoting tumor cell survival, proliferation, and
dissemination by secreting a wide range of growth and
proangiogenic factors as well as metalloproteinases, and by
their involvement in signalling circuits that regulate the
function of �broblasts in the tumor stroma [7].

3. Current Concepts of
MM-AssociatedMacrophages

In patients with active (symptomatic) MM, �uorescence-
activated cell sorting (FACS) analysis on freshly isolated BM
mononuclear cells revealed higher percentages of CD68+
macrophages (a glycoprotein expressed only by human
macrophages) than in patients with nonactive disease (i.e., in
partial/complete remission, or in plateau phase) or those with
monoclonal gammopathies of undetermined signi�cance
(MGUS). MGUS is a premalignant, asymptomatic disorder
characterized by monoclonal plasma cell proliferation in BM
with absence of end-organ damage that represents a benign
plasma cell disorder. Histologically, in patients with active
MM, CD68+ macrophages were heavily in�ltrated in the
BM. Indeed, in these patients, macrophages are recruited
from the BM pool and/or the circulation into the vascular
endothelial growth factor (VEGF) plus �broblast growth
factor-2- (FGF-2-) rich microenvironment [16], both factors
being chemotactic for macrophages. Scavelli et al. demon-
strated that BMmacrophages in patients with active MM are

functionally, phenotypically, and morphologically different
from those of patients with nonactive disease andMGUS [8].
Indeed, macrophages of these patients are similar to paired
endothelial cells (MMECs) and contribute to angiogenesis
through vasculogenic mimicry, in parallel to progression
of plasma cell tumours [17]. It may well be that in active
MM, plasma cells secrete VEGF and FGF-2 that induce
in�ammatory cells to secrete their own VEGF, FGF-2, and
hepatocyte growth factor (HGF); all these cytokines con-
tinuously recruit and activate MM-associated macrophages
to adapt functionally, phenotypically, and morphologically
to become vicarious MMECs, mimicking these cells, and
collaboratingwith them in vessel formation [18].is is likely
minimal in nonactive MM or cannot take place in MGUS or
benign anemia patients, due to the absence or small number
of plasma cells, hence, very low levels of secreted VEGF and
FGF-2, as previously demonstrated [19].

Moreover, BMmacrophages protectMMcells from spon-
taneous andmelphalan-induced apoptosis [20]. However, the
exposure of macrophages in MM during the treatment with
zoledronic acid and bortezomib, alone and/or in combina-
tion, impacts their angiogenic and vasculogenic properties,
suggesting that these cells may be considered as a target
of both drugs in MM patients. ese �ndings indicate that
macrophages (as TAMs) may be an abundant and important
component of the BM stromal cells and play a critical role in
MM tumor progression.

4. The Role of MM-AssociatedMacrophages in
Tumor Progression (Figure 1)

4.1. Growth Promoting Properties of MM-Associated
Macrophages. Macrophage in�ltration positively correlates
with MM cell survival and proliferation. Indeed, MM
macrophages are characterized by higher expression of
factors that stimulate plasma cell proliferation and survival,
including IL-6 and IL-10, and lower expression of IL-12
and tumor necrosis factor-alpha (TNF-𝛼𝛼) [21]. It has been
shown that IL-10 stimulates the proliferation of MM cells
freshly isolated from patients in IL-6 deprived cultures
[22]. Additionally, both IL-12 and TNF-𝛼𝛼 are considered to
retain antitumor effects [23]; hence, a lower expression of
these cytokines by macrophages could provide a favourable
milieu for the growth of malignant cells. Interestingly, MM
macrophages have increased levels of VEGFA and VEGFC
mRNA expression [21]. It is well known that VEGFs play
a critical role in MM pathology by their effect on vascular
endothelial cells, one of the well-known components of
the MM plasma cell niche [24]. Traditionally, it has been
assumed that mesenchymal stromal cells (MSCs) are the
major source of VEGFs [25], but current results suggest
the interesting �nding that macrophages might be another
major contributor of VEGFs, especially when they have been
educated by MSCs. Based on an in vivo model of MSCs
transplantation into rat hind limb ischemia model, the
source of increased VEGF in the tissues was found to be not
transplanted (human) MSCs but recipient (rat) macrophages
[26].
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4.2. Angiogenesis Promoting Properties of MM-Associated
Macrophages. BM neovascularization is a constant hallmark
of MM, but not of MGUS. is phenomenon forms partly
through angiogenesis [18] and is endowed with the overan-
giogenic phenotype of MMECs [27]. Mature macrophages
have been found to form capillary-like lumina and branch-
ing patterns in vitro, participating to de novo formation
of microvessels [28]. Scavelli et al. demonstrated that BM
macrophages in patients with active MM contribute to build
neovessels through vasculogenic mimicry, in parallel to
progression of plasma cell tumors [8]. Macrophages from
MM patients exposed to VEGF and FGF-2, which are major
angiogenic cytokines secreted by plasma cells and present
in the BM microenvironment, transformed into cells func-
tionally and phenotypically similar to paired MMECs, gen-
erating capillary-like networks mimicking those of MMECs.
Macrophages from nonactive MM, MGUS, and benign ane-
mia patients displayed similar, albeit weaker, features [8].
EC-like macrophages and apparently typical macrophages
contributed sizably to form the neovessel wall in patients
with active MM, whereas their vascular supply was minimal
in nonactive MM and absent in MGUS patients. ese data
suggest that in active MM, macrophages contribute to neo-
vascularization through a vasculogenic pathway, and that in
nonactive MM and MGUS, they are prone to behave accord-
ingly, marching in step with progression, hence, with the
vascular switch [29]. MM-associated macrophages present
morphological differences from those from nonactive MM
orMGUS and benign anemia patients; they displayed oblong

