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Glioma is the most common and deadly tumor in central nervous system. According to previous studies, long noncoding RNAs
(lncRNA) and transcription factors were significant factors of gliomas progression by regulating gliomas immune microen-
vironment. In our study, we built two independent cohorts from CGGA and TCGA. And we extracted 253 immune-related
lncRNA correlated with prognosis. After LASSO analysis and multivariate Cox regression analysis, 8 immune-related lncRNA
were used to construct classifier. )e effectiveness of classifier was confirmed in both CGGA (AUC� 0.869) and TCGA
(AUC� 0.902) cohorts. )e correlation between transcription factors and immune-related lncRNA was calculated by WCGNA.
Eventually, we built a network between 8 lncRNA and transcription factors. )e function of core immune-related lncRNA in
gliomas immunemicroenvironment was also investigated by CIBERTSORT. Our research provided a strong classifier of immune-
related lncRNA to predict gliomas patient outcome. We also found the correlation between core immune-related lncRNA and
transcription factors. )ese results may stimulate new strategy of immunotherapy in gliomas patients.

1. Introduction

Glioma is the most aggressive tumor in central nervous
system and patients with gliomas have poor prognosis. As
the 2016 WHO classification of central nervous system
tumors, immunoreactivity and molecular alterations were
considered as classifiers. For example, Glioblastomas have
been classified by IDH immunoreactivity as IDH-mutant,
IDH-wildtype, and IDH-NOS. Oligodendroglioma diag-
nosis now requires an identified mutation of IDH and a
codeletion of 1p19q. )us, discovery of effective prognostic
biomarkers was significant towards gliomas patients. Tumor
microenvironment (TME) was illuminated as a significant
player of gliomas progression, metastasis, and recurrence
[1]. Recent studies have demonstrated the function of dif-
ferent types of immune cells in the glioma microenviron-
ment [2, 3]. For example, M2 macrophages promoted
gliomas progression while M1 macrophages played the
antitumor role [4]. In addition, the discovery of molecular

function of immune cells may stimulate new strategies of
immunotherapy in gliomas patients [5].

Long noncoding RNAs (lncRNA) played significant role in
plenty of biological processes such as regulation of tran-
scription, translation, and protein modification [6]. And pre-
vious research studies revealed that lncRNA presented strong
power of prognosis prediction in many cancer types [7, 8]. For
example, GAS5 was an independent molecular cancer bio-
marker in bladder cancer patients [9], and a cell cycle-asso-
ciated lncRNA, HOXA11-AS, was a biomarker of progression
in glioma [10]. Several researches revealed the pro/antitumor
function of lncRNA in different types of cancers by regulated
immune responses. Neftel et al. found that lncRNA Sros1
promoted IFN-c-mediated activation of innate immune re-
sponses by stabilizing Stat1 mRNA [11], and Zhao et al.
revealed that LncRNA SNHG14/miR-5590-3p/ZEB1 positive
feedback loop promoted diffuse large B cell lymphoma pro-
gression through regulating PD-1/PD-L1 checkpoint [12].
)erefore, the identification of immune-related lncRNA
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provided possible mechanism in gliomas microenvironment.
In addition, transcription factors affect different immune cell
types that are important in the tumor progression. Atsaves V
et al. found the roles of AP-1 in the regulation of antitumor
immune responses and provided a new sight of immune
checkpoint blockade therapy [13]. However, the relation be-
tween immune-related lncRNA and transcription factors in
gliomas microenvironment was unknown.

In this study, we built two independent cohorts from
CGGA and TCGA. We also extracted immune-related
lncRNA correlated with prognosis. After LASSO analysis
and multivariate Cox regression analysis, 8 immune-related
lncRNAwere used to construct classifier.)e effectiveness of
classifier was confirmed in both CGGA and TCGA cohorts.
Eventually, we built a network between 8 lncRNA and
transcription factors. )e function of core immune-related
lncRNA in gliomas immune microenvironment was also
investigated by CIBERTSORT. Our research provided a
strong classifier of immune-related lncRNA to predict gli-
omas patient outcome. We also found the correlation be-
tween core immune-related lncRNA and transcription
factors. )ese results may stimulate new strategy of im-
munotherapy in gliomas patients.

