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Despite dramatic responses to immune checkpoint inhibitors (ICIs) in patients with colon cancer (CC) harboring deficient
mismatch repair (dMMR), more than half of these patients ultimately progress and experience primary or secondary drug
resistance.0ere is no useful biomarker that is currently validated to accurately predict this resistance or stratify patients whomay
benefit from ICI-based immunotherapy. As hypoxic and acidic tumor microenvironment would greatly impair tumor-sup-
pressing functions of tumor-infiltrating lymphocytes (TILs), we sought to explore distinct immunological phenotypes by analysis
of the intratumoral hypoxia state using a well-established gene signature. Based on the Gene Expression Omnibus (GEO) (n� 88)
and 0e Cancer Genome Atlas (TCGA) (n� 49) databases of patients with CC, we found that dMMR CC patients could be
separated into normoxia subgroup (NS) and hypoxia subgroup (HS) with different levels of expression of hypoxia-related genes
(lower in NS group and higher in HS group) usingNMF package. Tumoral parenchyma in the HS group had a relatively lower level
of immune cell infiltration, particularly CD8+ T cells and M1 macrophages than the NS group, and coincided with higher
expression of immune checkpoint molecules and C-X-C motif chemokines, which might be associated with ICI resistance and
prognosis. Furthermore, three genes, namely, MT1E, MT2A, andMAFF, were identified to be differentially expressed between NS
and HS groups in both GEO and TCGA cohorts. Based on these genes, a prognostic model with stable and valuable predicting
ability has been built for clinical application. In conclusion, the varying tumor-immune microenvironment (TIME) classified by
hypoxia-related genes might be closely associated with different therapeutic responses of ICIs and prognosis of dMMR
CC patients.

1. Introduction

Colon cancer (CC) is the most prevalent type of malignancy
worldwide, resulting in the fifth leading cause of death in
2020 [1]. 0e standard therapeutic procedures for advanced

CC are surgery plus adjuvant therapy or neoadjuvant
therapy. However, from 2018 to 2021, the death rate of
patients with advanced disease has almost not changed [1, 2].
One of the molecular subtypes of CC, characterized by
higher tumor mutational burden (TMB), more neoantigens,
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and relatively favorable outcomes, is deficient mismatch
repair (dMMR). A previous clinical trial demonstrated that
metastatic patients with CC with dMMR tumors exhibited
impressive and deep pathological responses to ICI-based
immunotherapy [3]. However, approximately 60% of
dMMR patients may still progress and experience resistance
to the same regimens [4]. 0us, many studies have focused
on conducting comprehensive genome-wide analysis to
identify the underlying molecular mechanisms of poor re-
sponse to ICIs and distinct outcomes in other types of
human malignancy [5–7].

Some studies reported that higher level of TMB and
large production of neoantigens were closely associated
with the infiltration of immune cells and thus the re-
sponse rate to immunotherapy [8], whereas many factors,
such as restrained oxygen and nutrients, may impact
tumor-infiltrating lymphocytes (TILs), leading to diverse
and complex TME [9, 10]. One major player significantly
influences many types of cells in TME is hypoxia. Al-
though hypoxia is considered a hallmark of TME, it is
widely known as a suppressor for immune cell meta-
bolism and a promotor for tumor development and
progression [11, 12]. Tumors and those tumor promotors
deprive of oxygen and nutrient and subsequently produce
hypoxia and acidic TME, which restrain the function of
those TILs [13]. For example, the increased expression of
lactic acid, which is the typical feature of hypoxia TME,
plays an important immunosuppressive role by
restraining the metabolism of TILs and thus inhibits the
production of interferon-c (IFN-c) [14, 15]. Besides,
another enriched expressed factor in hypoxia TME,
named hypoxia-inducible factor-1α (HIF-1α), impairs
the proliferation, migration, and cytotoxic function of
CD8+ T cells by promoting them to a glycolytic phe-
notype [16].

In this study, based on the Gene Expression Omnibus
(GEO) and0eCancer GenomeAtlas (TCGA) databases, we
have investigated the role of hypoxia that acted in the tumor-
immune microenvironment (TIME) of patients with CC
with dMMR. Using hypoxia-related gene signature, we have
classified dMMR patients into 2 subgroups and evaluated
their different TIMEs. Moreover, we have also developed a
prognostic model for dMMR CC patients in clinical
application.

