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Head and neck squamous cell carcinoma (HNSCC) is a highly aggressive solid tumor. Because most studies have focused on the
intrinsic carcinogenic pathways of tumors, we focused on the relationship between N6-methyladenosine (m6A) and the prognosis
of HNSCC in the tumor immune microenvironment. We downloaded RNA-seq data from the TCGA dataset and used univariate
Cox regression to screen m6A-related lncRNAs.+e expression value of LASSO-screened genes was the sum of LASSO regression
coefficients. We then evaluated relationships between the risk score and cellular components or cellular immune response.
Differences in immune response under various algorithms were visualized with heat maps. +e GSVA package in R was used to
analyze GO, BP, KEGG, and hallmark gene sets of immune checkpoint clusters and immune checkpoint scores. +e GSEA
analysis was performed with the cluster profile package, yielding 21 m6A genes. Related lncRNAs were screened with Pearson’s
correlations, and the resulting 442 lncRNAs were screened using single-factor analysis. Eight lncRNAs closely related to prognosis
were identified through survival random forest. Survival analysis showed that patients with a high risk score had a poor prognosis.
Low- and high-risk-score groups differed significantly in m6A gene expression. Prognostic scores from different algorithms were
significantly correlated with B cells, T cells, and memory cells in the immune microenvironment. Expression of immune
checkpoints and signal pathways differed significantly across risk-score groups, suggesting that m6A could mediate lncRNA-
induced immune system dysfunction and affect HNSCC development. A comprehensive study of tumor-cell immune char-
acteristics should provide more insight into the complex immune microenvironment, thus contributing to the development of
new immunotherapeutic agents.

1. Introduction

Head and neck squamous cell carcinoma (HNSCC) is the
sixth most common malignant tumor worldwide, claiming
approximately 350000 lives every year [1]. HNSCC includes
malignant tumors of the oral cavity, nasopharynx, oro-
pharynx, hypopharynx, larynx, nasal cavity, and salivary
gland [2]. Patterns of clinical behavior and treatment re-
sponse to recurrent and metastatic HNSCC are hetero-
geneous. Available treatment strategies range from
potential salvage surgery and reirradiation to palliative
systemic therapy and optimal supportive treatment [3].+e
emergence of new treatment options may improve disease
control and prolong survival after surgical methods and
techniques with greater complexity, such as highly

conformal and accurate radiation techniques, as well as
immunotherapy [4].

For many reasons, HNSCC is sometimes difficult to
treat. +ese include the effects of previous treatments on
tumor cells and the infiltrative and multifocal nature of
HNSCC, which are typical features of recurrent disease in
this region [5]. A review has shown that HNSCC is suitable
for immunotherapy. Immune escape plays a key role in the
occurrence and development of tumors [6]. Here, we ana-
lyzed the relationship between genetic models related to
immune infiltration and biometrics-based prognosis of
HNSCC.

Increasing evidence suggests that long noncoding RNAs
(lncRNAs) are related to human diseases. Next-generation
sequencing has identified tens of thousands of lncRNAs in

Hindawi
Journal of Oncology
Volume 2021, Article ID 1814266, 11 pages
https://doi.org/10.1155/2021/1814266

mailto:dyp19950610@163.com
https://orcid.org/0000-0002-4019-4781
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/1814266


numerous organisms, ranging from single-celled eukaryotes
to humans [7]. Because of their tissue- and cell-type-specific
expression, lncRNAs are potential cancer biomarkers [8].
+ey have complex and extensive HNSCC development
functions, including cancer growth, recurrence, and me-
tastasis [9]. +eir expression patterns in HNSCC are ir-
regular and specific [10]. Although the relationship between
lncRNAs and HNSCCs remains unclear, some lncRNAs are
abnormal and contribute to the cancer’s occurrence and
development [11, 12]. Enhancer RNA (eRNA) is a subclass
of lncRNAs transcribed in gene enhancers, the main cis-
regulatory elements in the genome [13]. Transcriptional
regulation of eRNAs plays a role in cancer [14]. N6-meth-
yladenosine (m6A), which was first discovered in the 1970s,
is recognized as the most prominent and abundant form of
internal modification that occurs in messenger RNAs
(mRNAs) and long noncoding RNAs (lncRNAs) in many
eukaryotic species [15, 16]. m6A methylation is thought to
affect every aspect of RNA metabolism, including RNA
splicing, translocation, stability, and translation into protein
[17]. Here, we aimed to identify prognostic eRNAs and their
target genes in HNSCC.

