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Ewing sarcoma (ES) is one of the most common bone cancers in adolescents and children. Growing evidence supports the view
that metabolism pathways play critical roles in numerous cancers (He et al. (2020)). However, the correlation between
metabolism-associated genes (MTGs) and Ewing sarcoma has not been investigated systematically. Here, based on the
univariate Cox regression analysis, we get survival genes from differentially expressed genes (DEGs) from Gene Expression
Omnibus (GEO) cohort. Multivariate Cox regression analysis and least absolute shrinkage and selection operator (LASSO)
regression analysis were employed to establish the MTG signature. Comprehensive survival analyses including receiver
operating characteristic (ROC) curves and Kaplan–Meier analysis were applied to estimate the independent prognostic value of
the signature. -e ICGC cohort served as the validation cohort. A nomogram was constructed based on the risk score of the
MTG signature and other independent clinical variables. -e CIBERSORT algorithm was applied to estimate immune in-
filtration. In addition, we explored the correlation between MTG signature and immune checkpoints. Collectively, this work
presents a novel MTG signature for prognostic prediction of Ewing sarcoma. It also suggests six genes that are potential
prognostic indicators and therapeutic targets for ES.

1. Introduction

Ewing sarcoma is a primary malignancy of the bone or soft
tissue [1]. It is ranked the secondmost prevalent bone cancer
in adolescents and children [2]. Current evidence shows that
metastasis of ES is still the main indicator to predict the
outcomes of ES patients for lacking effective biomarkers [3].
Koustas et al. found that the 5-year survival rate of patients
with metastasis is only 20%–45% [4]. -erefore, effective
biomarkers that can accurately predict disease outcomes and
offer novel therapeutic targets for Ewing sarcoma are ur-
gently needed.

-e concept of metabolic reprogramming was first put
forward by Otto Warburg in 1924 [5]. Several lines of ev-
idence have demonstrated metabolism as among the most
compelling traits in cancers, for it is associated with various
biological processes, including growth, proliferation, mi-
gration, and invasion, and angiogenesis [6, 7]. Cancer cells
can adjust their metabolic patterns to guarantee sufficient
energy and substance. A previous study revealed that the
restoration or blockage of metabolic pathways may be a
promising therapeutic strategy for tumors [8]. In the context
of Ewing sarcoma, a number of studies explored the im-
portance of metabolic reprogramming in disease
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progression and prognosis. Tanner et al. [9] found that EWS/
FLI could induce diversion of metabolites toward onco-
genesis-related biosynthetic pathways tomeet the demand of
ES cells, for example, by shunting glycolytic intermediates
into serine and glycine synthesis. -e inhibitors of the
glycolytic enzyme lactate dehydrogenase (LDH), which are
critical in cellular metabolism, are potential therapeutic
targets for ES treatment [10]. Hence, uncovering meta-
bolism-related biomarkers greatly sheds light on ES diag-
nosis and prognosis.

In this study, we compared the normal and ES tissues to
reveal the DEGs of MTGs. Based on DEGs and prognosis-
related genes, a metabolic gene signature was established,
which allowed us to stratify patients into high- and low-risk
subtypes and ensure accurate prediction of survival prog-
nosis. Furthermore, the model was validated with an in-
dependent cohort from the International Cancer Genome
Consortium (ICGC) database. Analysis of the correlation
between the subtypes with immune infiltration was achieved
through single-sample gene set enrichment analysis
(ssGSEA) to explore the roles of 24 immune cells in the
metabolism-related signature. In summary, we have con-
structed a prognostic model that can accurately predict ES
prognosis.

2. Materials and Methods

2.1. Data Collection. We downloaded 944 MTGs from the
Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathways as previously described by Chao-Yang et al. [11].
-e transcriptome profiles and related clinical data of ES
patients were extracted from the GEO database. In total, 18
normal samples (skeletal muscle) and 64 Ewing sarcoma
samples from the dataset (GSE17679) were analyzed. Fifty-
five samples contained both transcriptome and clinical data
in the validation ICGC cohort.

2.2. Construction and Validation of the Metabolism-Related
Gene Signature. -e “limma” R package was employed to
obtain DEGs (FDR <0.05) from the GEO dataset while genes
related to overall survival (OS) were identified with uni-
variate Cox regression analysis. By taking the intersection of
DEGs and prognosis-related genes, 255 genes were identified
for further analysis. According to multivariate Cox regres-
sion analysis, 6 genes were retrieved. Next, the least absolute
shrinkage and selection operator (LASSO) regression
analysis was employed to construct the prognostic model of
the multivariate Cox regression results. -e risk score was
calculated using the following formula: risk score-
� icoefficient (genei) × expression (genei). ES patients
were classified into high-risk and low-risk groups based on
the median risk score. Furthermore, “survival,” “survi-
valROC,” and “stats” packages were applied to draw the
Kaplan–Meier survival curves and conduct time-dependent
ROC curve analysis and principal component analysis
(PCA), respectively. Multivariate and univariate Cox re-
gression analyses were applied to examine the effectiveness
of the risk score as an independent prognostic indicator

using the risk score and available clinicopathological data.
Based on the risk score, ES patients from the ICGC dataset
were classified into high- and low-risk groups and analyses
were conducted to validate the effectiveness.

2.3. Gene Set Enrichment Analysis. Based on the packages
“GSVA” and “GSEABase,” the Gene Set Enrichment
Analysis (GSEA) was applied to explore the biological
functions and pathways according to the low- and high-risk
groups (p value was set as 0.05).