2. Materials and Methods

2.1. Datasets for Molecular Classification and Validation.
0emicroarray data of 88 dMMRCC patients were collected
from GSE39084 (16) and GSE39582 (72), which belonged to
the Gene Expression Omnibus (GEO) database (https://
www.ncbi.nlm.nih.gov/geo/). Because the number of
dMMR CC patients was not enough for analysis, we merged
both datasets after the batch effect was eliminated using
limma (version 3.48.1) and sva (version 3.40.0) packages.
Meanwhile, data of 49 dMMR CC patients for validation
were obtained from 0e Cancer Genome Atlas (TCGA)
database (https://portal.gdc.cancer.gov/) using GDC API
tools on July 7, 2021.

2.2. Hypoxia-Related Gene List. 0is list contained 200
hypoxia-related genes, which were accessed from the
HALLMARK_HYPOXIA gene set of the Gene Set
Enrichment Analysis (GSEA) database (http://www.gsea-
msigdb.org/gsea/msigdb/cards/HALLMARK_HYPOXIA.html)
[17, 18]. 0e complete gene list was contained in Table S1.

0e immune-related genes were obtained from the
Tracking Tumor Immunophenotype database (http://biocc.
hrbmu.edu.cn/TIP/index.jsp) [19]. 0is list contained neg-
ative, positive, Tcell, CD8+ Tcell, CD4+ Tcell, dendritic cell,
eosinophil, macrophage, monocyte, neutrophil, nature kill
(NK) cell, 01 cell, 017 cell, 0 2 cell, 022 cell, and Treg
cell-correlated genes.

2.3. Procedure of Clustering Analysis. First, we used uni-
variate Cox analysis to identify the prognostic value of
hypoxia-related genes. 0en, genes with p< 0.05 were
chosen for subsequent analysis. 0e combined gene set,
which contained 88 dMMR CC patients, was clustered using
an unsupervised nonnegative matrix factorization (NMF)
(version 0.23.0) package [20]. 0e optimal clustering
number was chosen according to the k value when the
cophenetic correlation coefficient started to decline. 0en,
the clustering result was evaluated using principal compo-
nent analysis (PCA) and t-distributed stochastic neighbor
embedding (t-SNE). Meanwhile, the overall survival (OS) of
different subgroups was evaluated according to the result of
the Kaplan–Meier analysis that was performed using the
survival (3.2–11) package. Moreover, the clustering method
according to hypoxia-related genes was validated using the
TCGA COAD cohort.

2.4. Identification of Differentially Expressed Genes and
Functional Annotation Analysis. Differentially expressed
genes (DEGs) with FDR< 0.05 and |log2FC|> 1 were
identified between 2 different subgroups using limma
(version 3.48.1) package. Moreover, the functions according
to DEGs were evaluated through the Gene Ontology (GO)
and Kyoto Encyclopedia of Genes and Genomes (KEGG)
using clusterProfiler (version 4.0.2), topGO (version 2.44.0),
and pathview (version 1.32.0) packages.

2.5. Evaluation of Tumor-Immune Microenvironment. To
investigate the differences in TIME between the 2 subgroups,
we used CIBERSORTx to estimate the infiltration of 22
different immune cells (https://cibersortx.stanford.edu/)
[21]. Meanwhile, we also extracted the expressions of im-
mune checkpoint molecules and CXC chemokines from
microarray data of GEO sets and RNA-seq data of the TCGA
cohort. 0e expressions of these variates were compared
between different subgroups using the Wilcoxon test.

2.6. Construction of Prognostic Model Based on Prognostic
Hypoxia-RelatedGenes. After molecular clustering, we built
a prognostic model based on 2 hypoxia-related hub genes,
which were the intersection of the GEO-DEGs and TCGA-
DEGs using the least absolute shrinkage and selection
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operator (LASSO) regression analysis. 0e formula of risk
score model was built as follows:

Risk scoremodel � 
i

βi ∗ hub genei. (1)

0e i index represents a significantly prognostic gene of
the Lasso regression analysis, and βi stands for the beta
coefficients of these genes.

2.7.Model Validation andVisualization. 0e discrimination
ability of the prognostic model was assessed using receiver
operating characteristic (ROC) curve analysis. It would
calculate the true positive (TP) and false positive (FP), based
on a series of different binary classification methods (critical
or cutoff value). 0e curve was drawn with the TP or
sensitivity as the ordinate, and with FP or 1-specificity as the
abscissa. 0e area under the curve (AUC) was used for
quantitative analysis in ROC analysis. Generally, (1) AUC
between 0.5 and 0.7 would be considered as lower accuracy;
(2) AUC between 0.7 and 0.9 would be considered to be
valuable; and (3) AUC above 0.9 would be considered as
high accuracy; however, AUC� 0.5 meant that the model
had no diagnostic value. In this study, ROC analysis was
performed using the timeROC package (version 0.4).

