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Background. An increasing number of studies have indicated a close link between DNA methylation and tumor metabolism.
However, the overall influence of DNAmethylation on tumor metabolic characteristics in prostate cancer (PCa) remains unclear.
Methods. We first explored the subtypes of DNA methylation modification regulators and tumor metabolic features of 1,205 PCa
samples using clustering analysis and gene set variation analysis based on the mRNA levels of DNA methylation modification
regulators. A DNA methylation-related score (DMS) was calculated using principal component analysis and the DNA meth-
ylation modification-related gene signatures to quantify DNA methylation characteristics. We then performed a meta-analysis to
identify the hazard ratio of DMS in the six cohorts. In addition, a nomogram was drawn using univariate and multivariate Cox
analyses based on the DMS and clinical variables. Finally, a drug sensitivity analysis of the DMS was performed based on the
genomics of drug sensitivity in cancer datasets. Results. 2ree PCa clusters showing different DNA methylation modification
patterns and tumor metabolic features were identified. A DMS system was established to quantify the characteristics of DNA
methylation modification. PCa samples showed a differential metabolic landscape between the high and low DMS groups. 2e
prognostic value of the DMS and nomogram was independently validated in multiple cohorts. A high DMS was associated with
increases in the tumor mutation burden, copy number variation, and microsatellite instability; high tumor heterogeneity; and
poor prognosis. Finally, DMS was closely related to different types of antitumor treatment. Conclusion. Improving the un-
derstanding of tumor metabolism by characterizing DNA methylation modification patterns and using the DMS may help
clinicians predict prognosis and aid in more personalized antitumor therapy strategies for PCa.

1. Introduction

DNA methylation is one of the earliest discovered and most
widespread epigenetic modifications in cells [1]. Among the
major forms of DNAmethylation in humans is 5mC, which
occurs when DNA within CpG nucleotides is methylated at
the fifth carbon atom of cytosine residues [2]. Prostate
cancer (PCa) is the most common cancer in men [3]. Al-
though major efforts have been devoted to improving the
treatment of PCa, effective individualized therapeutic
strategies require further analysis [4]. Several genes with
essential roles in the initiation and progression of PCa have

been reported to be regulated by promoter hyper-
methylation or hypomethylation. For example, cyclin-de-
pendent kinase inhibitor 2A (CDKN24) is a suppressor gene
that encodes the protein p16 and affects the cell cycle and
hypermethylation in PCa [5, 6]. Decoy receptors 1 and 2,
which are associated with cell apoptosis, maintain an ab-
normal DNA methylation status and promote the pro-
gression of PCa [7].

Cell development and multiplication are driven by en-
ergymetabolism. Based on the infinite proliferation ability of
tumor cells, the initiation and growth of tumors are closely
associated with the transformation of cell metabolic states
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[8]. Recent studies showed that the mechanism of PCa
emergence is related to tumor metabolism, including citric
acid and choline metabolism [9]. Some studies indicated that
tumor metabolism associated with the androgen receptor
(AR) leads to the occurrence and castration resistance of PCa
[10, 11]. 2us, it may be possible to prevent the transfor-
mation to PCa by inhibiting these metabolic pathways.
Studies are needed to explore tumor heterogeneity and the
mechanism underlying metabolism in PCa.

Recent studies revealed that many key genes involved in
tumor metabolism can be regulated by DNA methylation to
promote tumor progression [12]. For example, DNA
methylation can inhibit the expression ofMCT1 and impact
glycolysis to render cells vulnerable toMCT4 inhibition [13].
However, the overall impact of all DNA methylation reg-
ulators on tumor metabolism in PCa is unclear.

In this study, we collected 1,205 patients from six in-
dependent PCa cohorts and divided them into training and
validation cohorts. We then performed unsupervised clus-
tering based on DNA methylation modification (DMM)
regulators and identified three DMMpatterns in the training
cohort. Because of the impact of upstream gene regulation
based on the genomic context, we selected biomarkers that
regulate DNA methylation rather than those that perform
DNAmethylation. Using single-sample gene set enrichment
analysis (ssGSEA) based on metabolic pathways, we iden-
tified three DMM patterns and DMM-related gene clusters
with different tumor metabolic characteristics and prog-
noses. Finally, we constructed a DNA methylation-related
score (DMS) system to quantify DNA methylation char-
acteristics. 2rough independent validation and meta-
analysis, the DMS and nomogram based on the DMS can
efficiently predict disease-free survival (DFS) in patients with
PCa.

2. Materials and Methods

2.1.CollectionofPCaDatasets. 2eworkflow for this study is
shown in Figure S1A. We collected data on PCa samples
from the cBioPortal, Gene Expression Omnibus (GEO), and
2e Cancer Genome Atlas (TCGA) databases. First, we
calculated the average mRNA expression data in multiple
samples from the same patients. For prognostic analysis, we
excluded patients without DFS information. We also col-
lected six PCa cohorts (MSKCC, DKFZ, GSE116918,
GSE54460, GSE70768, and TCGA) containing a total of
1,205 patients for calculation and analysis. For the TCGA
prostate adenocarcinoma (PRAD) cohort, RNA sequencing
data (fragments per kilobase transcript per million mapped
reads [FPKM] values), clinical information, and DNA
methylation data (450k methylation microarrays) were
obtained from the Genomic Data Commons Data Portal
(https://portal.gdc.cancer.gov). 2e MSKCC and DKFZ
datasets were downloaded from cBioPortal for Cancer
Genomics (http://www.cbioportal.org/); GSE54460,
GSE70768, and GSE116918 were obtained from GEO
(https://www.ncbi.nlm.nih.gov/geo/). 2e FPKM values
were transformed into transcripts per kilobase million
(TPM) values and log2(n+1) which was more consistent

