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Lung adenocarcinoma (LUAD) is a common subtype of lung cancer with a depressing survival rate.+e reprogramming of tumor
metabolism was identified as a new hallmark of cancer in tumor microenvironment (TME), and we made a comprehensive
exploration to reveal the prognostic role of the metabolic-related genes. Transcriptome profiling data of LUAD were, respectively,
downloaded from the Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) database. Based on the extracted
metabolic-related genes, a novel 5-gene metabolic prognostic signature (including GNPNAT1, LPGAT1, TYMS, LDHA, and
PTGES) was constructed by univariate Cox regression and least absolute shrinkage and selection operator (LASSO) regression.
+is signature confirmed its robustness and accuracy by external validation in multiple databases. It could be an independent risk
factor for LUAD, and the nomograms possessed moderately accurate performance with the C-index of 0.755 (95% confidence
interval: 0.706–0.804) and 0.691 (95% confidence interval: 0.636–0.746) in training set and testing set. +is signature could reveal
the metabolic features according to the results of gene set enrichment analysis (GSEA) and meanwhile monitor the status of TME
through ESTIMATE scores and the infiltration levels of immune cells. In conclusion, this gene signature is a cost-effective tool
which could indicate the status of TME to provide more clues in the exploration of new diagnostic and therapeutic strategy.

1. Introduction

Lung cancer has become one of the most frequently diag-
nosed malignant tumors with a leading death rate [1]. +e
major histological subtype of lung cancer is non-small-cell
lung cancer (NSCLC) accounting for approximately 85%
[2, 3]. Lung adenocarcinoma (LUAD) was the most com-
mon subtype of NSCLCwith the 5-year survival rate of about
15% [4, 5]. +e studies on the driver oncogenes such as
epidermal growth factor receptor (EGFR) and anaplastic
lymphoma kinase (ALK) have got great achievements [6].
However, the drug resistance of targeted therapy against
these genes was usually the inevitable limitation to patients,
and novel mechanisms of therapy were urgent to be explored
for clinical practice [7].

+e reprogramming of tumor metabolism was identified
as a new hallmark of cancer in tumor microenvironment
(TME) [8]. In the background of TME, the disorder of tumor
metabolism could deeply influence the multiple functions of
malignant cancer cells [9]. Previous reports have identified
metabolic signatures for prognostic prediction based on
multiomics analyses in lung cancer [10–12]. However, the
TME is a complex interaction network, and the integrated
research on the roles of metabolic signatures in TME is still
lacking.

In the current research, we constructed a novel meta-
bolic-related gene signature to reflect the status of TME.
Based on the differentially expressed metabolic genes of the
TCGA cohort, we confirmed the potential prognostic values
of this signature. It could reflect the metabolic features of
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LUAD and further monitor the content of stromal and
immune cells. We aimed to provide new clues and directions
for further research on the genes that participated in TME.

2. Materials and Methods

2.1. Data Collection. +e normalized mRNA transcriptome
profiling data of LUAD were downloaded from the Cancer
Genome Atlas (TCGA) database (https://portal.gdc.cancer.
gov/) and GSE72094 dataset from the Gene Expression
Omnibus (GEO) database (https://www.ncbi.nlm.nih.gov/
geo/) [13]. +e TCGA cohort contained 535 LUAD samples
and 59 control samples and the GSE72094 cohort con-
tained 442 LUAD samples. +e corresponding clinical
features were also obtained and extracted. Genes that were
involved in metabolism pathways were selected as meta-
bolic genes according to the Kyoto Encyclopedia of Genes
and Genomes (KEGG) pathway gene sets downloaded from
MSigDB database (http://software.broadinstitute.org/gsea/
msigdb). +e intersection of genes among these three
datasets was prepared as metabolic-related genes for
subsequent analyses.

