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Background. Osteosarcoma is a common and highly metastatic malignant tumor, and m5C RNA methylation regulates various
biological processes.*e purpose of this study was to explore the prognostic role of m5C in osteosarcoma using machine learning.
Methods. Osteosarcoma gene data and the corresponding clinical information were downloaded from the GEO database. Machine
learning methods were used to screen m5C-related genes and construct m5C scores. In addition, the clusterProfiler package was
used to predict the m5C-related functional pathways. xCell and CIBERSORT were used to calculate the immune microenvi-
ronment cells. GSVA was applied to analyze different categories of m5C genes, and the correlation between the GSVA and m5C
scores was evaluated. Results. Twenty m5C genes were identified, and 54 related genes were screened. *e m5C score was
constructed based on the PCA score. With an increase in the m5C score, the expression of m5C genes and their related genes
changed. Functional analysis indicated that the focal adhesion, cell-substrate adherens junction, cell adhesion molecule binding,
and E2F targets might change with the m5C score. *e naive B cells and CD4+ memory T cell also changed with the m5C score.
*e results of the correlation analysis showed that the m5C score was significantly correlated with the reader and eraser genes.
Conclusion. *e m5C score might be a prognostic index for osteosarcoma.

1. Introduction

Osteosarcoma is a common primary bone malignancy with a
high rate of incidence in children and adolescents [1, 2].
Osteosarcoma is highly aggressive, is metastatic, and has a
high risk of recurrence after treatment [3]. Currently, the
main treatment methods for patients with osteosarcoma
include surgery, radiotherapy, chemotherapy, and combi-
nation therapies [4, 5]. Osteosarcoma is thought to arise
from osteoblasts in rapidly growing bones [6]. Changes in
cellular heterogeneity and immune dynamics lead to com-
plex molecular and genetic mechanisms that make con-
ventional treatment regimens less effective in a clinical
setting [7, 8]. Studies have shown that the estimated survival
rate of patients with metastatic osteosarcoma undergoing
routine treatment is less than 5 years [9]. *erefore, a clear
diagnosis and precisely targeted therapy are significant for
patients with osteosarcoma. *e new generations of

sequencing technology and data analysis methods provide
an efficient and convenient technical auxiliary means for the
exploration of therapeutic targets for osteosarcoma.

As a branch of computer science and statistics [10],
machine learning generates predictive models mainly by
learning from training data. Its application in the field of
medicine has attracted significant attention, including the
diagnosis, prognosis, and treatment cycle prediction of the
disease. *e literature has shown that machine learning
methods have been applied in drug discovery [11], the
management of hematologic malignancies [12], and epilepsy
pathology monitoring [13].

RNAmethylation is involved in the regulation of various
biological processes, and its dysregulation is closely related
to the occurrence of human malignant tumors [14]. In
addition, 5-methylcytosine (m5C) is a type of RNA meth-
ylationmodification located in the untranslated region of the
mRNA transcript [15]. M5C is involved in various RNA
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metabolisms, including mRNA output, RNA stabilization,
and translation, through the dynamic regulation of a series
of important mediator proteins (writer, eraser, and reader)
[16]. Studies have shown that m5C plays an important role in
the diagnosis and prognosis of cancer, including hepato-
cellular carcinoma [17], squamous cell carcinoma of the
head and neck [18], lung adenocarcinoma [19], triple-
negative breast cancer [20], and gastrointestinal cancer
[21]. However, the role of m5C in osteosarcoma remains
unclear.

*e prognostic role of the m5C score in osteosarcoma is
currently unknown. In this study, we analyzed the data in
GEO. A machine learning method was used to screen and
construct the m5C score. Related functional pathways were
predicted. *e correlation between clinical factors, m5C
scores, and the prognosis was analyzed.*ese results provide
a scientific basis for using the m5C score as a prognostic
indicator for patients with osteosarcoma.

2. Methods

2.1. Datasets and Data Preprocessing. *e GSE21257 and
GSE39058 gene expression profile and corresponding
clinical information were downloaded from the GEO da-
tabase (https://www.ncbi.nlm.nih.gov/gds/), with the
GSE39058 dataset as the validation set. *e microarray data
of the GPL10295 platform (Illumina human-6 v2.0 ex-
pression beadchip) include RNA expression and clinical
characteristics (e.g., age, sex, grade, metastasis, and pa-
thology) from 53 patients with osteosarcoma. Microarray
data probes were annotated based on the gene names, and
the mean value of all probes with the same gene name was
obtained. All data were then normalized.