Immunotherapy activates the host’s natural defense
system, which then recognizes and eliminates tumor cells. It
is an effective treatment method with unparalleled syner-
gistic survival advantages in a variety of cancers [18]. +e
development of tumor gene-expression profiles enabled
identification of prognostic expression characteristics and
patient selection for targeted therapy. Recent studies have
evaluated correlations of immune-related gene expression in
patients whose various solid tumors were treated with im-
munotherapy [19]. Tumor-infiltrating immune cells play a
vital role in tumor spread, recurrence, metastasis, and
treatment response to immunotherapy [20, 21]. For ex-
ample, tumor-associated macrophages (TAMs) secrete im-
munosuppressive cytokines (e.g., interleukin 10 (IL-10) and
transforming growth factor-β (TGF-β)) and inhibit host
antitumor activity, thereby promoting tumor progression
[22]. In contrast, increased levels of tumor-
infiltrating lymphocytes (TLS), such as CD4+ T cells and
CD8+ Tcells, are associated with elevated survival rates and
tumor responsiveness [23]. +e activation of T cells and
immune checkpoint molecules is essential for anticancer
immune response [24]. In this study, we performed immune
infiltration analysis of the prognostic model. We analyzed
the expression of immune checkpoints in individuals with
high- and low-risk scores.

+e clinicopathological data we collected included sex,
age, stage, grade, survival status, and survival duration. A
prognosis score was developed and verified. +e m6A-based
prognosis model and its clinical characteristics were ana-
lyzed. We then investigated immune infiltration, as well as
the expression of immune checkpoints and signaling
pathways, in different risk-score groups. A comprehensive
study on immune cells, immune-related factors, cytokines,
and immune characteristics of tumor cells during HNSCC
may provide more insight into the complex immune mi-
croenvironment, thereby contributing to the development of
new immunotherapeutics.

2. Results

2.1. Establishment and Validation of Prognostic Score.
Studies have shown that m6A plays an important role in
HNSCC [25]. To study m6A-related lncRNAs, we initially
obtained 2444m6A-related lncRNAs.+en, 442 lncRNAswere
screened using single-factor analysis. Survival random forest
analysis revealed eight lncRNAs that were closely linked to
prognosis: AC008115.3, BTG3-AS1, AC024060.2, AC099850.3,
AL117327.1, BCDIN3D-AS1, and AL590428.1 (Figure 1(a)).
LASSO regression analysis was used to obtain a risk model
containing eight genes, and the best log(λ) was −5. +ere were
five high-risk and three low-risk genes (Figure 1(b)). Single-
factor results of the eight genes in our survival model were
significant (P< 0.05). +ese eight genes were significantly
associated with HNSCC prognosis (Figure 1(c)), and they were
linked to patient survival. Survival analysis of the eight genes
was plotted (Figure S1).+e survival model (TNM stage, grade,
sex, age, status, and risk score) was related to the eight genes
(Figure 1(d)). +e ROC curve showed that the risk score had a
strong predictive ability, with an AUC of 0.65, 0.65, and 0.629
in 1, 3, and 5 years compared with age factors. +e risk model
may serve as an important indicator for evaluating the prog-
nosis of HNSCC (Figure 1(e)). Ultimately, we obtained eight
lncRNAs closely related to m6A and HNSCC prognosis.

2.2. Prognostic Model of the m6A Gene and Its Clinical
Characteristics. We further explored the correlation between
risk scores and m6A gene expression. We first selected 21 m6A
RNAmethylation regulators from previously published articles
[26]. +e results showed that the survival model (stage, grade,
sex, age, status, and risk score) was correlated with the fol-
lowing genes: WTAP, HNRNPC, YTHDF1, FMR1, RBM15,
ELAVL1, RBM15B, YTHDC2, YTHDF2, METL14, YTHDC1,
IGF2BP1, IGF2BP1.1, MRTTL3, and LRPPRC (Figure 2(a)).
We divided risk scores into high and low groups. Expression
levels of ALKBH5, CBLL1, FMR1, HNRNPA2B1, HNRNPC,
METTL14, MRTTL3, RBM15, ELAVL, VIRMA, WTAP,
YTHDF1, YTHDF2, and YTHDF3 were significantly different
inm6Amodification (Figure 2(b)). In short, HNSCCprognosis
is significantly correlated to the m6A gene.