2.2. Identification of Differentially ExpressedMetabolic Genes.
First, the mRNA expression matrices of the TCGA and
GEO cohorts were normalized, respectively. +en, the
differentially expressed metabolic genes in the TCGA co-
hort were selected by the threshold of |log 2[fold
change(FC)]| ≥1 and false discovery rate (FDR) <0.05 via
limma package [14].

2.3. Construction and Assessment of the Metabolic Gene
Signature. +e survival-related metabolic genes were
extracted by univariate Cox regression analysis with the
threshold of p< 0.001 by survival package [15]. Samples
whose survival time was less than 30 days and with in-
complete clinical information were excluded from this
analysis. +en, a least absolute shrinkage and selection
operator (LASSO) regression was performed to construct
the prognostic signature and avoid overfitting of this
model by glmnet package [16]. +e metabolic gene sig-
nature was constructed based on the Cox regression co-
efficient (β) and expression levels of metabolic mRNAs,
and the risk scores for each samples were calculated
according to the following formula: Σ(ExpmRNAn ×

βmRNAn). Based on the median of risk score, samples
were classified into high-risk group and low-risk group. A
Kaplan–Meier (K-M) survival curve was plotted to com-
pare the predictive survival time between the two groups.
+e performance of this signature was evaluated by the
area under the curves (AUCs) of the receive operator
characteristic (ROC) curve. +e risk score was also tested
as an independent risk factor with other clinical features by
univariate Cox regression and multivariate Cox regression,
respectively. During the analyses, the TCGA cohort was
used as a training set and the GSE72094 cohort was used as
an external testing cohort.

2.4. Construction and Validation of a Prognostic Nomogram.
A prognostic nomogram including clinical features and risk
scores was constructed for TCGA and GEO cohorts, re-
spectively. +e calibration plot was graphed to evaluate the
prediction probabilities and fitness of the metabolic signa-
ture. Finally, a net benefit curve for patients was plotted to
reflect the potential utility and evaluate the clinical value of
this model by decision curve analysis (DCA).

2.5. External Validation of the Prognostic Signature. +e
genes included in the signature validated their significance in
Oncomine database (https://www.oncomine.org/), which
provided the meta-analyses of the expression rank for each
gene across multiple research. +e cBioportal database
(https://www.cbioportal.org/) was used to investigate the
overview of the alteration that occurred in LUAD for the
novel metabolic-related genes. Furthermore, we validated the
protein expression levels in the Human Protein Atlas database
(https://www.proteinatlas.org/) to compare the differentia-
tion between tumor and control tissues visually.

2.6. Gene Set Enrichment Analysis. To investigate the po-
tential molecular mechanism of genes in this signature, we
performed the KEGG pathway analysis through Gene Set
Enrichment Analysis (GSEA) for the TCGA cohort. +e
significant pathways were identified with a threshold of FDR
<0.05.

2.7. Clinical Application in Tumor Microenvironment. We
calculated the ESTIMATE scores for each sample and made
a comparison between high- and low-risk groups [17]. +e
ESTIMATE scores contained immune score, stromal score,
and tumor purity which, respectively, reflected the infil-
tration level of immune cells, the stromal content, and the
estimated tumor purity. Furthermore, we calculated specific
infiltration levels for 22 subtypes of immune cells through
the CIBERSORT system to extend the utility of this meta-
bolic signature [18].

2.8. Statistical Analysis. All the statistical analyses were
conducted by R software (version 3.5.3). +e Cox and
LASSO regression were employed to screen the survival-
related variables. +e survival curves were compared by the
log-rank test. +e differences for the independent samples
were analyzed by the Wilcoxon rank-sum test. +e coeffi-
cient of correlation was calculated by Pearson correlation
analysis. p< 0.05 was considered statistically significant.

