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Inside the cancer microenvironment, reduced O2 concentration, termed as hypoxia, is a common phenotype and leads to cancer
progression. However, little is known about how and when those HIF members are dysregulated in distinct cancers. Here, by
integrating a full range of data of thousands of patients, we comprehensively analyzed the genetics, epigenetics, and transcriptomic
level of HIF genes and further defined pathways triggered by disrupted hypoxia-inducible factors. We reveal the expression
landscape of HIF family genes and further demonstrate that copy number variations underlie such dysregulation. Further analysis
indicates that HIF genes associate with cancer hallmarks such as cell cycle and DNA damage response. Drug resistance analysis
showed that HIF globally impacts drug effectiveness such as docetaxel. In summary, the overall analysis reveals the landscape of
HIF genes in pan-cancer and may assist mechanism research about hypoxia.

1. Introduction
For cells to adapt to hypoxia, they must be able to sense
changes in oxygen and respond to them [1, 2]. Under such a
scenario, hypoxia-inducible factors (HIFs) mediate adaptive
physiological responses to hypoxia [3–5]. ,e HIF tran-
scriptional complex transcriptionally activates molecules
modulating oxygen homeostasis and metabolic activation
[6, 7]. Eight members, including hypoxia-inducible factor 1
(HIF-1α, also termed as HIF1A) [8], aryl hydrocarbon re-
ceptor nuclear translocator (HIF-1β, also termed as ARNT)
[9], endothelial PAS domain protein 1 (HIF-2α, also termed
as EPAS1) [10], aryl hydrocarbon receptor nuclear trans-
locator 2 (HIF-2β, also termed as ARNT2) [11], hypoxia-
inducible factor 3 (HIF-3α, also termed as HIF3A) [12], and
aryl hydrocarbon receptor nuclear translocator 3 (HIF-3β,

also termed as ARNT3) [13], formed this transcriptional
complex [14]. In normal cells, these members maintain the
balance of oxygen metabolism and adaptive physiological
responses to hypoxia [3].

Particularly in cancer cells, the HIF pathway is widely
accepted to be enhanced or upregulated [15]. Inside the
tumor, reduced O2 availability is a common phenotype and
leads to cancer hallmarks such as angiogenesis, metabolic
reprogramming, and epithelial-mesenchymal transition
[15]. Yet, little is known about how and when these HIF
members are dysregulated. Copy number variations
(CNVs), genetic mutation, and promoter methylation will
all exert large effects on gene expression; however, how these
factors contribute to HIF enhancement is unknown. We
hence seek to address the origin of such upregulation and
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quantify the most enriched pathways linked with such
upregulation. Defining enriched pathways of hypoxia might
help improve our understanding of how HIFs shape cancer
cells and offer the promise of developing targeting drugs.

Here, by integrating multiple data of thousands of pa-
tients, we aim to explore how cancer cells reprogram the HIF
transcriptional program. We comprehensively analyzed the
genetics, epigenetics, and transcriptomic level of HIF genes
and further defined pathways triggered by disrupted hyp-
oxia-inducible factors.,is proposed work will elucidate key
pathways in response to hypoxia that may underlie critical
steps in carcinogenesis, genetic instability, tumor progres-
sion, and resistance to cancer therapies. Identification of
strategies to prevent or reverse these pathways may provide
the basis for new approaches to cancer prevention and
therapy.

2. Methods

2.1. Data Source. As for the gene expression analysis,
methylation analysis, single nucleotide variation analysis,
copy number variation analysis, and pathway enrichment
analysis, we downloaded data from ,e Cancer Genome
Atlas (TCGA, https://portal.gdc.cancer.gov/). As for the
normal tissue gene expression analysis, we downloaded data
from GTEx (https://www.gtexportal.org/home/datasets). As
for drug response analysis, we downloaded data from GDSC
(http://www.cancerrxgene.org/).

2.2. Gene Expression Analysis. As for the differential gene
expression analysis, we used mRNA count data of cancer
samples and the matched normal samples. We used Deseq2
(http://bioconductor.org/packages/devel/bioc/vignettes/
DESeq2/inst/doc/DESeq2.html) to perform the differential
gene expression analysis. We set the cutoff as 2 and 0.05 for
the fold change and FDR. We used R to perform the
Spearman correlation analysis.