Based on the Cox proportional hazard model, the cal-
ibration plot was used to assess the stability of the prognostic
model. Meanwhile, the Kaplan–Meier (K-M) survival
analysis was performed according to different risk scores
(low-risk score vs. high-risk score). 0e calibration and K-M
analysis were performed using the rms (version 6.1-0) and
survival packages.

To visualize the prognostic model, we used rms (version
6.1-0) to create a nomogram that could estimate the 1-, 3-, and
5-year OS of dMMR CC patients. In addition, to make the
prediction model more user-friendly, we developed an online
dynamic calculator application using shiny (version 1.5.0) and
DynNom (version 5.0.1) packages in R. 0is online calculator
allows users to input their characteristics, and then, it will
automatically export an outcome of the OS (https://
xyxdoctor.shinyapps.io/OS_of_dMMR_Colon_Cancer/).

2.8. Statistical Analysis. Continuous and categorical
(frequencies and percentages) variables were analyzed
using independent t, chi-square, or 2-tailed Fisher’s exact
test, respectively. Meanwhile, ranked data were analyzed
using the Mann–Whitney U test. 0e discrimination of
the prediction model was assessed using ROC analysis.
0e OS was defined as the period from the date of surgery
to the date of death due to any cause. OS between dif-
ferent groups was measured using the log-rank method
of K-M analysis. Cox regression analysis was used to
assess the time event-dependent OS status of CC dMMR
patients. 0e correlation of RNA expression among
different hub genes was measured using Spearman’s
analysis. A P-value less than 0.05 was considered sta-
tistically significant. All statistical analyses were carried
out using R software (version 4.0.3; https://www.r-

project.org/) and R studio (version 1.3.1093; https://
www.rstudio.com/) software.

3. Results

3.1. Different Characteristics between Different Molecular
Subgroups. 0e complete pipeline of this study is shown in
Figure 1. Initially, we filtered 22 genes that were associated
with the prognosis of dMMR patients from the 200 hypoxia-
related gene list obtained from the GSEA database
(Table S2). Based on these genes, we classified the GEO set
(GSE39084 +GSE39582) using the NMF package. 0e op-
timal clustering number was chosen according to the k value,
which was determined by the cophenetic correlation coef-
ficient. In this study, the cophenetic correlation coefficient
started to decrease, when the k value was 2 (Figure 2(a)).
0en, we evaluated the differential expressions of 22
prognostic hypoxia-related genes in different subgroups.0e
results showed that most of the hypoxia-related genes were
increasingly expressed in Cluster2 (Figure 2(b)). Meanwhile,
the distributions of patients from different subgroups were
separated clearly via PCA and t-SNE analyses (Figures 2(c)
and 2(d)). Combined with these results, we finally decided to
classify 88 dMMR CC patients into 2 different subgroups.
Cluster1 was defined as normoxia subgroup (NS), and
Cluster2 was defined as hypoxia subgroup (HS).

0e clinicopathological features between different sub-
groups were also analyzed (Table S3). We found that patients
in NS were younger (p< 0.001) and had better pathological
stages (p � 0.038). In the TCGA COAD cohort, the path-
ological stage andM were also better in NS. In the combined
GEO cohort, all 88 patients with CC had complete follow-up
information. We used K-M analysis to compare their
prognosis between NS and HS. 0e results showed that the
OS of NS was significantly better than that of HS (p � 0.034)
(Figure 3(a)). Interestingly, none of the patients in NS had
died during follow-up. In coincidence with our findings,
previous studies also found that pathological stage and age
were closely associated with the OS/DFS of patients with
colorectal cancer (CRC) [22, 23].

After the distinct clinical features of the two subgroups
were uncovered, we decided to investigate whether
differences also existed on gene expression and functional
levels. We found that 198 genes were differentially expressed
(|log2FC|> 1 and FDR< 0.05) between NS and HS
(Figure 3(b)). Among them, the expression of 153 genes was
significantly lower and the expression of other genes was
higher in NS, compared to HS. Meanwhile, 12 hypoxia-
related genes, including MAFF, MT1E, MT2A, et al., were
decreasingly expressed in NS, and only one hypoxia-related
gene, named SELENBP1, was increasingly expressed in NS.
0is result was consistent with the clustering result shown in
Figure 2(b), which indicated that most hypoxia-related genes
were decreasingly expressed in NS compared to those in HS.
Based on the KEGG analysis, we found that these DEGs were
involved in inflammation-related (cytokine-cytokine re-
ceptor interaction, chemokine signaling pathway, and NF-
κB signaling pathway) and tumor-related (TNF signaling
pathway) pathways (Figure 3(c)). Similarly, the result of
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biological processes (Figure 3(d)), cellular component
(Figure 3(e)), and molecular function (Figure 3(f )) analysis
using GO showed that these DEGs were associated with
inflammatory function, including response to interleukin-1,

cytokine activity, chemokine activity, CXCR chemokine
receptor binding, and others. Taken together, these results
indicated that the hypoxia condition in TME would not only
regulate the biological behavior of tumor cells but also