with the microarray data. Somatic mutation and copy
number variation data of TCGA PRAD cohort were ob-
tained from the University of California Santa Cruz (UCSC)
Xena browser (https://xenabrowser.net). To validate our
results in an independent cohort, we first combined the
GSE54460, GSE70768, GSE116918, MSKCC, and DKFZ
cohorts into one group which was designated as a meta
(training) cohort to explore the characteristics of DNA
methylation subtypes and construct the DMS. Using the R
package sva, the “ComBat” algorithm was employed to
remove batch effects (Figures S1B and S1C) [14]. We then
used the TCGA PRAD cohort as the testing cohort to
evaluate the prognostic value of the DMS and nomogram.
All clinical information of the six PCa cohorts is presented in
Table S1.

2.2. Unsupervised Clustering Analysis. To extract the char-
acteristics of mRNA expression data and verify the DMM
patterns and DMM-related gene clusters, we performed
unsupervised clustering methods based on 20 DMM regu-
lators and DMM-related genes in the meta cohort. 2e
Partitioning Around Medoidclustering algorithm was ap-
plied and repeated 1,000 times using the R package Con-
sensusClusterPlus to ensure the stability of subtype analysis
[15].

2.3. Single SampleGene Set EnrichmentAnalysis. To quantify
the activity level of each biological pathway, the R package
GSVA was used to calculate the ssGSEA score for each
sample [16]. Metabolic, immune-related, and tumor mi-
croenvironment-related gene signatures (epithelial-mesen-
chymal transition [EMT], extracellular matrix [ECM], and
transforming growth factor-β [TGF-β]) used for ssGSEA
were collected from the Molecular Signatures Database
(MSigDB; http://www.gsea-msigdb.org/gsea/msigdb/)
(Table S2) [17].

2.4. Differentially Expressed Gene Analysis. Differentially
expressed genes (DEGs) between three DMM patterns with
adjusted P value <0.001 were selected using the R package
limma as DMM-related genes for further analysis [18].

2.5. Construction of DMS and Nomogram. We performed
further statistical analysis of the prognostic DMM-related
genes by performing univariate Cox regression analysis on
2259 DEGs, and 337 DMM-related genes associated with
DFS were selected for further analysis. To quantify the
characteristics of DNA methylation modification, we per-
formed principal component analysis (PCA) of the meta
cohort to generate a DMS system. PC1 and PC2 were
extracted to calculate the DMS as shown in the equation
below. 2e advantage of this approach is that it concentrates
the score on the largest set of highly correlated (or unrelated)
gene blocks in the set while downweighting the contribution
of genes that are not tracked by other set members [19, 20].

DMS�Σ(PC1i−PC2i), where i is the expression of 337
prognostic DMM-related genes. 2e correlation between
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clinical variates, DMM regulators, DMS, and DFS of patients
with PCa was analyzed by performing univariate analysis.
2e prognostic model and nomogram were constructed
using multivariate Cox regression analysis. Kaplan–Meier
(K-M) survival curves were used for prognostic analysis, and
log-rank tests were performed to calculate P values. To test
the precision of the risk model and nomogram, time-de-
pendent receiver operating characteristic (ROC) analysis
was performed using the R package survival ROC 1.0.3. An
area under the ROC curve >0.60 indicates that the prediction
ability of the model was meaningful, whereas a value of
>0.75 indicates an outstanding predictive value of themodel.
2e C-index was calculated using the R package pec. De-
cision curve analysis was performed using the R package
ggDCA.

2.6. Gene Ontology and Kyoto Encyclopedia of Genes and
Genomes Functional Enrichment Analysis. DEGs between
the high and low DMS groups were ranked according to
their logFC values. 2e top 1,000 DEGs were selected for
subsequent analyses. Gene ontology (GO) and Kyoto En-
cyclopedia of Genes and Genomes (KEGG) analysis were
performed to identify enriched GO and KEGG pathways of
selected genes using the R package clusterProfiler with a
cutoff of P value< 0.05 [21].

2.7. Statistical Analysis. Unpaired Student’s t-test was used
to compare two groups with normally distributed variables
whereas the Mann–WhitneyU test was used to compare two
groups with nonnormally distributed variables. To compare
the three groups, one-way analysis and Kruskal–Wallis tests
of variance were used as parametric and nonparametric
methods, respectively. Contingency table variables were
analyzed using the chi-square test or Fisher’s exact test. A
combined analysis of the hazard ratio of DMS between the
six cohorts was performed by meta-analysis (fixed-effect
model). Fisher’s exact test was used to calculate the differ-
ence for contingency table variables, and the correlation
coefficient of two variables was obtained using Spearman’s
correlation analysis. Statistical significance was defined as a
two-tailed P value< 0.05. All statistical analyses were per-
formed using R software (version 3.6.3; 2e R Project for
Statistical Computing, Vienna, Austria).