2.3. Methylation Analysis and Single Nucleotide Variation
Analysis. As for the differential methylation analysis, we
used methylation probe data of cancer samples and the
normal samples. We used Student’s t test to perform the
differential methylation analysis. We set the cutoff as 0.05 for
the FDR. ,e mRNA expression and methylation data were
matched according to the barcode of each sample.We used R
to perform the Spearman correlation analysis between
methylation and mRNA expression. We used maftools
(https://github.com/PoisonAlien/maftools) to summarize
the single nucleotide variation events (driver mutation).

2.4. Copy Number Variation Analysis. We divided all CNV
events into heterozygous and homozygous events, which
means the CNV occurs on only one or two chromosomes. We
use GISTICS (ftp://ftp.broadinstitute.org/genepattern/
modules_public_server_doc/GISTIC2.pdf) to analyze the
CPV events. Only genes with >5%CNV in cancers were shown
as a corresponding point on the figure. We used R to perform

the Spearman correlation analysis between CNV and mRNA
expression.

2.5. Pathway Enrichment Analysis. We calculated the
pathway score according to the reverse-phase protein array
data in TCGA. RPPA data are centered on the median, and
each component is normalized by the STD of all patients to
obtain relative protein levels. Gene expression was divided
into two groups according to the median value (high and
low), and Student’s t test was used to determine the dif-
ference in the pathway activity score (PAS). ,e heat map
shows genes that are functional (suppressed or activated) in
at least 5 cancer types. ,e pathway_a (red) represents the
percentage of cancers that are activated by specific genes and
is inhibited similarly to the pathway_a (blue).

2.6. Drug Sensitivity Analysis. To analyze the correlation
between gene expression and drug sensitivity, we down-
loaded drug dose-response curve (AUC) values and regions
under the gene expression profile for all cancer cell lines.
Fisher’s Z transform was used to normalize the transcription
level and the Pearson correlation coefficient of the area
under the curve. ,e two-tailed distribution corrected by
Bonferroni had a family error rate of z-scores less than 0.025.
,e Spearman correlation coefficient of the agent target was
compared with the same number of drug-gene pairs com-
puted by random sampling correlation.

3. Results

3.1. Hypoxia-Inducible Factors Are Dysfunctional across
Cancers Which Leads to Worse Patient Outcomes. We used
the differential gene analysis of hypoxia-inducible factor family
members according to the raw count of these HIF genes from
ten cancer types downloaded from ,e Cancer Genome Atlas.
We selected cancers withed matched normal samples including
THCA, KIRP, LIHC, STAD, BRCA, COAD, UCEC, BLCA,
KIRC, KICH, and PRAD. We found that the majority of the
detected HIF genes are significantly changed (Figure 1). Among
them, HIF3A and EPAS1 are significantly downregulated,
whereas ATNTL andARNT2 showminimal expression changes
in most cancer types (Figure 1). We further found that HIF
family gene expression varied in cancer subtypes (Figure S1).
Especially in breast cancer, all HIF genes are differentially
expressed in each subtype. In addition, we examined whether
HIF gene expressions impact the overall survival of cancer
patients (Figure 1). Our result demonstrates that all HIFs had
either favorable prognostic or unfavorable prognostic impacts on
overall survival. Nevertheless, the prognostic power varied by
HIF factor types. Some HIFs, such as HIF1A, ARNT, EPAS1,
and HIF3A, were linked with unfavorable outcomes for pan-
cancer, while two HIFs including ARNTL and ARNT2 were
associated with favorable outcomes in pan-cancer (Figure 1).