GEO NMF Clustering

Immune-Related Analysis

Clinicopathological Analysis Model Validation and Visualization

Prognostic Model Construction

Immune-Related Analysis

TCGA NMF Clustering

Figure 1: 0e complete pipeline of this study.
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change the metabolism and secretion of immune cells. 0ese
findings were also supported by previous studies [24–26].
0ey found that the deprival of oxygen and glycose caused
by the tumor and stromal cells would induce exhaustion and
dysfunction of TILs, subsequently creating an immuno-
suppressive TME.

3.2. Different Tumor-Immune Microenvironments between
Subgroups. Because the survival status was significantly
different between the two subgroups and the functions of the
DEGs were enriched in inflammatory pathways, we decided
to investigate whether the TIME between the two subgroups
was distinct. 0rough analysis of CIBERSORTx, we found
that the resting of CD8+ T cells, CD4+ T cells activated, M1
macrophages, and dendritic cells resting were significantly
more in NS (Figure 4(a)). We supposed that the relative

normoxia TME might be conducive to the infiltration of
cytotoxic T cells and the polarization of macrophages into
the M1 type. Previous studies suggested that HIF-1, a major
factor elevated in hypoxia zone and PD-L1, could directly
regulate the differentiation of tumor-associated macro-
phages (TAMs) and convert them into polarized M2 type,
which often played an immunosuppressive role in TME and
led to drug resistance of immunotherapy [27–29].

To more deeply investigate the differences of TIME, we
also evaluated the expressions of immune-related genes
(obtained from the Tracking Tumor Immunophenotype
database), immune checkpoint molecules, and C-X-C motif
chemokines between two subgroups. 0e result showed that
most interferon (IFN)-related genes were increasingly
expressed in NS, which followed the previous result that
CD8+ and CD4+ T cells were significantly richer in NS
(Figure 4(b)). Despite PDCD1, also known as programmed
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cell death 1 (PD-1), all the other immune checkpoint
molecules were decreasingly expressed in NS (Figure 4(c)).
Although PD-1 was expressed by types of immune cells,
including B cells, natural killer cells, innate lymphoid cells,
and myeloid cells, its expression mainly occurred on T cells

[30]. In our study, we found that most types of T cells,
including CD8+, CD4+ memory activated, follicular helper,
and regulatory T cells, were enriched in NS compared to
those in HS. 0ese might be associated with the increased
expression of PD-1 in NS. Similar to the result shown in the
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heatmap of Figure 4(b), the chemokine-related genes, in-
cluding CXCL1, 2, 3, 5, 8, and 16, were significantly in-
creasingly expressed in HS (Figure 4(d)). Korbecki et al.
suggested that the elevated expression of CXC chemokines
was associated with hypoxia TME and also related to the
poor prognosis of patients [31].

We also used the data of dMMR CC patients from the
TCGA COAD cohort to validate the hypoxia-related gene
clustering method (Figure S1). 0e heatmap plot showed
that the expressions of prognostic hypoxia-related genes
were different in different subgroups. Meanwhile, there were
81 differentially expressed genes between subgroups and 6
DEGs were hypoxia related. Consistent with previous results
obtained in the GEO sets, the analyses in the TCGA COAD
cohort revealed that except for PD-1, the expressions of most
immune checkpoint molecules were lower in NS. Moreover,
the CXC chemokines were increasingly expressed in HS,
which was also in accordance with the result from GEO sets.

Taken together, most T cells, especially CD8+ and CD4+
memory-activated Tcells, in coincidence with the expression of
IFN-related genes, were enriched in NS. 0e elevated ex-
pression of PD-1 might be related to a higher level of colo-
nization of T cells, whereas increasing expression of immune
checkpoint molecules was closely associated with immuno-
suppressive TME and resistance of ICIs [32]. In our study,
despite PD-1, all the other immune checkpoint molecules were
increasingly expressed in HS. Combined with a higher level of
CXC chemokines, patients in HS might have a relatively
immunosuppressive TME, poorer response to immunother-
apy, and worse prognosis compared to those in NS.