3. Results

3.1. Multiomics Landscape of DNAMethylation Regulators in
PCa. Figure 1(a) presents the 20 DMM regulators we col-
lected from previous studies, including three erasers (TET1,
TET2, and TET3), three writers (DNMT1, DNMT3A, and
DNMT3B), and 14 readers (ZBTB33, ZBTB38, ZBTB4,
UHRF1, UHRF2, MBD1, MBD2, MBD3, MBD4, UNG,
MECP2, TDG, SMUG1, and NTHL1) [22–29]. We then
performed differential expression analysis of these DMM
regulators between paracancerous and PCa tissues in TCGA
PRAD cohort. DNMT3A, DNMT3B, MBD3, UHRF1, TDG,
NTHL1, SMUG1, and TET3 showed higher expression and
MBD1, ZBTB38, ZBTB4, UHRF2, MECP2, and TDG

showed lower expression in PCa samples than in normal
prostate samples (Wilcoxon test: P< 0.05), as shown in
Figure 1(b). To further evaluate these results, we compared
the DNA mutation rate, copy number variation (CNV), and
DNAmethylation of all regulators.2e overall mutation rate
was relatively low in the PCa genome (Figure 1(c)), and the
CNV rates of all regulators were less than 5%, except for that
of ZBTB4 (Figure 1(d)). However, the DNA methylation
levels of DNMT3A, DNMT3B, MBD1, MBD2, MBD3,
MBD4, ZBTB33, ZBTB38, ZBTB4, UHRF1, UHRF2,
MECP2, NTHL1, TET1, TET2, and TWT3 significantly
differed between paracancerous and PCa tissues (Wilcoxon
test: P< 0.05; Figure 1(e)). We also found that the meth-
ylation levels of ZBTB38, TDG, MBD1, SMUG1, DNMT3B,
TET2, MBD2, UHRF1, and ZBTB4 were negatively corre-
lated with the expression of these genes (Wilcoxon test:
P< 0.05; Figure S2A and Table S3). 2us, DNA methylation
may be an important driving factor leading to the aberrant
expression of these DMM regulators.

3.2. Prognosis Value of DMMRegulators. We next examined
the relationship between DMM regulators and DFS through
prognostic analysis of PCa. First, we collected data from
1,205 patients with DFS and other clinical information from
six independent cohorts (Table S1). We then divided these
patients into a training cohort (meta cohort) to determine
the characteristics of the DNA methylation and a testing
cohort (TCGA PRAD cohort) to validate our conclusion.
Univariate Cox regression and K-M survival analysis were
used to analyze 20 DMM regulators in the meta and TCGA
PRAD cohort, which showed that DNMT3B, UHRF1, UNG,
DNMT1, DNMT3A, MBD4, ZBTB38, MBD3, SMUG1,
UHRF2, TDG, NTHL1, TET1, ZBTB4, and ZBTB33 were
closely related to the DFS of patients with PCa (log-rank test:
P< 0.05; Table S4). Figures 1(f ) and S2B present the cor-
relation and prognostic value of these regulators in a net-
work plot.

3.3. Identification of DMM Patterns. As DMM regulators
can impact the prognosis and tumor heterogeneity of
patients with PCa, we further investigated potential DNA
methylation modification regulator subtypes and features.
Clustering analysis based on the expression level of 20
DMM regulators showed that the PCa meta cohort had the
best clustering efficiency of the three DMM patterns
(Figures 2(a) and S3A–S3H). Consequently, patients in the
meta cohort were classified into three patterns: DMM
pattern A (n� 156), DMM pattern B (n� 196), and DMM
pattern C (n � 329). We first compared the expression levels
of the regulators between the three DMM pattern groups
and found significant differences in TET1, TET2, TET3,
DNMT3A, DNMT3B, ZBTB33, ZBTB38, ZBTB4, UHRF1,
UHRF2, MBD1, MBD3, MBD4, UNG, MECP2, TDG,
SMUG1, and NTHL1 expression levels (Wilcoxon test:
P< 0.05; Figure 2(b)). PCA based on the expression
abundance of 20 DMM regulators showed that these three
patterns were significantly separated, indicating that they
were well-differentiated (Figure S3I). K-M survival curve
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Figure 1: Continued.
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analysis revealed that DMM pattern C was associated with a
significantly longer DFS (log-rank test: P< 0.05;
Figure 2(c)). To further identify the biological character-
istics of each pattern, we quantified and compared the
signaling pathways between the three DMM patterns and
found that the activity levels of many metabolic pathways
were significantly different between the three DMM pat-
terns, suggesting that the metabolic status of PCa samples is
regulated by DNA methylation (Wilcoxon test: P< 0.05;
Figure 2(d) and Table S5). Finally, we performed a dif-
ferential analysis of all metabolic pathways collected from

KEGG and MSigBD between the three DMM patterns. 2e
activity levels of 31/41 of these pathways were significantly
different, further supporting our hypothesis (Wilcoxon
test: P< 0.05; Figure 2(e)). 2ese results indicate that DNA
methylation plays an important role in the tumor meta-
bolism-associated mechanism of PCa. In addition, we
explored the correlation between the expression of DMM
regulators and tumor metabolic ssGSEA scores; the heat
map indicated that almost all DMM regulators were closely
related to the tumor metabolic status in both the meta and
TCGA PRAD cohort (Figure S4).
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Figure 2: Consensus clustering of meta cohort. (a) Unsupervised clustering of 20 DMM regulators in the meta cohort. Red represents high
expression, and blue represents low expression. 2e PCa cohorts and DNA methylation patterns were used as sample annotations. (b)
Boxplot of 20 DMM regulators for three DMMpatterns in the meta cohort. (c) Kaplan–Meier curves for the three DMMpatterns of patients.
2e log-rank test showed an overall P � 0.008. (d) 2e volcano plot of differential analysis based on ssGSEA and metabolic pathways
between three DMM patterns in the meta cohort (only display top 10 -log10 (P value) metabolic pathways). (e) Boxplot of ssGSEA scores of
41 metabolic pathways for three DMM patterns in the meta cohort. ∗P< 0.05, ∗∗P< 0.01, and ∗∗∗P< 0.001.