3.2. Heterozygous Amplification Contributes to Upregulated
Hypoxia-Inducible Factors. We also sought to explore the
impact of copy number variations (CNVs) on HIF gene

2 Journal of Oncology

https://portal.gdc.cancer.gov/
https://www.gtexportal.org/home/datasets
http://www.cancerrxgene.org/
http://bioconductor.org/packages/devel/bioc/vignettes/DESeq2/inst/doc/DESeq2.html
http://bioconductor.org/packages/devel/bioc/vignettes/DESeq2/inst/doc/DESeq2.html
https://github.com/PoisonAlien/maftools
http://ftp://ftp.broadinstitute.org/genepattern/modules_public_server_doc/GISTIC2.pdf
http://ftp://ftp.broadinstitute.org/genepattern/modules_public_server_doc/GISTIC2.pdf


expression. We first separated all CNV events into het-
erozygous or homozygous copy number variations. Het-
erozygous amplification/deletion was mainly correlated with
transcriptional alterations such as upregulated HIFs (e.g.,
HIF3A, ARNT, and ARNTL). Downregulated HIFs (e.g.,
HIF1A and ARNT2) were associated with decreased copy
numbers (Figure 2 and Figure S2). However, we further
examined the effect of homozygous amplification or deletion

on mRNA level expression. To our surprise, only homo-
zygous amplification of the ARNT gene associates with its
upregulation in only 4 cancers (BLCA, BRCA, LIHC, and
UCEC). ,is indicates that heterozygous copy number
variations underlie the transcriptional changes of HIFs. To
confirm our result, we perform the correlation analysis and
observe the positive correlation between CNVs and mRNA
expression in most HIF genes across cancers.
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Figure 1: Hypoxia-inducible factor family genes are widely dysregulated in human cancers. (a) ,e HIF genes are downregulated in a wide
range of cancers. (b) Abnormal HIF gene expression associates with favorable or unfavorable patient survival in pan-cancer. FC: fold change,
FDR: false discovery rate, THCA: thyroid carcinoma, KIRP: kidney renal papillary cell carcinoma, LIHC: liver hepatocellular carcinoma,
STAD: stomach adenocarcinoma, BRCA: breast invasive carcinoma, COAD: colon adenocarcinoma, UCEC: uterine corpus endometrial
carcinoma, BLCA: bladder urothelial carcinoma, KIRC: kidney renal clear cell carcinoma, KICH: kidney chromophobe, PRAD: prostate
adenocarcinoma.
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3.3. Mutation Profile of Hypoxia-Inducible Factors. Based on
the somatic mutation data from ,e Cancer Genome Atlas,
mutations of HIFs widely exist (Figure 3). Even for the lowest-
rankedHIFs likeARNTL, themutation frequencies were around
17%. EPAS2 and HIF3A were mutated in ∼26% of samples.
Most HIF mutations distribute in cancers with high mutation

loads such as UCEC and STAD (Figure 3(a)). For example,
especially in UCEC, 31% of patients show EPAS1 mutation
(Figure 3(a)). Among all mutations, missense mutations pre-
dominate, andmost ofmutations are C toG (Figure S3). To sum
up, frequent mutations of HIFs also contribute to the abnormal
profile of hypoxia factors in cancers.
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Figure 2: Copy number variations contribute to abnormal expression of hypoxia-inducible factors. (a) Copy number variations associate
with HIF gene expression in cancers. (b) Copy number variation of the HIF gene includes heterozygous amplification and homozygous
amplification. CNV: copy number variation, Hete: heterozygous, Homo: homozygous.
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3.4. Demethylation Contributes to the Abnormal Hypoxia-
Inducible Factors. Since the methylation of the gene pro-
moters can induce the downregulation of genes, we
downloaded the promoter methylation of HIF genes in
different cancer types. We found the abnormal methylation
of the hypoxia genes in multiple cancer types, especially in
BRCA, PRAD, and LIHC (Figure 4(a)). Further, we utilized
the Spearman correlation analysis to compute the correla-
tion between the gene expression and methylation level of
HIF genes across cancer types and observed that the

methylation level of HIF1A, ARNT, EPAS1, ARNT2,
HIF3A, and ARNTL are significantly negatively correlated
with their expression level, respectively (Figure 4(b)), which
may partially explain the abnormal expression of these HIF
genes in cancer samples.