2.2. Establishment of the m5C Score. *e 21 m5C genes,
including the synonym of these genes, were intersected with
the osteosarcoma dataset (GPL10295), leaving 20 genes (i.e.,
DNMT1, DNMT3A, DNMT3B, MBD1, MBD2, MBD3,
MBD4, MECP2, NEIL1, NTHL1, SMUG1, TDG, UHRF1,
UHRF2, UNG, ZBTB33, ZBTB4, TET1, TET2, and TET3).
Next, a correlation analysis was conducted among these 20
genes, and genes with related coefficient >0.6, with p< 0.05,
were considered as related genes.*e univariate analysis was
used for the related gene dimensionality reduction. After the
random survival forest and PCA were performed, the risk
score model was constructed as follows:
m5C score � 


PC1A − 


PC1B, where A represents the

gene with HR> 1 and B represents the gene with HR< 1.*e
m5C score was verified in GSE21257 and GSE39058. ROC
curves were performed to diagnose the effectiveness of the
model. After three main classifications (reader, eraser, and
writer) of the m5C gene and the complete gene set were
analyzed using GSVA, the correlation analysis was per-
formed between them and the m5C score.

2.3. Functional Annotation Analysis. An analysis of the
difference between the two groups with high- and low-risk
scores in the expression matrix was conducted, and the

standard was set as abs (logFC)> log2 (1.5), with p value
<0.05. A gene ontology (GO) analysis was conducted for
these differentially expressed genes, including cellular
component (CC), molecular function (MF), and biological
process (BP) analyses. *e limit for a significant enrichment
was set at p< 0.05. For the correlation analysis of all genes in
the expression matrix of this gene, the R package cluster-
Profiler [22] was used to conduct a gene set enrichment
analysis (GSEA). *e criteria of statistical significance were
set as |NES| >1, with NOM p value <0.05 and an FDR q
value< 0.25. *e clusterProfiler package was then applied to
evaluate and analyze the GO biological process, KEGG
pathway, and HALLMARK pathway of the genes.

2.4. Immune Cell Infiltration Analysis. In this study, xCell
[23] and CIBERSORT were used to calculate immune mi-
croenvironment cells. *e method integrates the benefits of
a gene enrichment analysis through a deconvolution to
evaluate 64 cell types involving multiple adaptive and innate
immune cells, hematopoietic progenitor cells, epithelial
cells, and extracellular matrix cells. *ese included 48 mi-
croenvironment-related tumor cells.

2.5. Statistical Analysis. To analyze differentially expressed
genes, we used the Benjamini–Hochberg method, which
converts p values into FDR to identify important genes. All
survival curves were generated and visualized using the R
package survminer and a Kaplan–Meier analysis. *e sta-
tistical significance of the differences was determined using
the log-rank test in each dataset. A pheatmap was adopted to
generate heatmaps. R (https://www.r-project.org/, version
3.6.1) was used to conduct a statistical analysis. *e data
were visualized using the R package ggplot2. After the
Shapiro–Wilk normality test was used to check the nor-
mality of the variables, the differences between the two
groups were compared using unpaired Student’s t-test with
the normally distributed variables, and the Wilcoxon test
was conducted to compare the variables without normally
distributed. *e statistical significance was set at p< 0.05.

3. Results

3.1. Establishment of the m5C Score for Osteosarcoma. To
establish the m5C score, we obtained m5C gene data from
the GEO database and screened 20m5C genes.*eir survival
analysis in GSE21257 was conducted independently
(Figures S1 and S2). Correlation analysis among the 20 m5C
genes in the osteosarcoma dataset indicated a certain
amount of interrelationship among the m5C genes
(Figure 1(a)). Based on 20 m5C genes, a gene set containing
3,008 genes was constructed (Figure 1(b)). A total of 1,929
genes were screened out using univariate analysis, and 54
genes were identified in the random survival forest
(Figures 1(c) and 1(d)). After a univariate analysis
(Figure S3) and PCA scoring of these genes, the m5C score
was calculated. A survival analysis showed that patients with
a high-risk score had a poor prognosis (p value less than
0.05) (Figure 1(e)). *e risk score was verified in the
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Figure 1: Construction of the m5C risk model. (a) Correlation analysis results of m5C genes. (b) *e relationship between the m5C gene
and its related genes. (c) Error rate as a function of the classification tree. (d) Related importance values for the genes. (e) Overall survival in
the high and low m5C score group. (f ) *e expression level of the m5C gene under high and low m5C scores. ∗ indicates significance with
p< 0.05.
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GSE39058 dataset (Figure S4). ROC curves were performed
to diagnose the effectiveness of the model. *e AUC value of
our model was higher than that of others [24] (Figure S5).
*e genes were divided into high and low groups based on
their risk scores. *e expression of m5C differed, including
TET3, MBD2, UHRF2, MECP2, ZBTB4, and SMUG1
(Figure 1(f )). With an increase in the risk score, the ex-
pression of the m5C gene changed, including DNMT3A,
MBD2, MECP2, NEIL1, and SMUG1 (Figure 2(a)). As the
risk score increased, the expression levels of the constructed
PCA score genes changed, including C1orf64, FBXW10,
LOC647405, OR2C1, AKT1S1, XRCC6, EXOSC3, and
SNRPD1 (Figure 2(b)).