3.3. Analyses for Hypoxia-Related Hub Genes. In previous
analyses, we found that there were 198 DEGs between NS
and HS in GEO sets and 81 DEGs in the TCGA COAD
cohort. We wondered whether there were intersections
between DEGs in GEO sets and DEGs in the TCGA cohort.
0e Venn plot showed that 5 genes were differentially
expressed in both GEO sets and TCGA cohort (Figure 5(a)).
Among them, 3 genes, namely, MT1E, MT2A, and MAFF,
were hypoxia related.

Next, we investigated the correlation of the expression
of these genes. 0e expression correlation plot suggested
that all three genes were positively expressed (p< 0.001)
(Figure 5(b)). Since all three genes were increasingly
expressed in HS in both GEO and TCGA cohorts, we
supposed that these genes would be negatively related to
the OS and the infiltration of immune cells. 0erefore, we
evaluated the correlation using K-M and Spearman’s
analyses (Figures 5(c)–5(h)). 0e results showed that
increasing expression of three genes was significantly
associated with poor OS status (Figures 5(c), 5(e), and
5(g)). Meanwhile, all 3 genes were negatively related to
the infiltration of CD4+ T and dendritic cells and posi-
tively related to the infiltration of neutrophils. Previous
studies also identified that higher infiltration of neu-
trophils was consistent with poor survival status in nu-
merous types of cancer [33–35]. Moreover, the expression
of MAFF was negatively associated with the infiltration of
CD8+ T cells. Since MAFF was increasingly expressed in
HS, which also had fewer infiltrations of CD8+ T cells,
CD4+ Tcells, and M1 macrophages, and more infiltration
of M2 macrophages and neutrophils, it revealed that
MAFF might be the potentially important regulatory gene
in hypoxia TIME.

3.4. Construction of Prognostic Model Based on Hypoxia-
Related Genes. 0e previous analyses identified that dMMR
CC patients could be classified into hypoxia and normoxia
subgroups. 0ese subgroups showed different expressions of
hypoxia-related genes, functional enrichments, TIME, and
prognosis. 0ree genes, namely, MT1E, MT2A, and MAFF,
were differentially expressed between NS and HS in both
GEO and TCGA cohorts. Next, we wondered whether a
prognostic model based on these genes could be built for
clinical application.

Initially, 3 genes were included. 0rough Lasso Cox
regression analysis, 2 genes, such as MT2A and MAFF, were
filtered for the construction of this prognostic model
(Figures 6(a) and 6(b)).0e formula of the prognostic model
was shown as follows:
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Figure 4: 0e analyses of TIME identified that two subgroups had a quite different infiltration of immune cells and the expression of
immune-related genes, immune checkpoint molecules, and chemokines. (a)0e result of CIBERSORTx analysis showed that NS had higher
infiltration of CD4+ Tcells, CD8+ Tcells, andM1macrophages and lower infiltration of M2macrophages and neutrophils. (b)0e heatmap
revealed different expressions of immune-related genes between two subgroups. (c) Despite PDCD1, all the other immune checkpoint
molecules were increasingly expressed in HS. (d) Most of the chemokines were also increasingly expressed in HS. ∗represents p< 0.05,
∗∗represents p< 0.01, ∗∗∗represents p< 0.001, and ∗∗∗∗represents p< 0.0001.
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Figure 5: Continued.
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Risk score � 0.861 × MT2A + 0.426

× MAFF (themedian of risk score was 13.551).

(2)

We defined groups with higher scores than themedian as
a high-risk group, while lower scores than the median as a
low-risk group. From the risk plot (Figure 6(c)) and K-M
curve (Figure 6(e)), we found that the low-risk group had a
lower ratio of dead cases and a significantly better prognosis
(p � 0.007). Meanwhile, the low-risk group had lower ex-
pression of hub genes, better pathological N, T, stage,
younger age, and more cases of female patients and distal
colon tumors (Figure 6(d)). 0rough univariate and mul-
tivariate Cox analyses, we identified that the prognostic
model was the independent predictor for dMMR CC pa-
tients (Figures 6(f ) and 6(g)).

0e clinical characteristics of the low-risk group were
distinct from the high-risk group, including the proportion
of gender, age, tumor location, and pathological features.
Our findings were supported by previous studies [36, 37].
0ey also found that male patients, right-side tumors, and
poor pathological features were potential risk factors for
recurrence and prognosis of patients with colorectal cancer
(CRC). On the other hand, it also indicated that two genes,
namely, MT2A and MAFF, might act an important role in
the development and progression of colon cancer and the
prognostic model based on these genes would be valuable for
clinical application.