3.5. Abnormal Hypoxia-Inducible Factors Associates with Key
Cancer Hallmarks. We next explore the HIF-related cancer
hallmark pathways, including apoptosis, cell cycle, DNA
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Figure 3:Mutations can also lead to HIF family dysfunction in cancers. (a) Frequency of HIF genemutation. (b) A summary of the variation
of each sample.
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damage response, EMT, hormone AR, hormone ER, PI3K/
AKT, RAS/MAPK, RTK, and TSC/mTOR. We found that
upregulated HIF1A, ARNT, EPAS1, ARNT2, HIF3A, and
ARNTL associates with the EMT signalling pathway (Fig-
ure 5 and Figure S4). Also, this observation is in consistency
with previously reported results [16]. We also found pre-
viously unreported results. For example, HIF3A, which is
reported to promote the cancer metastatic phenotype, was
observed to be highly linked with PI3K pathway activation
across multiple cancer types. In summary, our systematic
analysis not only ensured the previously identified HIF-
related pathways but also shed light on novel potential HIF-
associated signalling pathways in human cancers.

3.6. Abnormal Hypoxia-Inducible Factors Associates with
Drug Sensitivity. Many clinically actionable genes are tar-
geted by anticancer drugs as identified in the GDSC project
(Methods). Hypoxia in the tumor microenvironment is a
common phenotype in cancers, and hence, targeting those
hypoxia-related genes may help improve the survival of
patients. To further assess how hypoxia impacts drug re-
sponse, we computed the Spearman coefficient between drug
sensitivity of 265 clinically used agents and mRNA

expression of 6 HIFs across 1,080 cancer cell lines in GDSC.
To our surprise, we observed no significant associations
between HIF1A/ARNTL and drug response (Figure 6). In
contrast, responses to 62 drugs are related to EPAS1 ex-
pression. For example, docetaxel, a chemotherapy medica-
tion used to treat many types of cancer, negatively correlates
with EPAS1 expression. Taken together, these data dem-
onstrate hypoxia genes, especially EPAS1, may affect drug
sensitivity.

4. Discussion

Hypoxia in the tumor microenvironment can impact the
cancer cell phenotypes [17]. Although previous studies have
examined the role of HIF genes in some cancers, a system-
level analysis is still lacking. HIF genes in cancers are highly
context-dependent, making the role of HIFs complicated
and changeable in distinct cancers, thus impeding the ef-
fective clinical utility of HIFs. Here, by integrating multiple
data across cancer types, we seek to explore the landscape of
hypoxia-inducible factors (HIFs) family genes.

First, we report the transcriptional landscape of HIF
family genes in cancers. Hypoxia in the tumor microenvi-
ronment has been linked with cancer development, and
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Figure 4: ,e HIF family is epigenetically methylated. (a) Differential methylation of the HIF genes in human cancers. (b) Correlation
between promoter methylation and HIF gene expression.
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hypoxia status is highly associated with effectiveness of
anticancer drugs [18]. Our study presents the expression
landscape of HIF genes, where most of them are dysregu-
lated across cancer types. For example, hypoxia-inducible
factor 3-alpha (HIF3A) is globally downregulated in cancers
especially in breast cancer. ,is gene also shows a high rate
(26%) of mutation in all samples. ,e pathway analysis of
this gene shows its association with activation of EMT and
PI3K, indicating this gene might serve as an important target
in the clinical settings. Our system-level analysis represents a
systematic computation of the widespread alterations of
hypoxia-inducible factors in thousands of tumors.

Further, our research shows that HIF genes are asso-
ciated with cancer hallmarks. Hypoxia contributes to the
suppressive tumor microenvironment in many cancers by
activating multiple pathways that allow tumor cells to escape
from the innate and adaptive immune defenses [1, 19, 20]. To
better understand how hypoxia impacts the pathways inside
the tumor, we selected ten hallmark pathways. Our results
demonstrated that most HIF genes negatively correlates with
DNA damage response and cell cycle. ,is indicates that
reduced O2 in the microenvironment may contribute to
DNA damage. Our paper highlights the potentially linked
signalling pathways of HIFs across a broad spectrum of
cancers.