2. Methods

2.1. Collection of RNA-Seq and Matched Clinical Data from
CGGA and TCGA. We built two independent cohorts for
training set and testing set from CGGA and TCGA. )e gene
expression profiles were downloaded from the Chinese Glio-
mas Genome Atlas (CGGA http://www.cgga.org.cn/). 695
RNA-seq data of Chinese gliomas patients were obtained from
CGGAdatabase.Moreover, a series of measures were taken: (1)
Genes with a variance of 0 were filtered out. (2) Complete
follow-up information and samples with a follow-up time >30
days were served. Finally, 464 samples meeting the inclusion
criteria were included. Each patient matched specific clinical
data, which includes histology, WHO grades, age, gender,
chemotherapy, radiotherapy, survival status, and survival du-
ration in days. To build the testing cohort, the RNA-seq FPKM
of gliomas including corresponding outcome data were
downloaded from the Cancer Genome Atlas (TGCA). )e
following measures were taken: (1) the IDs were annotated on
the basis of hg38 reference genome. (2) Genes with a variance
of 0 were filtered out. (3) For the same gene corresponding to
multiple IDs or a patient with multiple tumor samples, the
average was taken. (4) Samples with a follow-up time >30 days
were kept. Eventually, a total of 629 TCGA samples fulfilled our
criteria.

2.2. Identification of Immune-Related lncRNA. For extract-
ing immune-related lncRNA, we downloaded immune-re-
lated gene set which includes immune response and immune
system process from the MSigDB. )e correlation analysis
between lncRNA and immune-related genes was performed
by limma package. Correlation coefficient >0.4 and P value
<0.001 were included. Finally, we generated 543 immune-
related lncRNA for further analysis.

2.3. Generation and Assessment of Prognostic Classifier by
Multiple Assays. To select prognostic immune-related
lncRNA, univariate Cox regression analysis of continuous
variables was performed by survival package. 253 prognostic
immune-related lncRNA (P< 0.01) were generated for next
analysis. )en, the Least Absolute Shrinkage and Selection
Operator (LASSO) regression was performed to identify
prognostic biomarkers and we set the random seed to 5
before the LASSO analysis. To generate and optimize the
prognostic classifier, the multivariate Cox regression anal-
ysis was performed. )e receiver operator characteristics
(ROC) curves were drawn by survivalROC package.)e area
under the curve (AUC) of the ROC curve was calculated and
compared to examine the performance of the classifier in
both training and testing cohorts.)emedian risk score (RS)
was determined to separate the genes into high-risk and low-
risk groups. KM curves and independent test were per-
formed by survival package to assess the effectiveness of
classifier in gliomas patients.

2.4. Functional Enrichment Analysis of High-/Low-Risk Score
Groups. To assess the different functions between high- and
low-risk groups, GO categories include biological processes
(BP), molecular functions (MF), or cellular components
(CC), and KEGG (Kyoto Encyclopedia of Genes and Ge-
nomes) pathways were analyzed by GSEA (Gene Set En-
richment Analysis). FDR <0.1 and P< 0.01 were considered
significant.

2.5.Generation of Immune-Related lncRNAandTranscription
Factors Network. )e transcription factors were identified
by Cistrome Cancer database, and the expression data of 312
transcription factors were extracted for weighted gene
coexpression network analysis (WGCNA). )e risk score,
clinical information, and expression modules were calcu-
lated in WGCNA. A soft-thresholding parameter of 5 was
chosen to guarantee a scale-free network. Module eigen-
genes (MEs) were considered as the most principal com-
ponent of each gene module and adopted as the
representative of all genes in each module. )e interesting
module was identified by calculating the relevance between
MEs and risk score. Gene significance (GS) represented the
degree of linear correlation between gene expression of
module and risk score. Besides, the average GS for all genes
in the module was defined as the module significance (MS).
)emodule with the highest MS score was chosen as the one
related to risk score. Eventually, the network between
prognostic immune-related lncRNA and chosen transcrip-
tion factors was built by Cytoscape. In addition, the func-
tional enrichment analysis was performed by clusterProfiler
package.