2.3. Correlation between Risk Scores and Clinical Features.
+e abovementioned experiment showed that m6A gene
expression differed significantly across risk-score groups.
Risk score data were then classified by age, sex, grade, status,
and stage. Risk-score distributions were significantly dif-
ferent in grade and status (P< 0.05), but not in age, sex, and
stage (Figure 3(a)). Univariate (Figure 3(b)) andmultivariate
analyses (Figure 3(c)) revealed that the risk score was sig-
nificantly correlated with age and stage (P< 0.05). Specifi-
cally, stage, grade, and risk score all increased with
increasing age.

2.4. Immunoinfiltration Analysis of the Prognosis Model.
+e abovementioned results analyzed clinical characteristics
and then identified a correlation between prognosis and
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Figure 1: Screening of lncRNAs closely related to m6A. (a) +e error rate of random forest classification for the top 2500 most important
LncRNAs. (b) 3 low-risk genes and 5 high-risk genes were analyzed by Lasso regression. (c) Univariate regression was used to analyze the
risk significance P values of 8 genes. (d) +e correlation between 8 lncRNAs and the prognosis of HNSCC. (e) +e ROC curve of risk score
and age. ∗∗∗∗indicates that the gene is statistically significant in the survival model.
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immune infiltration. As risk score increased, the proportion
of the following immune cells and factors decreased: näıve
B cells, memory B cells, follicular helper T cells, NK cells,
activated B cells, effector memory CD4 T cells, effector
memory CD8 Tcells, memory B cells, CD4 Tcells, and CD8
T cells. Likewise, stage, grade, disease severity, and immune
system dysfunction increased with greater risk scores in
HNSCC patients (Figure 4). B and Tcells were abnormal. In

conclusion, immune infiltration is associated with risk
scores in the HNSCC prognosis model.

2.5. Immune Checkpoint Analysis of Different Risk-Score
Groups. +e abovementioned experiment showed the cor-
relation between the prognostic model and immune cells.
Immunotherapy, mediated by the immune checkpoint
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Figure 2: Correlation between the m6A gene and prognosis markers of HNSCC. (a) Heat map of variation in m6A gene expression across
cancer stage, cancer grade, patient sex, patient age, status, and risk score. (b) +e level of m6A (21 genes) expression in high- and low-risk-
score groups. ∗, P< 0.05; ∗∗, P< 0.01; ∗∗∗, P< 0.001; ∗∗∗∗, P< 0.0001; ns, not significant.
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inhibitor (ICI), represents a turning point in the antitumor
treatment of various cancer types in recent years [27]. We
have analyzed the correlation between high and low risk
score and immune checkpoints. Classification of immune
inspection: antigen present, ligand, receptor, coinhibitor,
costimulator, others, and cell adhesion. At the antigen
present level (Figure 5(a)), the expression of HLA-DPB1,

HLA-DQA2, HLA-DQB2, HLA-DRA, HLA-DRB5, MICA,
and MICB increased in the high-risk-score group. At the
ligand level (Figure 5(b)), the expression of CD40LG,
CX3CL1, CXCL9, and IFNG increased in the high-risk-score
group. +e expression of TGFB1 and VEGFB decreased. At
the receptor level (Figure 5(c)), the expression of
ADORA2A, BTLA, CD27, CTLA4, ICOS, LAG3,
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Figure 3: Clinical characteristics of risk scores. (a) Wilcoxon and Kruskal–Wallis tests were used to analyze risk score distribution in other
clinical features (status, age, gender, grade, and stage). (b), (c) Univariate andmultivariate analyses were performed on the prognostic factors
(risk score, age, gender, grade, and stage).
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TNFRSF14, TNFRSF18, TNFRSF4, and TNFRSF9 increased
in the high-risk-score group. At the level of coinhibitor,
costimulator, cell adhesion, and others (Figure 5(d)), the
expression of CD276, PDCD1LG2, and HMGB1 decreased

in the high-risk-score group. +e expression of CD28,
ARG1, GZMA, IDO1, and SELP increased. A scatter plot
was used to analyze the correlation between risk score and
several classical immune checkpoint molecules. +e results
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Figure 5: Immune checkpoint. (a)+e level of 14 genes at different levels of antigen present. (b) Ligand gene expression under different risk
scores. (c) Gene expression at different receptor levels in high- and low-risk-score groups. (d) Gene expression at different levels of
coinhibitor, costimulator, cell adhesion, and “others.” ∗, P< 0.05; ∗∗, P< 0.01; ∗∗∗, P< 0.001; ∗∗∗∗, P< 0.0001; ns, not significant.
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showed that HLA-C (r� 0.16) and CD276 (r� 0.42) were
positively correlated with risk score. CD40LG (r� 0.27),
CD27 (r� 0.34), CD28 (r� 0.19), and SELP (r� 0.19) were
negatively correlated with risk score (Figure S2). +e ab-
normal expression of the abovementioned classic immune
checkpoint genes has obvious correlation with high and low
risk score.