3. Results

3.1. Identification of Differentially ExpressedMetabolic Genes.
We graphed a flowchart to describe our study more visually
(Figure 1(a)). A total of 875 metabolic mRNAs were
extracted by the intersection of the gene lists from three
different databases (Figure 1(b)). +en, 104 differentially
expressed metabolic mRNAs (79 upregulated and 25
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Figure 1: (a)+eflowchart for the process of construction andvalidation to themetabolic gene signature. (b)+e intersection for the selectedmetabolic-
related genes. +e co-expressed genes among TCGA, GEO, and KEGGmetabolism pathway datasets were prepared as metabolic-related genes for the
construction of prognostic signature. (c)+eheatmap to explain the different expressions between tumor and control groups. (d)+e volcano plot of the
104 differentially expressed metabolic mRNAs. Red dots represent 79 upregulated mRNAs, and green dots represent 25 downregulated mRNAs.
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downregulated) were confirmed between LUAD samples
and controls (Figures 1(c) and 1(d)).

3.2. Construction and Assessment of the Metabolic Gene
Signature. We identified 9 survival-related metabolic
mRNAs through the univariate Cox regression analysis.
Furthermore, through the LASSO regression, the optimal
model was constructed with the least parameters when the
lambda was minimum (Figure 2). +e five selected genes
were as follows: glucosamine 6-phosphate N-acetyl-
transferase 1 (GNPNAT1), lysophosphatidylglycerol acyl-
transferase 1 (LPGAT1), thymidylate synthase (TYMS),
lactate dehydrogenase A (LDHA), and prostaglandin E
synthase (PTGES). +e signature was developed by the
following formula: Exp (GNPNAT1)× 0.0276 + Exp
(LPGAT1)× 0.0102 + Exp (TYMS)× 0.0140 + Exp (LDHA)×

0.0034 + Exp (PTGES)× 0.0010.
According to the risk scores, the samples were divided

into high-risk group and low-risk group. +e AUC of ROC
to the risk score was the best in both training set and testing
set, and the K-M survival analysis indicated significantly
different survival time between the two groups (Figure 3). In
both univariate and multivariate Cox regressions, the hazard
ratio of risk score was maximal compared with other clinical
features. +e univariate Cox regression focused on the in-
dividual variable but may be affected by the confounding
factors. +e multivariate Cox regression avoided this limi-
tation. +ese analyses complemented each other and indi-
cated that the risk score could be a definitely independent
risk factor for the prognosis of LUAD (Figure 4).

3.3. Construction and Validation of Prognostic Nomograms.
+e nomograms were constructed by the clinical features
and risk scores (Figure 5). +e C-index was 0.755 (95%
confidence interval: 0.706–0.804) and 0.691 (95% confidence
interval: 0.636–0.746) for the TCGA and GEO cohorts,
respectively.+e calibration curves showed the agreement of
themodels compared with the reference line (Figure S1).+e
net benefit curves of DCA for the potentiality of clinical
application confirmed that the model could provide satis-
factory benefits (Figure S2). Generally speaking, our model
had an approximately moderate accuracy in both TCGA and
GEO cohorts and might increase the sensitivity and speci-
ficity in the prognostic prediction of LUAD to some extent.

3.4.ExternalValidationof thePrognostic Signature. All of the
five genes were confirmed the significantly different ex-
pression in Oncomine database (Figure 6(a)), which was
consistent with our results. With respect to protein levels,
they were also significantly differentially expressed between
LUAD and control tissues (Figure 6(b)). In the Gene Al-
teration Atlas, LPGAT1 possessed the most occurrence of
mutation with 7% among the samples and other genes also
showed alterations; it might clarify the aberrant expression
between LUAD and control samples (Figure 6(c)). +e
correlation between LUAD and the five genes was further
confirmed through the validation amongmultiple databases.

3.5. Gene Set Enrichment Analysis. We performed the GSEA
and identified the enriched KEGG pathways (Figure 7).With
respect to the high-risk group, the pathways were mainly
associated with cell proliferation and the top 5 pathways
were RNA degradation, cell cycle, ubiquitin-mediated
proteolysis, oocyte meiosis, and pyrimidine metabolism.
With respect to the low-risk group, the pathways were
mainly associated with the lipid metabolism and the top 5
were arachidonic acid metabolism, linoleic acid metabolism,
alpha linolenic acid metabolism, vascular smooth muscle
contraction, and primary bile acid biosynthesis. +e results
revealed different metabolic features in the risk groups.