2.6. Comparison of Gliomas-Infiltrating Immune Cells be-
tween High and Low Expressions of Hub lncRNA. We
assessed the proportions of 22 immune cell subtypes based
on mRNA genes by CIBERSORT package. )e perm equal
to 1000 and P value <0.01 in CIBERSORT analysis result
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were contained for further analysis. Pheatmap package,
corrplot package, and vioplot package were used for
plotting.

2.7. Statistical Analysis. All analyses were carried out by R
version 3.6.1 and corresponding packages.

3. Result

3.1. Construction of Prognostic Immune-Related lncRNA
Classifier by Multiple Assays. After screening data, a total of
464 samples from CGGA fulfilled our criteria. We extracted
expression data of lncRNA and performed correlation analysis
between lncRNA and immune-related genes. As a result, 543
immune-related lncRNA were generated for further analysis
(correlation coefficient>0.4 andP value <0.001 were included).
Next, 543 immune-related lncRNA were filtrated by univariate
Cox regression analysis, and 253 prognostic immune-related
lncRNA (P< 0.01) were generated. To construct classifier,
these prognostic immune-related lncRNA were selected for
LASSO analysis and optimized by multivariate Cox regression
analysis (Figures 1(a) and 1(b)). Eventually, 8 immune-related
lncRNA were selected to construct classifier which includes
AC002454.1, AC062021.1, CRNDE, FAM181A-AS1, H19,
HOXA-AS2, LINC00671, and SNAI3-AS1 (Figures 1(c)–1(f)).
We also calculated the risk score (RS) of each sample based on
the relative expression level and the corresponding LASSO
coefficients in CGGA cohort.

3.2. Assessment of the Classifier Efficiency and Verification of
the Classifier in TCGACohort. We generated univariate and
multivariate analysis which enrolled clinical features and
risk score in the overall set. )e result showed that the
classifier was an independent factor for gliomas patients
(Figures 2(a) and 2(b). KM curves showed that the patients
with high-risk score had lower survival rate than patients
with low-risk score (P< 0.001) (Figure 2(c)). To assess the
efficiency of the classifier, time-dependent and multiple
ROC curves were performed in CGGA cohort. As a result,
the AUC was 0.796 in 1 year, 0.869 in 3 years, and 0.866 in 5
years (Figure 2(e)). In addition, the classifier had better
predictive power than other clinical features which includes
WHO grades, histology, IDH mutation, and 1p19q code-
letion (Figure 2(d)). To verify the results, time-dependent
ROC curves were performed in TCGA cohort.)e AUC was
0.868 in 1 year, 0.902 in 3 years, and 0.853 in 5 years. )e
results showed the classifier also had favorable accuracy in
the validation set (Figure 2(f)).

3.3. Clinical Correlation and Functional Enrichment Analysis
of High-Risk Score Group. Clinical correlation analysis
showed that each of the 8 lncRNAwas correlated withWHO
grades in gliomas (P< 0.001) (Figure 3(a)). )en, we con-
firmed that high-risk score group was correlated with
immune-related gene sets by GSEA analysis (Figures 3(b)
and 3(c)). To explore the potential mechanism in high-risk

group, functional enrichment analysis was performed by
GSEA (Gene Set Enrichment Analysis) (Figures 3(e)–3(g)).

3.4. Construction of Network between 8 Immune-Related
lncRNA and Transcription Factors. Based on Cistrome
Cancer database, we extracted expression data of 312
transcription factors in CGGA cohort for WGCNA. )e
soft-thresholding power in the WGCNA was determined
based on scale-free R2 (R2 � 0.95). Five modules were
identified by the average linkage hierarchical clustering
based on the soft-thresholding power. )e blue module had
the highest correlation with the risk score and contained 40
transcription factors (Figure 4). )en, the correlation
analysis between 8 immune-related lncRNA and 40 tran-
scription factors was performed. )en, we constructed the
network by Cytoscape. )e result showed that 3 high-risk
immune-related lncRNA (CRNDE, HOXA-AS2, and
AC002454.1) and 3 low-risk immune-related lncRNA
(SNAI3-AS1, AC062021.1, and LINC00671) were correlated
with transcription factors expression. We also found that
CRNDE, HOXA-AS2, and SNAI3-AS1 played core roles in
the network (Figure 5(a)). )e functional enrichment
analysis was performed to explore the potential mechanism
(Figures 5(b) and 5(c)).