and spindle shape with thin cytoplasmic extroversions, some
of which were either arranged to form a microvessel-like
lumen or anastomosed with each other and with those of
nearbymacrophages to form tube-like structures. In contrast,
macrophages from the other patients’ groups were rounded
in shape and gave no extroversions or only rare, short ones.
ese differences could be due to higher levels of VEGF and
FGF-2 in the BM milieu of active MM [16], hence, to an
intense, continuous paracrine stimulation of cells, as occurs
in pairedMMECs [27]. UnderVEGF plus FGF-2 stimulation,
MM macrophages undergo a phenotypic and functional
adaptation [30], starting to behave like MMECs, express-
ing typical markers of paired MMECs that are FVIII-RA,
VEGFR-2, and VE-cadherin, and retaining their own CD14
and CD68 markers. Macrophages of nonactive MM, MGUS,
and benign anemia patients exposed to VEGF plus FGF-
2 underwent morphological, phenotypic, and functional
changes indicative of vascular mimicry, becoming prone to
formneovessels [8].e vasculogenic switch bymacrophages
may be induced by the numerous VEGF and FGF-2 secreting
plasma cells in the active MM and emerges with progression
from MGUS to MM. VEGF and FGF-2 may act via their
respective binding to VEGFR-1, the only VEGF receptor
present onmacrophages [31], and the FGF-2 receptors FGFR-
1/-2/-3. VEGFR-1mediatesmacrophage chemotaxis [31] and
the organization of the embryo vasculature by vasculogenesis
[32], but not the de�nitive vessel assembly, which is closely
dependent on VEGFR-2, a speci�c EC differentiation marker
[33].
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Exposure of active MMmacrophages to VEGF plus FGF-
2 leads to an increase in the expression of Tie2/Tek and
VEGFR-2, and a slight decrease in FGFR-2, all at levels
overlapping those of paired MMECs. e intense expression
of VEGFR-2 and Tie2/Tek, together with the decreased
expression of VE-cadherin, a speci�c inter-EC adhesion
molecule, is indicative of ongoing neovascularization [8].
In patients with active MM, FACS analysis on freshly iso-
lated BM mononuclear cells revealed higher percentages
of CD14/CD68 double-positive cells than in patients with
nonactive disease and with MGUS.

Since BM macrophages from patients with active MM
keep their CD14 and CD68 lineage markers, they can be
regarded as cells that do not transdifferentiate into ECs, but
adapt functionally, phenotypically, and morphologically to
be like MMECs. e EC-like macrophages are morpholog-
ically and histochemically similar to sinusoid-lining cells of
human lymphoid tissue, a special subset of macrophages that
express FVIII-RA [34]. e behaviour of these macrophage
types in active MM can thus be regarded as a “vasculogenic
mimicry,” like that of melanoma and other tumor cells which
form vascular channels to cater for their rapid proliferation
and high need of vessels [35]. Moreover, MM macrophages
synthesize and release inducible nitric oxide synthase, which
increases blood �ow and promotes angiogenesis [17].