3.6. Correlationwith TumorMicroenvironment. +e samples
in the low-risk group possessed a higher stromal score,
immune score, and total score compared with those of the
high-risk group; meanwhile, the tumor purity also had a
significant difference between the two groups (Figure 8).
+rough the CIBERSORT system, we calculated the rela-
tionship between this prognostic signature and the infil-
tration levels of immune cells (Figure 9). A total of 11
subtypes of immune cells (memory B cells, resting dendritic
cells, macrophages M1, activated mast cells, resting mast
cells, monocytes, activated NK cells, memory-activated CD4
Tcells, memory-resting CD4 Tcells, gamma delta Tcells, and
regulatory T cells) had obvious relationships between the
infiltration levels and risk scores.

4. Discussion

Although great achievements about new therapeutic strat-
egies have been reported in the past decades, the overall
survival rates of LUAD remains unsatisfactory [1, 19].+e
pathological subtypes presented limitations in the prediction
of prognosis. Patients could have totally different final
outcomes although they might possess similar clinical and
pathological types [20]. +e development of next-generation
sequencing promoted the preclinical application of bio-
informatics [21, 22], which could comprehensively combine
the gene profiling with the clinical parameters. Compared
with the tumor-node-metastasis (TNM) system, it has been
confirmed among various types of cancers that the prog-
nostic signature could improve the accuracy of prediction
[23–25].

In the field of LUAD, there were several previous studies
which had successfully constructed the prognostic signature
from different perspectives [26–28]. Compared with these
studies, we extracted the related genes and developed a
metabolic prognostic signature. We, respectively, confirmed
its accuracy and robustness in the training set and testing set.
Our signature could efficiently identify the overall survival
time for different risk groups and was further validated from
different levels in multiple databases. Moreover, we explored
the correlation between the signature and TME in order to
expand the clinical application and provide more clues for
the choice of therapeutic strategy.

Previous research about NSCLC has reported the bi-
ological function and expression patterns for the model
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genes. GNPNAT1, also known as GNA1, was a key member
involved in the biosynthesis about acetylglucosamine and it
was confirmed that the underexpression of GNPNAT1
could result in the inhibition of infiltration and adhesion of
lung cancer cells [29]. LDHA was an important enzyme
that participated in the cell energy metabolism which
promoted the malignant behavior and predicted poor
survival outcomes in LUAD [30, 31]. PTGES was an en-
zyme that was mostly involved in the inflammation re-
sponse. It was also reported that the aberrant expression in
the NSCLC cell lines and PTGES knockdown could sig-
nificantly suppress the migration of lung cancer cell
[32, 33]. TYMS played an essential role during the DNA
synthesis, the alteration of TYMS might increase the risk of
lung cancer, and the expression of TYMS confirmed the
correlation with EGFRmutation in LUAD patients [34, 35].
LPGAT1 was reported as a novel gene that mainly par-
ticipated in the lipid metabolism and confirmed the role in
influencing BMI and body fat [36]. Previous researches
revealed that LPGAT1 was differentially expressed between
normal and tumor tissue and might be potential targets for
crucial microRNAs in LUAD [37, 38]. Our research in-
dicated that LPGAT1 was a metabolic-related gene with a
potential prognostic value, and it might be a novel diag-
nostic and therapeutic target for LUAD. Significant al-
teration of amplification in LPGAT1 was observed, and
different protein expression levels were also confirmed
between the tumor tissue and control.

+e difference of enriched pathways between high- and
low-risk groups was revealed by GSEA.+e results indicated

that the two risk groups possessed significantly different
metabolic features. Pathways in the high-risk group were
mainly correlated with the cell proliferation, and in the low-
risk group, they were correlated with lipid metabolism.
+rough the differences with them, we could partly acquire
the different metabolic features identified by risk scores and
the underlying molecular mechanisms. It could be a cost-
effective complementary tool that indicates the metabolic
microenvironment and the prognosis.