6 Journal of Oncology



3.4. Features of DMM-Related Gene Clusters and Establish-
ment ofDMS. To identify the heterogeneity and biomarkers
of each pattern, we detected DEGs among DMM patterns
through differential analysis. A total of 2,259 DNA DMM-
related genes were selected from the meta cohort (P< 0.001;
Figure 3(a) and Table S6). Univariate Cox regression
analysis based on the meta-cohort confirmed that 337
DMM-related genes were associated with the DFS of pa-
tients with PCa (Table S7; univariate cox: P< 0.001). We
also detected three DMM-related gene clusters based on the
expression characteristics of these 337 genes using unsu-
pervised cluster analysis (Figure 3(b) and
Figures S5A–S5H).

Moreover, we compared the DFS of patients with PCa
from different DMM-related gene clusters using K-M
survival analysis. Patients in DMM-related gene cluster C
had a longer DFS and better prognosis than those in
DMM-related gene clusters A and B (log-rank test,
P< 0.001; Figure 3(c)). We also found significant differ-
ences in the expression abundance of regulators, and 35/
41 of the active levels of these pathways were significantly
different between the three clusters (Wilcoxon test:
P< 0.05; Figures 3(d) and 3(e)). 2e metabolic heat map of
the PCa samples showed that each gene cluster had unique
metabolic characteristics (Figure S6A). DMM-related
gene cluster A showed elevated metabolic pathways, in-
cluding pyrimidine, fructose and mannose, glycine, serine
and threonine, tyrosine, glycerophospholipid, arachi-
donic acid, linoleic acid, alpha-linolenic acid, porphyrin
and chlorophyll, sulfur, and other enzymes (drug) and
exhibited the worst prognosis. 2erefore, these pathways
may be regulated by DNA methylation and promote PCa
progression. In contrast, gene cluster C, with high active
levels of fatty acid, ascorbate and aldarate, cysteine and
methionine, histidine, tryptophan, beta-alanine, sele-
noamino acid, glutathione, starch and sucrose, pyruvate,
propanoate, butanoate, cytochrome p450 (xenobiotics),
and cytochrome p450 (drug) metabolic pathways showed
the best prognosis, suggesting that these pathways sup-
press PCa progression. In addition, DMM-related gene
cluster B is an intermediate metabolic subtype between
DMM-related gene clusters A and C and had a medium
prognosis. 2ese findings demonstrate that DNA meth-
ylation is the source of tumor heterogeneity, leading to
tumor metabolism disorders.

To identify a quantitative biomarker of DNA methyl-
ation modification in PCa samples, we used the PCA al-
gorithm to calculate the DMS, which is the value of PCA2
minus PCA1 from prognostic DMM-related genes
(Figure 4(a) and Table S8). Differential analysis of DMS
between different DMM patterns and DMM-related gene
clusters indicated that DMS can describe the DNA
methylation characteristics in PCa samples (Wilcoxon test:
P< 0.05, Figures 4(b) and 4(c)). 2e distribution of patients
in the meta cohort in the three patterns and three DMM-
related gene clusters is shown in Figure 4(d). Finally, the
GO and KEGG gene function enrichment analysis of DEGs
between the high and low DMS groups divided by the
median DMS (DMS� 106.32) in the meta cohort also

indicated that DMS is related to carbon, pyruvate, prop-
anoate, cysteine and methionine, and amino sugar and
nucleotide sugar metabolisms (P< 0.05; Figure 4(e) and
Table S9).

3.5. Relationship between DMS, DMM Regulators, DNA
Methylation Level, and Metabolic Status of PCa Samples.
To explore the relationship between DMS and DMM reg-
ulators, we calculated the coefficient between the DMS and
DMM regulators and compared the expression levels of
these regulators between the high and low DMS groups
(Figures 4(f) and 4(g)). 2e results suggest that DMS is
closely associated with the expression of TDG, MBD4,
ZBTB33, NTHL1, ZBTB38, TET1, TET2, MBD3, SMUG1,
DNMT3B, UHRF2, and UHRF1 (Spearman: correlation
>0.3 and P< 0.05; Wilcoxon test: P< 0.05).

We also obtained TCGA PRAD 450K data. First, we
calculated the DMS of TCGA PRAD cohort samples and
divided these samples into high and low DMS groups based
on the median DMS (DMS � 72.10). Unsupervised clus-
tering (single-center method) was performed based on the
500 genes showing the most variable DNA methylation
levels in turn based on DNA methylation characteristics.
Remarkably, the heat map indicated that the characteristics
of DNA methylation were closely associated with the DMS
(Figure S6B). We then compared the average DNA
methylation levels of the top 500 genes between the high
and low DMS groups and the coefficient between the av-
erage DNA methylation level and the DMS. 2e low DMS
group had a higher DNA methylation level than the high
DMS group, confirming that the DMS accurately reflected
the DNA methylation status of PCa samples (Wilcoxon
test: P< 0.05; Spearman correlation: P< 0.05; Figures S6C
and S6D).