Finally, our study presents the interaction and cor-
relation between the clinically actionable genes and HIFs,

indicating that reprogramming the O2 concentration in
the tumor microenvironment should be considered in
cancer therapy [21]. In particular, endothelial PAS do-
main protein 1 (EPAS1) gene expression associates with
responses to 62 drugs. ,is indicates that enhancing/
blocking EPAS1 may serve as a promising combinational
strategy in the clinical setting. However, we observe no
significant associations between drug response and
HIF1A/ARNTL gene expression, although they are core
hypoxia regulators. In a nutshell, our paper provides more
evidence that further efforts should be made to combine
targeting hypoxia with existed drugs.

Our paper does have some limitations. ,ese results
should be validated in different patient cohorts. For ex-
ample, future research should look at whether ARNTL can
predict the outcome of patients. Second, ,e Cancer
Genome Atlas does not document the synonymous mu-
tation data. It is still unclear about the synonymous
mutation of HIF genes and how they impact patients’
prognosis.

In summary, our study reveals the expression landscape
of HIF family genes and further addresses the origin, copy
number variations, of such dysregulation. We also found
that HIF genes associates with cancer hallmarks such as cell
cycle and DNA damage response. Further drug resistance
analysis showed that HIF globally impacts drug effectiveness
such as docetaxel. ,ese findings provide new insights into

HIF3A

HIF1A

EPAS1

ARNTL

ARNT2

22 –6 13 –6 7 –12 25 –3 13 –6

10 –9 4 –31 0 –28 10 –9 16 –3 13 –6

–18 7 –31 4 –28 16 –6 7 –25 13 –9 16 –3 38 0

10 –9

22 –94 –21 0 –21 7 –12

4 –15 0 –21

19 –9 19 –6 13 –6 22 –3

Ap
op

to
sis

_A

Ap
op

to
sis

_I

C
el

l c
yc

le
_A

C
el

l c
yc

le
_I

D
N

A
 d

am
ag

e r
es

po
ns

e_
A

D
N

A
 d

am
ag

e r
es

po
ns

e_
I

EM
T_

A

EM
T_

I

H
or

m
on

e A
R_

A

H
or

m
on

e A
R_

I

H
or

m
on

e E
R_

I

H
or

m
on

e E
R_

A

PI
3K

/A
KT

_I

PI
3K

/A
KT

_A

RA
S/

M
A

PK
_A

RA
S/

M
A

PK
_I

RT
K_

A

RT
K_

I

TS
C/

m
TO

R_
A

TS
C/

m
TO

R_
I

Pathway (A:active; I:inhibit)

Percent –20 0 20

4

Figure 5: ,e HIF genes are widely associated with the hallmark cancer pathways. ,e heat map with function (inhibition or activation) in
at least 5 cancer types. Pathway_a represents the potential activation of this pathway, and pathway_i represents the potential inhibition of
this pathway.

Journal of Oncology 7



cancer hypoxia and unravel new mechanisms of HIF genes
that may be further explored in the future.
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Figure S1: the expression of HIFs in normal tissues and
cancer subtypes. (a) ,e mRNA expression of HIFs in
normal tissues. (b) ,e expression of the HIF genes is
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expression and drug sensitivity. A positive correlation indicates that the high expression of this gene is resistant.
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different in cancer subtypes. Figure S2: copy number vari-
ation affects HIF gene expression. Copy number variant
subtype of HIF gene in cancer. Hete Amp: heterozygous
amplification; Hete Del: heterozygous deletion; Homo Amp:
homozygous amplification; Homo Del: homozygous dele-
tion; and no: no CNV. Figure S3: a review of HIF gene
variants in human cancers. (a) Variant type, (b) variant
classification, (c) single nucleotide variation, (d) variation
per sample, (e) mutation classification, and (f) mutation of
HIF gene between cancer types frequency. Figure S4: the HIF
genes are widely associated with the hallmark cancer
pathways in different cancer types. ,e pie plots represent
the percentage of cancer samples that are correlated with
HIF gene expression. (Supplementary Materials)
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