3.5. Calibration and Visualization of the Prognostic Model.
We used ROC and the calibration model to evaluate the
discrimination ability and stability of this prognostic model.
0e result of ROC analysis suggested that this model had a

good discrimination ability to predict 1- (AUC� 72.3%),
3-(AUC� 72.9%), and 5-year (78.6%) OS for dMMR CC
patients (Figure 7(a)). 0e apparent and bias-corrected
curves were close to the ideal curve in the calibration plot,
indicating good stability and consistency of this prognostic
model (Figure 7(b)).

Subsequently, we developed a nomogram for clinical
application. Along with the risk score of the prognostic
model, it also contained pathological T, N,M, stage, and age
(Figure 7(c)). Its usage was quite simple and user-friendly,
which was divided into three steps. First, each factor would
be read and would have a different point according to the
point scale. Second, the point of each factor would be added
up to have a total point. It would be identified on the total
point scale. Finally, the OS of dMMR CC patients would be
represented in the probability scale, based on the total point
calculated in the previous step.

Moreover, to make the diagnostic model more conve-
nient to use, we developed an online dynamic nomogram
(Figure 7(d)). It could simplify the four-step usage into a
two-step usage. First, different values of each clinicopath-
ological factor could be chosen in the drop-down menu.
0en, the user only had to click the predict button, and the
OS probability of the patients would be calculated auto-
matically based on the prognostic model. Meanwhile, a
forest plot with a 95% confidence interval (CI) would be
simultaneously visualized.

4. Discussion

In this study, based on hypoxia-related gene signature, we
have classified dMMR CC patients into 2 subgroups. Most
hypoxia-related genes in HS were increasingly expressed,
compared to those in NS. 0erefore, we considered that NS
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Figure 5: 0e analyses about three hub genes, such as MT1E, MT2A, and MAFF. (a) 0ree hub genes were the intersection of the DEGs of
GEO and TCGA sets and 200 hypoxia-related genes. (b) 0e expression of these genes was significantly positively correlated. 0e Kaplan-
Meier curves of MT1E (c), MT2A (e), and MAFF (g) showed that higher expression of these genes was significantly associated with poorer
prognosis of dMMRCC patients.0e spearman correlation plots of MT1E (d) andMT2A (f) showed similar results: the expression of MT1E
and MT2A was negatively related to the infiltration of CD8+ Tcells. (h) Meanwhile, the expression of MAFF was negatively associated with
the infiltration of CD4+ T cells, CD8+ T cells, dendritic cells, and M2 macrophages, and positively associated with the infiltration of
neutrophils. ∗represents p< 0.05, ∗∗represents p< 0.01, ∗∗∗represents p< 0.001, and ∗∗∗∗represents p< 0.0001.
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was a normoxia subgroup and HS was a hypoxia subgroup.
0e TIME of NS was quite different from that of HS,
showing that the infiltration of most TILs was significantly
higher in NS. Meanwhile, it also had lower expressions of the
immune checkpoint molecules and chemokines. 0ese re-
sults indicated that NS might have a relative normoxia TME,
which could promote the infiltration of TILs, thus resulting
in a better prognosis. Moreover, we also developed a
prognostic model based on two hypoxia-related genes,
namely, MT2A andMAFF. It showed a stable and consistent
predicting ability, also indicating the close association be-
tween hypoxia and prognosis of patients with dMMR CC.
Finally, we identified that MAFF might be a potentially
important regulatory gene involved in the hypoxia TME of
dMMR CC patients.

0eMSI/dMMRCC patients were initially considered to
have high levels of TMB and neoantigens, which could
induce sustained self-immune responses and ensure the
curative effect of immunotherapy [8]. At present, immune
checkpoint inhibitors (ICIs) have been approved by FDA to
treat advanced MSI/dMMR CC patients [38]. However, a
previous study has shown that there were still nearly 60%
MSI/dMMR that were not responsive to ICIs, indicating that
the TIME was variable even among MSI/dMMR patients
[39]. 0erefore, the urgency is to uncover the underlying
mechanism and identify the most responsive patients, thus
improving therapeutic efficiency.