4.3. Immunosuppressive Properties of MM-Associated Macro-
phages. TAMs promote tumor growth not only by support-
ing angiogenesis but also by inducing immunosuppression
[36].

In MM, recent evidence attributes a major role in
immunosuppression to myeloid-derived suppressor cells
(MDSCs) [37].

MDSCs represent a heterogeneous population of imma-
ture myeloid cells that lack in the expression of cell surface
markers speci�cally expressed by monocytes, macrophages,
or dendritic cells and with a potent suppressive effect on
T cells. MDSCs are phenotypically characterized by CD14−
CD11b+ or CD33+, which is a common marker for myeloid
cells, and lack in markers for mature myeloid and lymphoid
cells such as HLA-DR [38].

MDSCs are signi�cantly increased in patients with MM
compared to patients with MGUS and healthy controls, as a
conse�uence of factors associated with in�ammation, such as
increased secretion of VEGF, IL-1𝛽𝛽, IL-6, and prostaglandin
E2 [37].

MDSCs play their immunosuppressive activity through
various mechanisms encompassing arginase, inducible nitric
oxide synthase, and reactive oxygen species [38]. Arginase-
1 and nitric oxide synthase-2, released by MDSCs, are key
enzymes in L-arginine catabolism,whichwork synergistically
in inhibiting T cell proliferation and MHC II expression
and in promoting apoptosis. Moreover, arginase-1 activation
mediates H2O2 production byMDSCs that inhibit the release
of IFN-𝛾𝛾, essential for the stimulation of naïve T cell differ-
entiation and, hence, for the promotion of immune evasion
[38].

Sera�ni et al. demonstrated the ability to use clinically
available phosphodiesterase-5 (PDE5) inhibitors to overcome

the MDSC-mediated immunosuppressive pathway in MM.
PDE5 blockade in MDSCs from MM patients downregu-
lates IL-4R𝛼𝛼 expression which is correlated with L-arginine
expression. ese data suggest the use of PDE5 inhibitors as
therapeutically effective drugs to overcome tumor-induced
immunosuppression [39].

4.4. Role of MM-Associated Macrophages in Chemotherapy
Resistance. Although chemotherapy is now themost effective
treatment for MM, plasma cells oen fail to respond to the
drugs. Studies have shown that the response of MM plasma
cells to cytotoxic chemotherapeutics can be attenuated by
the presence of BM stromal cells [40]. Coculture of MM
plasma cells with macrophages protected plasma cells from
melphalan-induced apoptosis by inhibiting the activation
and cleavage of caspase-3 and poly(ADP-ribose) polymer-
ization (PARP) and maintaining the levels of Bcl-XL. ese
results suggest that macrophages protect MM cells from
apoptosis via inhibiting Bcl-XL-dependent caspase activation
[20].

4.5. Role of MM-Associated Macrophagesin as erapeutic
Target. Bortezomib (BZ) and zoledronic acid (ZOL) syn-
ergistically impact MM macrophage proliferation, adhe-
sion, and migration, as well as VEGF, FGF-2, HGF, and
PDGF secretion [21]. ese drugs synergistically inhibit
macrophage vasculogenesis onMatrigel and the expression of
FVIII-RA, Tie2/Tek, and VEGFR-2/VE-cadherin, indicative
of cell transdifferentiation into EC-like cells. Both drugs
reduce phosphoactivation of VEGFR-2 and ERK1/2 and NF-
KB activity. ese data provide evidence that the exposure
of BM macrophages during the treatment with BZ and
ZOL impacts their angiogenic and vasculogenic properties,
suggesting that these cells may be considered as a target of
both drugs in MM patients.

5. Conclusions

e BMmicroenvironment plays a crucial role in the patho-
physiology of MM. Substantial evidence suggests that MM-
associated macrophages promote plasma cell growth and
confer the ability to develop a vasculature which favours
the disease progression. In summary, macrophages are key
regulators of the angiogenic switch in MM, suggesting why
the density of these cells is correlatedwithmicrovascular den-
sity and poor prognosis. Based on these �ndings, the devel-
opment of antimacrophage therapeutics that target speci�c
pathways associated with angiogenesis might contribute to
the armamentarium of agents for treating MM or preventing
the conversion of MGUS to active MM.
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