3.5.$eFunction ofCore Immune-Related lncRNA inGliomas
Microenvironment. Based on CIBERSORT algorithm, we
performed the landscape of tumor infiltrating immune cell
subtypes in CGGA cohort (Figures 6(a)–6(c)). Besides, the
difference of immune cell subtypes between high-risk and
low-risk groups was analyzed. To investigate the function of
3 core immune-related lncRNA in immune system, the
median expression was determined to separate the samples
into the high-expression and low-expression groups. )e
results indicated that multiple immune cells showed dif-
ferent infiltration between high-risk and low-risk groups.
Plasma cells, CD8 T cells, T cells follicular helper, Tregs,
Tcells gamma delta, macrophages M0, and neutrophils were
significantly increased in high-risk groups, while Tcells CD4
naı̈ve, Tcells CD4memory resting, monocytes, and activated
mast cells were significantly decreased. Furthermore, the
different glioma-infiltrating immune cells between high and
low expression of core lncRNA were also calculated
(Figures 6(d)–6(g)).

4. Discussion

Because of the limitations of the immune response in the
central nervous system, there is no successful immuno-
therapy for gliomas patients currently [14, 15]. Although
there have been few failures of immune therapy clinical trials
in gliomas, a plenty of different immunotherapies studies are
currently being performed in gliomas patients which include
immune-checkpoint blockade, CAR Tcell therapy, oncolytic
viral therapy, and vaccination therapy [16, 17].)us, the new
strategies of immunotherapy needed to be found in gliomas.
Previous studies suggested that lncRNA play a significant
role in gliomas progression by regulating gliomas immune
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microenvironment. For example, Li et al. found that
modulating lncRNA SNHG15/CDK6/miR-627 circuit re-
duces M2-polarization in glioblastoma [18]. Due to the wide
expression inmultiple tissues and cell lines, lncRNAwas also
considered as a favorable prognostic biomarker [19]. Be-
sides, increasing evidence suggested that the transcription of
lncRNA genes is regulated by multiple core transcription
factors applied to protein-coding genes [20, 21]. )erefore,
immune-related lncRNA regulated by transcription factors
may become novel prognostic biomarkers in gliomas.

In our study, we generated two independent gliomas
cohorts in CGGA and TCGA, and we extracted 253
immune-related lncRNA correlated with prognosis. After
LASSO analysis and multivariate Cox regression analysis, 8
immune-related lncRNA were used to construct classifier.
)e classifier showed strong predictive ability in both CGGA

and TCGA cohorts. In addition, the classifier had better
predictive power than other clinical features which include
WHO grades, histology, IDH mutation, and 1p19q code-
letion. According to previous studies, lncRNA H19 pro-
moted gliomas progression and angiogenesis by regulating
several microRNAs [22–24]. LncRNAHOXA-AS2 regulated
malignant glioma behaviors via the RND3 expression and
miR-373/EGFR axis [25, 26]. CRNDE promoted malignant
progression of glioma by STAT3 and EGFR [27, 28]. In
addition, other 5 lncRNA have not been researched in
gliomas. Eventually, we built a network between 8 lncRNA
and transcription factors. )e result shows that CRNDE,
HOXA-AS2, and SNAI3-AS1 played core roles in the net-
work. 3 core transcription factors (EZH2, BRCA1, and
E2F7) were positively correlated with CRNDE and HOXA-
AS2 but negatively correlated with SNAI3-AS1. 6
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Figure 1: Construction of prognostic immune-related lncRNA classifier. (a, b) )e selection of prognostic immune-related lncRNA by
LASSO analysis. (c))e distribution of risk score. (d))e survival time and status of patients. (e))e heatmap of selected 8 immune-related
lncRNA of the classifier. (f ) )e univariate Cox regression analysis of 8 immune-related lncRNA.
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Figure 2: Assessment of the classifier efficiency and verification of the classifier in TCGA cohort. (a) )e univariate Cox regression analysis
of risk score and several clinical features in gliomas. (b) )e multivariate Cox regression analysis of risk score and clinical features. (c) K–M
curves of high- and low-risk score groups in CGGA cohort. (d) Multiple ROC curves of risk score and clinical features in CGGA cohort. (e)
Time-dependent ROC curves of 1, 3, and 5 years in CGGA cohort. (f ) Time-dependent ROC curves of 1, 3, and 5 years in TCGA cohort.
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transcription factors were consistent with CRNDE and
HOXA-AS2. 7 transcription factors were positively corre-
lated with CRNDE but negatively with SNAI3-AS1. Besides,
4 transcription factors were positively correlated with
HOXA-AS2 but negatively with SNAI3-AS1. In addition,
CRNDE and HOXA-AS2 were significantly increased in
high grade gliomas while SNAI3-AS1 was deceased.