2.6. FunctionalAnalysis of PrognosticModels. Our functional
analysis of risk scores from the prognostic model revealed
that the main pathways affecting prognosis were the notch,
TGF-β, Wnt, and PI3K signaling pathways (Figure 6(a)).
+ese pathways are primarily related to proliferation, apo-
ptosis, cycle, and inflammatory responses of HNSCC cells.
As risk score increased, survival decreased, while the ex-
pressions of CD8 Tcells and immune checkpoints both rose
(Figure 6(b)). Gene Set Enrichment Analysis (GSEA)
revealed that when NES was positive, notch expression and
regulation of the cellular response to hypoxia pathways
increased significantly in the high group. However, when
NES was negative, CD4 and CD8 expression decreased
significantly in the low group (Figure 6(c)). In conclusion,
HNSCC prognosis may be related to abnormal signaling
pathways.

3. Materials and Methods

3.1. HNSCC Dataset and Preprocessing. RNA-sequencing
data were downloaded from the TCGA data portal. +e
TCGA dataset was downloaded from UCSC Xena (https://
xenabrowser.net/) (Supplementary Table S1).+e number of
segments per million value of each segment was converted to
the transcript/points per million. We obtained 21 m6A
genes, and Pearson correlations were used to screen related
lncRNAs. Correlations were considered significant with a
coefficient |R2| >0.3 and P< 0.05. Collected clinical path-
ological data included sex, age, stage, grade, survival status,
and survival duration.

3.2. Establishment of m6A-Related lncRNA Risk Scores.
Univariate Cox regression was used to screen m6A-related
lncRNAs, and random survival forests were used for further
screening. We used the LASSO method to select the highest
lambda value (“min” lambda) of the selected genes after 1000
cross validations. We obtained a set of prognostic genes and
their LASSO regression coefficients. +e risk score was ob-
tained from LASSO-screened genes, and its value was the sum
of LASSO regression coefficients. +e risk-score equation was
as follows: risk score� −0.1069 ∗ AC024060.2+
0.2167 ∗ AC099850.3+0.2651 ∗ AL590428.1+0.5882 ∗ BC
DIN3D-AS1+0.1269 ∗ AL139289.2+−0.3562 ∗ BTG3-AS1
+−0.5245 ∗ AC008115.3+ 0.1792 ∗ AL117327.1. According
to the predictivemodel, the patients were divided into high-risk
and low-risk groups using the median cutoff of risk score. +e
Cox proportional hazard regression model includes stage,
grade, status, age, and TNM stage. +e hazard ratio (HR) from
Cox regression analysis was used to distinguish the prognostic
factors positively or negatively. A gene with HR >1 was

considered a risk gene, and a genewithHR<1was considered a
protective gene. Subsequently, the Kaplan–Meier survival
method was used to evaluate the availability of the prognostic
model, and the sensitivity and specificity of the receiver op-
erating characteristic (ROC) curve were used to evaluate the
prognostic accuracy of the signature building.

3.3. Analysis of the m6A Gene and Clinical Characteristics.
We analyzed the correlation between prognostic score and
M6a gene expression. Next, we examined variation in risk
scores across different clinical features. Univariate and
multivariate analyses were performed for risk scores and
clinical characteristics.

3.4. Estimation of Immune Infiltration. +e CiberSort, Es-
timate, McCounter, Single Sample Gene Set Enrichment
Analysis (SSGSEA), and TIME algorithms were compared to
evaluate the relationship between risk score and cell com-
position or cellular immune response. Heat maps were used
to reveal differences in immune responses under various
algorithms.

3.5. Pathway Analysis. All gene sets were downloaded from
the Sigdb database. +e GSVA software package was used to
analyze immune checkpoint clusters and scores. +is in-
cludes the GO BP (biological process), KEGG, and hallmark
gene sets.+e clusterProfiler package from R was utilized for
GSEA analysis.

3.6. Statistical Analyses. All statistical analyses were per-
formed in R (version 3.6.1, https://www.r-project.org/). +e
Wilcoxon and Kruskal–Wallis tests were used to compare
nonnormally distributed (nonparametric) variables. Pearson
and distance correlations were used to calculate correlation
coefficients. Data were mainly visualized using the R package
ggplot2. +e Kaplan–Meier method was used to generate
and visualize subgroup survival curves of. All tests were two
sided. Significance was set at P< 0.05.