In this study, we found that even among patients with
CC with dMMR status, there was variable TIME, which was
considered to be closely associated with the therapeutic
efficiency of ICIs and prognosis. A previous study suggested
that alterations and evolutions had always existed inside the
TME of the tumors treated with ICIs [40]. Meanwhile,
exhaustion and deletion of tumor-specific CD8+ T cells
could significantly impair the antitumor effect of ICIs and
induce drug resistance [41]. 0ese findings highlight the
importance of CD8+ T cells involved in the therapy of ICIs.
However, the uncontrolled growth of tumor cells creates
hypoxia and malnutritional TME. It will significantly impair
the metabolism and colonization of CD8+ T cells, thus
inducing tumor progression and drug resistance of ICIs [10].
In this study, patients in the normoxia subgroup had

significantly higher infiltration of CD8+ and CD4+ T cells.
We supposed that these patients might be more responsive
to ICIs, and the better prognosis of them might be partially
associated with higher infiltration of TILs. Interestingly, in
NS, besides higher infiltration of TILs, there was also sig-
nificantly lower infiltration of neutrophils. A previous study
suggested that neutrophils could act as either a tumor
suppressor or a promotor, depending on tumor type and
stage [42]. Later in the progression of tumors, neutrophils
would promote tumor growth by releasing vascular endo-
thelial growth factor (VEGF) to stimulate angiogenesis [42].
In this study, we also found that the expression of VEGF was
significantly higher in HS accompanied by the higher in-
filtration of neutrophils. In colorectal cancer (CRC), higher
infiltration of tumor-infiltrating neutrophils was positively
associated with higher histological grade, advanced patho-
logical stage, and poorer recurrence-free survival [34]. Be-
sides, in both GEO sets and TCGA cohort, we have identified
higher infiltration of M1 and lower infiltration of M2 in NS.
High-mobility group box 1 protein (HMGB1), increasingly
expressed in hypoxia TME and closely associated with the
development of CC, has been proven to be related to
macrophage colonization, especially for the M2 type [43].
0ese M2 macrophages would secrete high levels of VEGF
and TNF-α, which was also proven in this study in
Figure 3(b), and consequently promote the progression and
metastasis of tumors [44, 45].

PD-1, a type of inducible membrane protein, is often
upregulated with the activation of CD8+ Tcells viaNFATc1,
Notch, and STAT pathways [46–48]. However, tumor-in-
filtrating CD8+ T cells will experience distinct differential
reprograms. Some of them subsequently acquire an ex-
haustion type, due to the hypoxia, acidic, and malnutritional
TME. During the reprogramming process, these cells will
elevate the inhibitory receptors, such as PD-1 [49]. 0ese
findings highlight the importance of PD-1 induction in
CD8+ T cells in the TME and thus open a door to PD-1
inhibitor with therapeutic effect in clinical application. In
this study, we found that PDCD1, another symbol of PD-1,
was increasingly expressed in NS. Except for PD-1, all the
other immune checkpoint molecules, including PD-L1,
CTLA4, et al., declined in NS. Previous studies also identified
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Figure 6: Construction of prognostic model based on 2 prognostic hypoxia-related genes. (a) Twenty-time cross-validation for tuning
parameter selection in the LASSO Cox model. 0e plot of LASSO coefficients (b) showed that the best choice of the number of these genes
was 2. (c) 0e risk score rank (up) and distribution of survival status (middle and down) showed different risk scores and survival status
between low- and high-risk groups. (d) 0e heatmap showed the differences in clinicopathological features and the expression of 2 selected
genes between low- and high-risk groups. (e) 0e Kaplan–Meier curve showed significantly different OS between the two subgroups. 0e
univariate (f ) and multivariate (g) Cox analyses showed that the risk score was the independent prognostic factor of dMMR CC patients.
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Figure 7: 0e validation and visualization of the prognostic model. (a) 0e ROC curve showed that the discrimination of the model was
valuable for the prediction of 1-, 3-, and 5-year OS. (b)0e calibration plot suggested that the performance of this model was stable. (c) 0e
nomogram was built based on the risk score and the clinicopathological features, including age, pathological T, N, M, and stage. (d) 0e
shiny app was developed based on the prognostic model for convenient clinical application.
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that hypoxia could induce the high expression of immune
checkpoint molecules, such as indoleamine 2,3-dioxygenase
(IDO) and PD-L1 [50, 51]. 0e expression of immune
checkpoint molecules might be negatively associated with
the infiltration of TILs and the prognosis in types of cancers
[7, 52, 53].