Besides the differences in metabolic features, the prog-
nostic signature could also reveal corresponding changes in
the TME, which was showed as ESTIMATE scores and
CIBERSORT scores. Within the TME, along with the tu-
morigenesis and progression, the aberrant of tumor meta-
bolism could implicate the immunosuppression and tumor
cells could escape from the immune response [39]. +rough
the reflection to the composition of TME by this signature,
we could conveniently monitor the infiltration of immune
cells and further reduce the degree of immune response.+is
signature could reflect these changes of TME from different
aspects and had the potentiality to be an appropriate as-
sistance for rational diagnosis and individualized treatment.
Meanwhile, it was confirmed that the therapies which were
targeted on the tumormetabolism and tumor immune check
point in TME had certain antitumor effects [40]. It could be a
new prospective direction for the challenge of drug-resis-
tance and might provide complementary clues during the
application of immunotherapy.

+e limitations of the current TNM system were
gradually recognized in recent years. To improve the clinical
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Figure 2: Construction of the metabolic prognostic signature by LASSO regression. (a) +e coefficient profiles of 9 prognostic mRNAs. (b)
+e tuning parameter selection plot of LASSO regression. +e dotted lines, respectively, represented the minimum and 1-SE lambda for the
optimal volume of variables.
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Figure 3: +e performance of this signature in training set and testing set. +e samples were classified into high- and low-risk group
according to the median of risk score in the TCGA cohort. (A, B) +e curve of risk score which represented the distribution of patients. (C,
D) +e dot plot which represented the survival status of patients. (E, F) +e heatmap which represented the expression profiling of the 5
genes in the entire dataset. (G, H)+e comparison of the AUC to the clinical features and risk scores. (I, J) Kaplan–Meier survival curves for
the prediction of prognostic outcomes based on the metabolic gene signature. In both training set and testing set, significant differences were
observed in high- and low-risk groups. (a) TCGA cohort. (b) GEO cohort.
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application, a new method of immunoscore system was
recommended by the international consensus in the field of
colon cancer [41]. +is immunoscore was derived from the

density of CD3+ and CD8+ T-cell effectors and was vali-
dated to be satisfactory performance in the prediction of
recurrence and prognosis. It was considered as a
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complementary risk factor alongside the TNM system for
the classification of tumor and was called the TNM-I
system. In the field of NSCLC, the similar research was in
progress and had got preliminary achievements [42]. We
calculated the relationship between our signature and the
infiltration levels of 22 subtypes of immune cells in TME,
and half of them were significantly correlated. +rough
this signature, we could correlate the distribution of
immune cells with the prognosis of patients. Our sig-
nature provided innovative perspectives from the angle
of tumor metabolism. +e comprehensive reflection of
the TME, especially the correlation between this prog-
nostic signature and the infiltration of immune cells,

could enrich the research on the TNM-I system, and the
role in prognostic prediction could provide more details
for the research of this new immunoscore system.

+ere were still several limitations to our research. First,
it was difficult to reflect the whole landscape of the tumor
metabolism based on the transcriptomics data, and our
analyses were just focused on the particular aspect. Second,
although our signature had been validated among multiple
databases, the experimental exploration was still needed to
further confirm the accuracy and clinical utility. +ird, the
composition of cohort from TCGA and GEO database were
mainly white and black; the extension to other races is still
needed to be validated.
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5. Conclusions

In conclusion, we successfully developed a robust metabolic-
related gene signature for the prognostic prediction of
LUAD based on the TCGA and GEO database. Our sig-
nature could reflect the metabolic features and the status of
TME for LUAD.
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Figure 9: +e relationships between the prognostic signature and the infiltration levels of 22 subtypes of immune cells calculated by the
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TCGA: +e Cancer Genome Atlas
TME: Tumor microenvironment
TYMS: +ymidylate synthase.
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