To investigate the role of classifier and 3 core lncRNA in
glioma immune microenvironment, we calculated 22 sub-
types of glioma-infiltrating immune cells based on
CIBERTSORT [29]. Tregs are correlated with unfavorable
prognosis in several kinds of tumor microenvironment
[30–32] (e.g., ovarian cancer, breast cancer, kidney cancer,
and pancreatic cancer). Our results showed that Tregs were
significantly increased in high-risk score group, which
demonstrated that Tregs may promote the development of
gliomas. Mast cells play an important role in the growth of
tumor [33]. However, the contribution of mast cells to the
microenvironment of solid malignancies remains contro-
versial. Previous studies have illustrated that gliomas are
associated with a profound accumulation of mast cells. Our
results showed that activated mast cells were significantly
decreased in high-risk group. Consistent with previous
study, gliomas may block resting mast cell activation. We
found that macrophages M0 were significantly increased in
high-risk group while monocytes were decreased. In addi-
tion, high expression of CRNDE and HOXA-AS2 showed
the same trend while SNAI3-AS1 had opposite trend. )ese
results indicate that the high-risk immune lncRNA (CRNDE
and HOXA-AS2) may promote gliomas progression by

transforming monocytes into macrophages while the low-
risk immune lncRNA conversely inhibit macrophages in-
filtration. Natural killer (NK) cells are cellular components
of the immune system that are more difficult to deceive by
tumor cells and have greater cytotoxic activity [34]. Previous
studies have found that lncRNA plays an important role in
NK cell development and function [35]. Although gliomas
are frequently infiltrated by natural killer (NK) cells, these
are actively suppressed by the gliomas microenvironment
[36, 37]. According to our results, activated NK cells showed
no difference or slightly decreased in high expression of
CRNDE and HOXA-AS2, but activated NK cells were sig-
nificantly increased in high expression of SNAI3-AS1. )is
result suggested that high expression of SNAI3-AS1 may
suppress gliomas progression by activating NK cells and be
regulated by multiple transcription factors.

However, there were several limitations in our research.
First, the calculation results from public database may show
bias. Although we have verified the results in two inde-
pendent cohorts, we should carry out deeper research.
Second, the correlation between 3 core lncRNA and tran-
scription factors in gliomas needs further confirmation in
vitro and in vivo.

5. Conclusion

We successfully constructed a prognostic classifier based
on immune-related lncRNA in gliomas. 8 selected
immune-correlated lncRNA were independent prognostic
factors and were significantly correlated with WHO
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Figure 6: (a) 22 subtypes of immune cells in CGGA cohort. (b, c) Correlation analysis between 22 subtypes of immune cells. (d) )e
different infiltrating immune cells in high/low-risk score group. (e–g))e different infiltrating immune cells in high/low expression of 3 core
lncRNA.
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grades. We also built a correlation network between
immune-related lncRNA and transcription factors. )e
landscape of gliomas immune microenvironment and the
function of core immune-related lncRNA were investi-
gated by CIBERSORT. Our research provided a strong
classifier to predict gliomas patient outcome, and these
results may stimulate new strategy of immunotherapy in
gliomas patients.
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[33] J. Põlajeva, A. M. Sjösten, N. Lager et al., “Mast cell accu-
mulation in glioblastoma with a potential role for stem cell
factor and chemokine CXCL12,” PLoS One, vol. 6, no. 9,
Article ID e25222, 2011.
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