To verify the biological functions associated with DMS, we
selected the significant differential ssGSEA scores of KEGG
pathways and observed significant differences in the ssGSEA
scores of metabolic pathways, including propanoate, arachi-
donic acid, fatty acid, sulfur, linoleic acid, riboflavin, alpha-
linoleic acid, and 30/41 metabolic pathways (Wilcoxon test:
P< 0.05; Figures 5(a) and 5(b), and Table S10). 2erefore, we
further explored the relationship between the DMS and tumor
metabolic status. 2e activity levels of the metabolic pathways
of fructose and mannose, pyrimidine, glycine, serine and
threonine, tyrosine, phenylalanine, glycerolipid, glycer-
ophospholipid, arachidonic acid, linoleic acid, alpha-linolenic
acid, porphyrin and chlorophyll, sulfur, and other enzymes
(drug) were positively correlated with the DMS and are
considered to promote cancer factors. In contrast, the activity
levels of ascorbate_and_aldarate, fatty_acid, cys-
teine_and_methionine, arginine_and_proline, histidine, tryp-
tophan, beta_alanine, selenoamino_acid, glutathione,
starch_and_sucrose, amino_sugar_and_nucleotide_sugar,
sphingolipid, pyruvate, glyoxylate_and_dicarboxylate, prop-
anoate, butanoate, riboflavin, xen-
obiotics_by_cytochrome_p450, and cytochrome_p450(drug)
metabolic pathways were negatively correlated with the DMS
and are considered to suppress cancer factors (Figure 5(c)).
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Figure 3: Transcriptomic and metabolic characteristics of the DMM-related gene cluster. (a) Venn diagram depicting 2259 differentially
expressed genes in three DMM patterns. (b) Unsupervised clustering of 337 prognostic DMM-related genes in the meta cohort. Red
represents high expression, and blue represents low expression. 2e PCa cohorts and DMM-related genes clusters were used as sample
annotations. (c) Kaplan–Meier curves for the three DMM-related genes clusters of patients. 2e log-rank test showed an overall P< 0.001.
(d) Boxplot of 20 DMM regulators for three DMM-related genes clusters in the meta cohort. (e) Boxplot of ssGSEA scores of 41 metabolic
pathways for three DMM-related gene clusters in the meta cohort. ∗P< 0.05, ∗∗P< 0.01, and ∗∗∗P< 0.001.
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Figure 4: 2e relationship between DNA methylation and DMS. (a) Principal component analysis (PCA) based on 337 prognostic DMM-
related gene expression. (b) Boxplot of DMS for three DMM patterns in the meta cohort. (c) Boxplot of DMS for three DMM-related gene
clusters in the meta cohort. (d) Alluvial diagram of DMM patterns and DMM-related gene clusters distribution in groups with different
DMS and survival outcomes (R represent recurrent and NR represent no recurrence). (e) KEGG analysis of DMS inmeta cohorts (red line to
mark the metabolic pathways). (f ) 2e correlation network between 20 DMM regulators and DMS. (g) Boxplot of 20 DMM regulators for
high and low DMS groups in meta cohort. ∗P< 0.05, ∗∗P< 0.01, and ∗∗∗P< 0.001.
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3.6. Validation of Prognostic Value of DMS and Construction
of Nomogram. After determining the correlation between
the DMS and metabolic status, we next verified the prog-
nostic value of the DMS by performing KM survival curve
analysis. 2e results suggested that patients in the low DMS
group had a longer DFS time in the meta cohort (log-rank
test: P< 0.001; Figure 6(a)). We then validated the

prognostic value in the TCGA PRAD cohort (log-rank test:
P< 0.001; Figure 6(b)). ROC analysis also indicated that the
DMS predicted values in both the meta and TCGA PRAD
cohorts and can predict DFS at 1, 3, and 5 years (Figures 6(c)
and 6(d)). We validated the prognostic value of the DMS in
each cohort in the meta cohort. 2e results were consistent
with those of meta-analysis, and the low DMS group had a
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Figure 5: 2e relationship between DMS and tumor metabolism. (a) 2e volcano plot of differential analysis based on ssGSEA and KEGG
pathways between low and high DMS groups in the meta cohort (only display top 10 -log10 (P value) metabolic pathways). (b)2e heat map
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prolonged DFS in the GSE54460 (log-rank test: P< 0.001),
GSE70768 (log-rank test: P � 0.021), GSE116918 (log-rank
test: P � 0.013), DKFZ (log-rank test: P � 0.159), and
MSKCC (log-rank test: P � 0.068) cohorts
(Figures S7A–S7E). A possible reason that the P values of the
DKFZ and MSKCC cohorts were greater than 0.05 is the
small sample size. To determine the predictive value of the
DMS in PCa, we performed univariate Cox analysis and
meta-analysis to calculate the hazard ratio (HR) in six
datasets (HR� 1.10; Figure 6(e)). 2e results also indicated
that the DMS is a reliable prognostic marker.

2is result was further examined by performing risk
stratification analysis between the DMS and clinical factors,
including age, Gleason score, and T stage, in both the meta
and TCGA PRAD cohorts (Figures S8 and S9). 2e results
confirmed that DMS is an independent prognostic bio-
marker with clinical factors and can accurately predict the
DFS in patients with PCa. To improve the predictive value of
DMS, we selected clinical variables with independent
prognostic value to obtain a nomogram through univariate
and multivariate Cox analysis in the meta cohort (P< 0.05;
Figure 6(f ) and Table S11). We used C-index calculation,
ROC analysis, and decision curve analysis to assess the
clinical significance of DMS, clinical variate, and nomogram.
Superior results were observed for the DMS as a more ac-
curate and reliable prognostic biomarker compared to
clinical variates, whereas the nomogram had a better net
benefit than the clinical variate or DMS-only models
(Figures 6(g) and S10A–S10F). Furthermore, to indepen-
dently validate the predictive value of the nomogram, we
calculated the total points of each sample in the TCGA
PRAD cohort and performed ROC and K-M survival curve
analysis. 2e nomogram was found to predict the DFS of
patients with PCa in both the meta and TCGA PRAD co-
horts (Figures 6(h)–6(i), and Figures S10G and S10H).