4. Discussion

+is bioinformatics study found that lncRNAs are related to
HNSCC prognosis. Risk score and m6A gene expression
were correlated in the prognostic model. Disease grade and
status differed significantly across risk-score groups. +e
proportion of immune cells and factors decreased with
increasing risk score. Additionally, high and low risk scores
are related to the expression of immune checkpoints. We
suggest that HNSCC prognosis may be related to prolifer-
ation, apoptosis, cycle, and inflammatory response signaling
pathways.

+e lncRNA subclass eRNA is derived from the enhancer
region of a gene; they are cis-acting sequences that affect
transcription [28]. Our standards include functionally un-
annotated AC008115.3, BTG3-AS1, AC024060.2,
AC099850.3, AL117327.1 BCDIN3D-AS1, and AL590428.1
identified as important eRNA candidates in HNSCC. Here,
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Figure 6: HNSCC prognosis is likely related to various signaling pathways. (a) Heat maps of signal pathways in clinical models. (b) Classical
pathway expression differed across risk-score groups. (c) Enrichment plot for the gene set of dendrite. Y-axis: the value of the rankingmetric;
X-axis: the rank for all genes. Bottom: plot of the ranked list of all genes. ∗, P< 0.05; ∗∗, P< 0.01; ∗∗∗, P< 0.001; ∗∗∗∗, P< 0.0001; ns, not
significant.
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we determined prognostic eRNA and its target genes in
HNSCC. We found that m6A and long noncoding lncRNAs
were significantly associated with HNSCC patient survival.
In HNSCC, m6A is related to the abnormal expression of
other immune checkpoints (antigen presence, ligand, re-
ceptors, co-inhibitors, co-stimulators, and cell adhesion).
+e extent of discordance was an unanticipated result given
there is usually significant collinearity between various
adverse prognostic factors. However, this assessment fails to
account for within-group heterogeneity and highlights the
importance of also using objective measures of model
performance when developing and validating risk score.
Although we found risk score to be the better predictor of
disease-specific survival than the age, the performance was
modest at best with an AUC value of 0.65.

+e immune microenvironment of HNSCC is charac-
terized by immune cell populations, immune checkpoints,
and changes in tumor or microenvironmental factors that
are conducive to immune suppression. As a result, the tumor
evades and escapes host immune surveillance [29]. In-
flammation response is an essential component of the tumor
microenvironment [30]. Increasing evidence has shown that
immune cell dysfunction in HNSC-TME promotes immune
suppression, thereby enhancing tumor survival and pro-
gression [31, 32]. Our analysis showed that the density of
CD4+ T cells, CD8+ T cells, plasma cells, and M1 macro-
phages, along with higher immune scores, were associated
with patient prognosis, consistent with previous studies [33].
+e preexisting immune response has antitumor effects and
positively affects response to immunotherapy. Some
groundbreaking clinical and genomic studies have reported
that HNSCC is a tumor with a high degree of immune cell
infiltration [34–36]. However, less than 20% of patients with
HNSC responded to immunotherapy, fewer than patients
with other tumor types that have lower immunoinvasion
rates [37]. +is pattern suggests that even immunopheno-
types in tumors cannot fully predict response to immuno-
therapy. Molecular analysis of HNSC identified a series of
cytokines and chemokines that determine the host’s ability
to form an antitumor immune response. During tumori-
genesis, these molecular changes may interfere with inter-
cellular communication between infiltrating immune cells,
thus destroying the balance between immune tolerance and
activity [38]. +e high-risk-score group tended to correlate
with more immune infiltrating cells, such as macrophages
and fibroblasts. +e high-risk-score group also expressed
more immune checkpoint molecules including PDCD1 and
chemokines CCL-5, CXCL10, and CXCL9 [39]. Our results
showed that higher risk scores were associated with lower
numbers of immune cells, including naı̈ve B cells, B-cell
membranes, T cells, follicular helper T cells, NK cells,
memory B cells, CD4 T cells, and CD8 T cells.

In conclusion, HNSCC exhibits significantly abnormal
lncRNAs that negatively affect survival. +e m6A gene
differed significantly between high and low risk scores in the
clinical model, suggesting that it can be used as a prognostic
marker for HNSCC. Patients with higher risk scores have
inactivated immune cells and abnormal expression of im-
mune checkpoints. High-risk lncRNAs may interfere with

m6A expression in HNSCC, altering the immune system and
endangering patients.
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