3.2. M5C Score-Related Functional Analysis of Osteosarcoma.
Next, we assessed the expression of genes in the high and low
groups based on the m5C scores (Figure 3(a)). *ere were
conspicuous differences in the gene expression between the
high and low m5C score groups. A functional analysis was
conducted on the differentially expressed genes, including
BP, CC, and MF (Figure 3(b)). Among them, with BP, the
regulation of leukocyte activation and translational initiation
was significant. With CC, the focal adhesion, cell-substrate
adherens junction, cell-substrate junction, and adherens
junction were significant. With MF, the cell adhesion of the
molecule binding, ISG15 transferase activity, and kinase
regulator activity were significant. Meanwhile, we conducted
a GSEA based on the m5C score, including GO enrichment
(Figure 4(a)), KEGG pathway (Figure 4(b)), and HALL-
MARK (Figure 4(c)) analyses. *e GO analysis results
showed that the ribonucleoprotein complex biogenesis,
translational initiation, and application of protein locali-
zation to endoplasmic reticulum pathways were significant.
A KEGG analysis showed that the ribosome, starch and
sucrose metabolism, and spliceosome pathways were sig-
nificant. *e results of the HALLMARK analysis showed
that the MYC target V1, the G2M checkpoint, and the E2F
target pathways were significant.

3.3. Immune Infiltration Analysis for the m5C Score. Next,
xCell (Figure 5(a)) and CIBERSORT (Figure S6) were used
to analyze the immune cell infiltration. As the m5C score
increased, the expression of immune cell infiltrates changed,
including the CLP, smooth muscle, hepatocytes, melano-
cytes, MSCs, and HSCs.

3.4. M5C Score as an Independent Prognostic Factor in Os-
teosarcoma Patients. To further validate the prognostic
value of m5C scores, the clinical factors and m5C scores of
patients with osteosarcoma were evaluated. *e results of a
univariate Cox regression analysis (Figure 5(b)) and a
multivariate Cox regression analysis (Figure 5(c)) showed
that the p values of the age, sex, and grade were all greater
than 0.05. *ese findings suggested that these clinical factors
in patients are indistinctively associated with the prognosis.
*e m5C score was significantly correlated with patient
prognosis, with p � 0.004 and p � 0.036, respectively.

*erefore, the m5C score might be an independent prog-
nostic factor in patients with osteosarcoma.

3.5. Relationship between the m5C Score and m5C in
Osteosarcoma. To further explore the relationship between
the m5C gene score and m5C score, we conducted a GSVA
on the three major classifications of the m5C gene (reader,
eraser, and writer) and the complete m5C gene set. A
correlation analysis was applied using the m5C score and the
above reader (Figure 6(a)), eraser (Figure 6(b)), and writer
(Figure 6(c)) GSVA scores, as well as the GSVA score of the
m5C gene set (Figure 6(d)). *e GSVA score of the reader
was positively correlated with the m5C score, whereas the
eraser score was negatively correlated. *ere was no sig-
nificant correlation between the GSVA score of the writer
and m5C scores. *e m5C gene set score was positively
correlated with m5C. *us, there might be a relationship
between the m5C scores and m5C genes in osteosarcoma.

4. Discussion

Although some studies have suggested that an m5C RNA
modification is associated with the genesis and progression
of cancer [25], the underlying relationship between osteo-
sarcoma and m5C remains unclear. In this study, we
established a riskmodel based on them5C scores. Compared
with other models [24], the m5C score has higher diagnostic
efficiency. Furthermore, the m5C score can be used as an
independent prognostic factor in patients with
osteosarcoma.