3.7. Relationship between DMS, Tumor Mutation Burden,
Microsatellite Instability, and Tumor Microenvironment.
In previous studies, the tumor mutation burden (TMB) has
been reported to reflect tumor heterogeneity [30]. Because
nuclear excision repair showed functional enrichment for the
DMS and to further examine the relationship between PCa
tumor heterogeneity and DMS, we compared the TMB be-
tween the high and low DMS groups in the TCGA PRAD
cohort. We found that tumors in the high DMS group had
higher mutation counts than those in the low DMS group
(Wilcoxon test: P< 0.001; Figure 7(a)). 2is further indicated
that tumors in the high DMS group had greater heterogeneity
than those in the low DMS group. We explored the rela-
tionship between the TMB, DMS, and DFS in prognosis by
comparing the DFS between patients with a high and low
TMB and found that patients with a high TMB had a shorter
DFS than those with a low TMB (log-rank test: P< 0.001,
Figure 7(b)). We further compared the DFS of high and low
DMS groups in the high and low TMB groups. In the high or
low TMB group, patients in the high DMS group had a
shorter DFS than those in the lowDMS group, suggesting that
DMS is an independent prognostic factor for the TMB (log-
rank test: P< 0.001; Figure 7(c)). We also generated a gene
mutation landscape using a waterfall plot of the top 20 genes
and found that the mutation rate of SPOPwas higher and that
of TTN was lower in the high DMS group (P< 0.05;
Figure 7(d) and Table 1). Based on these results, DMS was
clearly associated with DNA mutation in SPOP and TTN.

Copy number variations (CNVs) occurring upstream of
genes regulate gene expression and influence tumor oc-
currence and development [31]. To explore whether this
DNA element influences the DMS, we analyzed the number
of amplifications and deletions as CNVs in DNA methyl-
ation regulator pattern-related prognostic genes. 2e
number of CNV amplifications and deletions was higher in
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Figure 6:2e prognostic value of DMS. (a) Kaplan–Meier curves for low and highDMS groups in themeta cohort. Log-rank test,P< 0.001. (b)
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the high DMS group than in the low DMS group (Wilcoxon
test: P< 0.001; Figures 7(e) and 7(f)), indicating that CNV is
an important factor leading to DNA methylation disorders.

Microsatellite instability (MSI) is also a crucial indicator
of genome instability associated with tumor heterogeneity
[32]. We obtained theMSI data of each PRAD sample from a
previous study and performed correlation analysis [33]. 2e
results suggest that the high DMS group had a higher level of
MSI compared to the low DMS group (Wilcoxon test:
P< 0.001; Figure 7(g)), suggesting that MSI also interferes
with DNA methylation.

2e tumor microenvironment, including both stromal
and immune cells, can impact the occurrence and pro-
gression of PCa. To explore the characteristics of PCa in the
high/low DMS groups, we first calculated ssGSEA scores for
EMT, ECM, and TGF-β using the corresponding gene sets
(Table S2). Differential analysis of these ssGSEA scores
indicated that high DMS tumors had higher ECM and lower
TGF-β scores than low DMS tumors (Figure S11A).We then
performed correlation analysis between immunologic
ssGSEA scores and DMS, which revealed that the DMS was
closely related to several immune pathways (Figure S11B).
2erefore, DNA methylation may also be a crucial factor in
immune disorders related to PCa.

3.8. Predictive Value of DMS in Antitumor :erapy. For
metastatic and recurrent prostate cancer, androgen depri-
vation therapy is the main treatment strategy and can sig-
nificantly improve prognosis [34]. Based on this
information, we first analyzed the relationship between the
DMS and drug sensitivity of bicalutamide via meta-analysis.
2e results suggested a positive correlation between the
DMS and half maximal inhibitory concentration (IC50) of
bicalutamide, and tumor samples in the high DMS group
had a higher IC50 on for bicalutamide compared to the low
DMS group (Wilcoxon test, P< 0.001; Figures 8(a) and
8(b)). We then predicted the drug sensitivity to cisplatin,
docetaxel, doxorubicin, and paclitaxel, which are common
antitumor drugs used for PCa. 2e results shown in
Figures 8(a) and 8(b) indicate that the DMS had predictive
value for these drugs.

Immune therapy is the most widely used treatment for
many cancers, and its effect is associated with the expression

0

10

20

50 60

High
Low

70 80 90
DMS

A
m

pl
ifi

ca
tio

n

P<0.001

R = 0.21, p = 5.3e−06

DMS

(e)

0

10

20

30

40

50 60

High
Low

70 80 90
DMS

D
el

et
io

n
DMS

P<0.001

R = 0.28, p = 4.4e−10

(f )

0.3

0.4

0.5

50 60

High
Low

70 80 90
DMS

M
SI

DMS

P<0.001

R = 0.17, p = 0.00012

(g)

Figure 7: 2e relationship between DMS and somatic variants. (a) TMB difference in the high and low DMS groups in the TCGA cohort.
Wilcoxon test, P< 0.001. (b) Kaplan–Meier curves for high and low TMB groups in the TCGA cohort. Log-rank test, P< 0.0011. (c)
Kaplan–Meier curves for patients stratified by both TMB and DMS in the TCGA cohort. Log-rank test, P< 0.001. (d) 2e oncoPrint was
constructed using a high DMS group on the left and a lowDMS group on the right. Individual patients are represented in each column in the
TCGA cohort. (e)2e correlation between DMS and CNV (amplification) in the TCGA cohort. (f ) 2e correlation between DMS and CNV
(deletion) in the TCGA cohort. (g) 2e correlation between DMS and MSI in the TCGA cohort.