In hypoxia TME, CXC chemokines are mainly secreted
by tumor-associated macrophages (TAMs) and myeloid-
derived suppressor cells (MDSCs) via hypoxia-inducible
factor (HIF)/nuclear factor κB (NF-κB) pathway [54, 55].
Subsequently, these activated CXC chemokines will promote
the progression and metastasis of cancer via numerous
protumor properties. Seven CXC chemokines reported in
this study, such as CXCL1, CXCL2, CXCL3, CXCL5,
CXCL6, CXCL8, and CXCL16, are all angiogenic [56–59].
High expression of these chemokines will cause neo-
vascularization, thus promoting tumor invasion and me-
tastasis [60]. In this study, we also found that the hypoxia
subgroup had a higher expression of CXC chemokines,
which might be related to the poorer prognosis of this
subgroup.

In this study, three genes, namely, MT1E, MT2A, and
MAFF, were the intersection of GEO-DEGs, TCGA-DEGs,
and hypoxia-related gene list. Two of them, namely, MT2A
and MAFF, were included in the construction of the
prognostic model for clinical application. Metallothioneins
(MTs), a family of low molecular weight proteins, play an
important role in the regulation of the cellular homeostasis
of zinc and copper [61]. Among types of MTs, MT1 andMT2
are the most widely distributed isoforms, which were
commonly found in many tissues, especially in the liver and
kidneys [62]. MTs may be tightly involved in carcinogenesis,
including tumor growth, differentiation, angiogenesis, and
metastasis [63]. Meanwhile, MTs can also be involved in the
process of TME remodeling and immune escape by binding
to the plasma membrane of TILs and changing their im-
munomodulatory functions [64]. High levels of MTs re-
leased in the extracellular environment were proven to be
closely associated with immunosuppression, tumor ag-
gressiveness, and metastasis in numerous cancers [65–67].
Another hub gene, MAFF, is also hypoxia related and has
been proven to be tightly associated with invasion and
metastasis of cancer via HIF/NF-κB pathway [68]. Mean-
while, it has also been identified to promote M2 polarization
in TAMs, indicating its role involved in TME remodeling
and ICI therapy [69]. In this study, we also found that higher
expression of MT1E, MT2A, and MAFF was related to the
poorer infiltration of CD8+ T cells and poorer prognosis of
dMMR CC patients. In a further study, we decided to focus
on these genes and their roles involved in the development
and progression of CC.

Moreover, we also developed a prognostic model, as well
as a nomogram and a shiny app, based on the hypoxia-
related genes. Numerous studies have also constructed
similar prognostic models in types of cancer, such as os-
teosarcoma [70], breast [71], renal [72], and lung cancer
[73]. In all these studies, despite different genes, patients
with higher expression of hypoxia-related genes had either
poorer pathological stage, infiltration of immune cells, or

survival status, highlighting the potential of hypoxia genes in
clinical application.

0is study has several limitations: (1) due to limiting data
resources of patients with CCwith dMMR, the sample size of
this study was small, which might induce selection bias; (2)
during the validation process of the prognostic model, ex-
ternal validation set was not available, thus inducing risks of
instability of the model; (3) it is only a bioinformatic study
without experiment in vitro/vivo; however, we have iden-
tified three hypoxia-related hub genes that played an im-
portant role in TIME and prognosis of dMMR CC patients.
In a further study, we will focus on these genes and their
biological functions in the development and progression of
dMMR CC.

In summary, we have classified dMMR CC patients into
hypoxia and normoxia subgroups and revealed their dif-
ferent TIMEs. We found that the hypoxia subgroup had
lower infiltration of TILs, more expression of immune
checkpoint molecules and chemokines, and a poorer
prognosis. Based on all the evidence, we supposed that
hypoxia TME might be potentially associated with ICI re-
sistance in dMMR CC patients. Subsequently, we identified
two hub genes and will focus on them in further study.
Moreover, we have developed a prognostic model. Based on
it, a nomogram and a shiny app were constructed for clinical
application.
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Supplementary Materials

Supplementary 1. Table S1: the list of 200 hypoxia-related
genes. Supplementary 2. Table S2: the list of 22 hypoxia-re-
lated genes with prognostic value. Supplementary 3. Table S3:
different clinicopathological features between normoxia and
hypoxia subgroups in GEO and TCGA sets. Supplementary 4.
Figure S1: the validation of the hypoxia-related gene clus-
tering method in the TCGA COAD cohort. (a) 0e heatmap
showed different expressions of 22 prognostic hypoxia genes
between the two subgroups. (b)0ere were 98 DEGs between
two subgroups. Among them, 6 genes were hypoxia related.
(c) 0e result of CIBERSORTx analysis showed different
infiltration of immune cells between two subgroups. (d) 0e
heatmap showed different expressions of immune-related
genes between two subgroups. Despite PDCD1, all the other
immune checkpoint molecules (e) and chemokines (f) were
increasingly expressed in HS. (Supplementary Materials)
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