*e m5C score, including C1orf64, AKT1S1, and
XRCC6, was constructed in this study. Among them,
C1orf64 can be used as a protective factor in patients with
osteosarcoma, and its expression decreases with an increase
in the m5C score. SRARP (C1orf64) is a tumor suppressor
that can be used to predict the clinical outcomes of ma-
lignant tumors [26]. In addition, AKT1S1 and XRCC6 were
identified as risk factors. A high expression of AKT1S1 is
positively correlated with a poor prognosis in liver cancer
patients [27]. In addition, XRCC6 is involved in the poor
prognosis of human osteosarcoma cells [28] and prostate
cancer [29]. All of these demonstrated the reliability of
predicting the prognosis of patients based on their m5C
score. Regardless, how the genes constructing the m5C score
regulate the development of osteosarcoma still requires
further research and exploration.

M5C regulates the transcriptome expression mainly
through the dynamic regulation of methyltransferases
(writers), binding proteins (readers), and demethylases
(eraser) [30]. *e eraser, reader, and writer can change
significantly with the change in the m5C score, including
MBD2, UHRF2, ZBTB4, and TET3. Among them, MBD2
inhibits DNAmethylation and activates prometastatic genes
[31, 32]. In 5-azaCdR-induced breast cancer, MBD2 de-
pletion can inhibit cell invasion [33]. It has been reported
that UHRF2 was associated with cell invasion, migration,
and lymphatic metastasis of intrahepatic chol-
angiocarcinoma [34]. TET3 inhibits ovarian cancer by
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blocking TGF-β1-induced EMT [35]. *ese results sug-
gested that MBD2, UHRF2, and TET3 may be involved in
the process of tumor metastasis. Our functional analysis also
demonstrates this point. Focal adhesion was significantly
increased in terms of the m5C score and high/lowm5C score
groups, including the focal adhesion, cell-substrate adherens
junction, cell adhesion molecule binding, and E2F targets.
*ere is a relationship between cell adhesion and cancer
metabolism [36], and it has been shown in the literature that
cell adhesion molecules play an important role in the

development of cancer and are clinical markers for the ef-
fectiveness of cancer therapy [37]. E2F dysfunction may
contribute to cancer development [38]. Regulation of the
PRMT5-E2F1 axis can promote the migration and invasion
of tumor cells [39]. *us, m5C might influence cancer
development by regulating the functional downstream
pathways. *ese results further proved that the m5C score
has a certain prognostic role in patients with osteosarcoma.

However, in our analysis, the expression of ZBTB4 in-
creased with an increase in the m5C score. In colorectal
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Figure 2: M5C score and gene expression. (a) *e expression of m5C genes. (b) *e expression of constructing PCA score genes.
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cancer, patients with a high ZBTB4 expression have a better
prognosis [40]. *is is inconsistent with our analysis. We
speculated that this might be due to the complexity of the
biological functions of cells and the complexity of the mi-
croenvironment of a tumor.

Tumor development is closely related to immune in-
vasion [41, 42]. With the change in the m5C score, the
immune cells also changed significantly, including naive
B cells and CD4+ memory T cells. Naive B cells are involved
in the prognosis of hepatocellular carcinoma and colorectal
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Figure 3: Differential genes and functional analysis between high and low m5C score groups. (a) *e expression of differential genes.
(b) Functional analysis of differential genes.
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Figure 4: GSEA based on the m5C score in osteosarcoma. (a) GO enrichment analysis. (b) KEGG pathway analysis. (c) HALLMARK
analysis.
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cancer [43, 44]. A high abundance of B-cell infiltration could
have a good prognostic effect. *e study showed that CD4+

follicular helper T-cell infiltration could be used to predict

breast cancer survival [45]. *e resistance of pancreatic
cancer cells is also associated with changes in CD4+ memory
T cells [46]. *erefore, we speculated that m5C could affect
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Figure 5: Immune cell infiltration analysis and prognosis analysis for the m5C score. (a) Immune cell infiltration analysis. (b) Univariate
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the prognosis of osteosarcoma by regulating the infiltration
of immune cells.

Combined with the above analysis, we believe that the
m5C score can be used as a prognostic index for osteo-
sarcoma. *e specific mechanism by which m5C regulates
the osteosarcoma prognosis requires further exploration and
specific experimental verification.

5. Conclusion

In this study, patients with high m5C scores had a poor
prognosis.*em5C score could influence cellular changes in
the functional regulation and immune microenvironment
related to osteosarcoma metastases. In conclusion, the m5C
score could be used as an independent prognostic factor for
the diagnosis of osteosarcoma.
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