Table 1: Association of DMS with somatic variants.

Gene symbol High DMS (%) Low DMS (%) P value
SPOP 44 (19%) 2 (1%) P< 0.0001
TP53 12 (5%) 38 (16%) P � 0.0001
TTN 12 (5%) 29 (12%) P � 0.0084
CSMD1 1 (0%) 8 (3%) P � 0.0347
KMT2D 16 (7%) 7 (3%) P � 0.0554
FAT3 2 (1%) 9 (4%) P � 0.0625
LRP1B 4 (2%) 10 (10%) P � 0.1734
FOXA1 14 (6%) 8 (3%) P � 0.1952
SYNE1 5 (2%) 11 (5%) P � 0.2027
PTEN 5 (2%) 11 (5%) P � 0.2027
MUC17 3 (1%) 8 (3%) P � 0.2213
CSMD3 5 (2%) 9 (4) P � 0.4172
MUC16 7 (3%) 11 (5%) P � 0.4724
OBSCN 4 (2%) 7 (3%) P � 0.5442
USH2A 4 (2%) 7 (3%) P � 0.5442
HMCN1 7 (3%) 5 (2%) P � 0.5725
ATM 6 (3%) 9 (4%) P � 0.6016
SPTA1 7 (3%) 9 (4%) P � 0.8004
KMT2C 9 (4%) 10 (4%) P> 0.9999
RYR2 6 (3%) 7 (3%) P> 0.9999
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of checkpoint genes [35]. Although PCa is an immune desert
tumor, some studies have suggested the usefulness of im-
munotherapy for PCa [36, 37]. 2erefore, we compared the
expression levels of checkpoint genes between the two
groups. 2e high DMS group showed higher expression
levels of CD276, CD4, IL1A, LAG3A, PDCD1, TGFB1,
CTLA4, CD8A, PRF1, and TNF and lower expression levels
of CD274, CXCR4, CXCL10, and CXCL9 compared to the
low DMS group (Wilcoxon test: P< 0.05; Figure S11C). 2e
high expression level of checkpoint genes may explain the
worse prognosis in the high DMS group, and patients in the
high DMS group may benefit more from immune therapy
than those in the low DMS group.

4. Discussion

With the development of molecular biology and oncology,
increasing evidence has shown that DNA methylation can
significantly influence tumor metabolism and cancer pro-
gression [38]. However, the overall spectrum of the regu-
latory patterns of DNA methylation and its influence on
tumor metabolism in PCa remain unclear. It has been shown
that the link between different DMM patterns and tumor
metabolic status in PCa can promote the recognition of
tumor pathology and be used to improve the efficiency of
antitumor treatment.

In this study, we identified three DMM patterns with
unique metabolic characteristics via clustering analysis of
DMM regulator expression. PCa tissues showed significantly
different metabolic statuses between DNA methylation
regulator patterns. In addition, significantly different
prognoses were observed between the three patterns.

2e DEGs among these three DMM patterns were
identified as DMM-related genes and may be directly or

indirectly regulated by DNA methylation events. Similar to
the DMM patterns, we found that three DMM-related gene
clusters correlated with alterations in tumor metabolism were
identified by these DMM-related genes. 2is is indicative of
three different metabolic clusters in PCa. As pattern A and
gene cluster A had the shortest DFS, the metabolic pathways
activated in pattern A and gene cluster A, which are fruc-
tose_and_mannose, glycine_serine_and_threonine, tyrosine,
glycerophospholipid, arachidonic_acid, linoleic_acid,
alpha_linolenic_acid, porphyrin_and_chlorophyll, sulfur,
and other_enzymes_(drug), may promote the progression of
PCa, by altering metabolic pathways. Additionally, pattern C
and gene cluster C were associated with the longest DFS and
best prognosis, and their activated metabolic pathways fat-
ty_acid, ascorbate_and_aldarate, cysteine_and_methionine,
histidine, tryptophan, beta_alanine, selenoamino_acid, glu-
tathione, starch_alanine, pyruvate, propanoate, butanoate,
and cytochrome_p450(drug) may suppress PCa progression.

Considering the heterogeneity of DNA methylation
modifications individually, it is necessary to quantify the
DNA methylation modification spectrum of each sample.
2erefore, we constructed a DMS system and validated it in
multiple PCa cohorts. To confirm that the DMS is associated
with DNA methylation characteristics, we conducted un-
supervised clustering using DNA methylation levels of the
top 500 genes with the greatest variation in PCa in the TCGA
PRAD cohort. Unexpectedly, there was a close correlation
between the DNA methylation status and DMS level (high/
low DMS group). Taken together, these findings reveal an
association between the transcriptome and DNAmethylome
and support that the DMS can represent the characteristics
of DNA methylation.

Moreover, to validate the prognostic value of DMS, we
performed hazard stratification and multivariate analysis
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Figure 8: 2e drug-sensitive analysis of DMS. (a) 2e heat map of the correlation between DMS and IC50 of antitumor drugs in the meta
cohort. (b) Boxplot of IC50 of antitumor drugs for low and high DMS cohorts in the meta cohort. ∗P< 0.05, ∗∗P< 0.01, and ∗∗∗P< 0.001.
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between the DMS, TMB, Gleason score, and clinical factors
in multiple PCa datasets. 2e results suggested that DMS is
an independent prognostic factor and can help improve
prognosis prediction in patients with PCa.

Finally, our results have clinical implications, as we
established a DMS system that can describe DNA methyl-
ation characteristics. 2e prognostic value of the DMS
system and nomogram based on clinical variables and DMS
was validated in multiple PCa cohorts. 2e DMS can also be
used to evaluate clinicopathological characteristics, such as
the TMB, CNV, MSI status, and SPOP and TTNmutation in
patients with PCa. In addition, DMS can predict the efficacy
of castration, androgen deprivation therapy, and
chemotherapy.

2is study had some limitations. First, the reaction rate
of the PCa antitumor therapy cohort was not accessible. 2e
predictive value of the DMS for antitumor therapy in PCa
must be further verified in further studies. Second, because
of batch effects, the DMS cannot be directly compared
between different cohorts without batch correction.

5. Conclusions

In summary, we explored three different metabolic subtypes
based on the characteristics of DNA methylation and
established a DMS system for PCa. DMS, which is associated
with the tumor metabolic status, TMB, CNV, and MSI, is an
efficient index for predicting DFS and therapeutic respon-
siveness and may help facilitate personalized antitumor
therapy for patients with PCa.
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Supplemental Figure 1: (A) overview of study design. (B)
Principal component analysis (PCA) of mRNA expression
data of sample from five cohorts before batch correction. (C)
Principal component analysis (PCA) of mRNA expression
data of sample from five cohorts after batch correction.
Supplemental Figure 2: (A) the volcano plot for correlation
analysis between DNA methylation and mRNA expression
of 20 DMM regulators. (B) Correlations and prognosis of
DMM regulators in PCa patients in TCGA PRAD cohort.
2e red line represents a positive correlation withP< 0.0001,
and the blue line represents a negative correlation with
P< 0.0001. 2e size of the node represents the p value of the
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DFS. Blue points represent risk factors for DFS. ∗P< 0.05,
∗∗P< 0.01, and ∗∗∗P< 0.001. Supplemental Figure 3: (A–H)
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consensus matrixes of PCa samples for each k (k� 2–7) from
meta cohort based on expression abundance of 20 DMM
regulators, displaying the clustering stability using 1000
iterations of hierarchical clustering. (H) Principal compo-
nent analysis (PCA) of meta cohort based on expression
abundance of 20 DMM regulators. Supplemental Figure 4:
the correlation between ssGSEA score of 41 metabolic
pathways and expression abundance of 20 DMM regulators
in meta cohort and TCGA cohort. Supplemental Figure 5:
(A–H) consensus matrixes of PCa samples for each k
(k� 2–7) from meta cohort based on expression abundance
of 337 DNA methylation-related prognostic genes, dis-
playing the clustering stability using 1000 iterations of hi-
erarchical clustering. Supplemental Figure 6: the
relationship between DMS, tumor metabolism, and DNA
methylation statue. (A) 2e heat map of the active level of
metabolic pathways for three DNA methylation gene
clusters in meta cohort. (B) 2e heat map of DNA meth-
ylation level (variance top 500 genes) for low and high DMS
group in TCGA cohort. (C) Boxplot of average DNA
methylation level (variance top 500 genes) for low and high
DMS groups in the TCGA cohort, P< 0.001. (D) 2e cor-
relation between DMS and average DNA methylation level
(variance top 500 genes) in TCGA cohort. Supplemental
Figure 7: Kaplan–Meier curves for the low/high DMS groups
in DKFZ cohort (A), GSE54460 cohort (B), GSE70768 (C),
GSE116918 (D), and MSKCC (E). Supplemental Figure 8:
hazard stratification analysis in meta cohort. age≥ 60 (A),
<60 (B), Gleason score>7 (C), Gleason score≤ 7 (D), T1-T2
(E), and T3-T4 (F). Supplemental Figure 9: hazard strati-
fication analysis in TCGA cohort. Age≥ 60 (A), <60 (B),
Gleason score>7 (C), Gleason score≤ 7 (D), T1-T2 (E), and
T3-T4 (F). Supplemental Figure 10: the predict value of
nomogram.2e ROC analysis for nomogram in 1 year (A), 3
years (B), and 5 years (C). 2e DCA for nomogram in 1 year
(D), 3 years (E), and 5 years (F). Kaplan–Meier curves for the
low/high total points groups in meta (training) (G) cohort
and TCGA (validation) (H) cohort. Supplemental Figure 11:
the relationship between DMS and TME. (A) Boxplot of
ssGSEA score of EMT, ECM, and TGF-β for low and high
DMS groups in the meta cohort. (B) 2e heat map of the
correlation between DMS and ssGSEA scores of immune
pathways in meta cohort. (C) Boxplot of ssGSEA score of
immune pathways for low and high DMS groups in the meta
cohort. ∗P< 0.05, ∗∗P< 0.01, and ∗∗∗P< 0.001. Supple-
mental Table 1: clinical information of PCa patients from six
cohorts. Supplemental Table 2: gene sets analyzed in the
article. Supplemental Table 3: correlation analysis between
DNA methylation and mRNA expression of 20 DMM
regulators. Supplemental Table 4: the univariate cox analysis
of 20 DMM regulators in meta cohort and TCGA cohort.
Supplemental Table 5: differential analysis of ssGSEA of
KEGG pathways for three DMM patterns. Supplemental
Table 6: DEGs between three DMM patterns. Supplemental
Table 7: the univariate cox analysis of 337 prognostic DMM-
related gene expression in meta cohort. Supplemental Ta-
ble 8: PCA and PCA coefficient to calculated DMS. Sup-
plemental Table 9: GO/KEGG analysis of DEGs between low
and high DMS groups in meta cohort. Supplemental

Table 10: differential analysis of ssGSEA of KEGG pathways
for low and high DMS groups. Supplemental Table 11: the
univariate and multivariate cox analysis of DMS and clinical
variates. (Supplementary Materials)
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