2.4. Evaluation of the Prognostic Signature and the Con-
struction of Nomogram. -e predictive ability of the prog-
nostic model for different clinicopathological characteristics
was explored in the GEO cohort. Based on the “rms” R
package, the nomogram was performed by the overall
survival data of the GEO dataset. Moreover, the 3- and 5-
year calibration plots were applied to assess the accuracy of
the nomogram.

2.5. Evaluation of Immune Cell Infiltration and Immune
Checkpoints. We analyzed the correlation between the
model and immune cell infiltration using the CIBERSORT
algorithm [12] to identify the 22 immune cells’ fractions in
the GEO dataset. -e relationship between 22 immune cells
was evaluated with the Pearson correlation analysis. Fur-
thermore, we obtained the differential immune cells by
comparing the high- and low-risk groups. Later,
Kaplan–Meier analysis was employed to analyze the cor-
relation between the differential immune cells and ES patient
prognosis. In addition, we estimated the association between
MTG signature and immune checkpoints via the expression
levels of immune checkpoint genes.

2.6. Statistical Analysis. Student’s t-test was applied to
identify the DEGs in the GEO cohort. Wilcoxon test and chi-
square test were applied to analyze continuous and cate-
gorical variables, respectively. K-M curve and the log-rank
test were performed to evaluate the differences in OS. All
statistical analyses were performed with the R software
(version 4.0.1), and p< 0.05 denoted statistical significance.

3. Results

3.1. IdentificationofMetabolism-RelatedPrognosticDEGsand
Construction of the Signature. A schematic representation of
the study is illustrated in Figure 1. -e characteristics of ES
patients in the two datasets are listed in Table 1.-e retrieved
MTGs are displayed in Supplementary Table 1.

Of note, 727 MTGs were differentially expressed be-
tween the ES tissues and the normal tissues. Based on the
univariate Cox regression analysis results, we obtained 297
prognostic MTGs which were related to OS. Additionally,
255 intersection results (Figure 2(a)) of DEGs and prog-
nostic genes were illustrated in a Venn diagram. Based on
the multivariate Cox regression analysis results, 255 genes
were screened, 6 of which were highly related to OS.
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-rough the LASSO regression analysis (Figures 2(b) and
2(c)), we constructed the MTG prognostic signature and
applied it to calculate the risk score using the following
formula: risk score � (0.7457∗ expression of PC) + (−0.7713∗
expression of DGKA) + (−0.0036∗ expression of
CPT1A) + (0.2923∗ expression of CHPT1) + (−0.6910∗ ex-
pression of NUDT12) + (0.8069∗ expression of PYGB).
Subsequently, ES patients were classified into the low-risk
group (n� 32) and the high-risk group (n� 32) according to
the median cutoff risk score. As depicted in the box plot
(Figure 2(d)), all the six genes were differentially expressed
between the ES tissues and the normal tissues. GSEA out-
comes (Figure 2(e)) indicated that the top 5 were glycine,
serine, and threonine metabolism, oocyte meiosis, maturity-
onset diabetes of the young, cardiac muscle contraction, and
vasopressin-regulated water reabsorption.

3.2. Verification of the MTG Signature. -irty-two high-risk
patients and 25 low-risk patients were found in the GEO
dataset, while 30 high-risk patients and 25 low-risk patients
were found in the ICGC dataset (Figures 3(a) and 3(b)). -e
outcomes of PCA verified that the two groups were mainly
distributed in two different directions (Figures 3(c) and
3(d)). -e status of ES patients in the GEO and ICGC
datasets is described in Figures 3(e) and 3(f). -ese data

demonstrate that the high-risk groups were correlated with
more deaths. Besides, Kaplan–Meier curve analysis
(Figures 3(g) and 3(h)) was applied to demonstrate the OS
difference between the two risk groups. -e P value of GEO
and ICGC datasets was statistically significant (<0.001 and
0.020).

3.3. Strong Prognostic Power of the MTG Signature.
Univariate and multivariate Cox regression analyses were
applied to reveal the independent prognostic indicator value
of risk score for ES. -e univariate Cox regression analysis
results (Figures 4(a) and 4(b)) showed that the risk score was
significantly related to OS in the GEO dataset (P< 0.001,
HR� 3.6835, and 95% CI� 2.4016–5.6496) and ICGC
dataset (p � 0.016, HR� 1.0538, and 95%
CI� 1.0098–1.0997). -e multivariate Cox regression anal-
ysis (Figures 4(c) and 4(d)) results showed that the risk score
was an independent indicator in the GEO dataset (P< 0.001,
HR� 4.2485, and 95% CI� 2.5937–6.9591) and ICGC
dataset (P � 0.035, HR� 1.0480, and 95%
CI� 1.0032–1.0947).

Moreover, the accuracy of the signature was assessed
through ROC analysis. -e outcomes (Figures 4(e) and 4(f ))
showed that 1-, 2-, and 3-year AUC values for the GEO
cohort were 0.0856, 0.810, and 0.834, while those for ICGC
cohort was 0.0833, 0750, and 0.718, respectively. -e risk
score values and the clinical features for OS were compared
(Figures 4(g) and 4(h)), and the results indicated that the risk
score was the best predictor.

All the outcomes demonstrated that the MTG signature
was of good prognostic prediction power for ES overall
survival.

3.4. �e Efficiency of the MTG Signature in the GEO Cohort.
To explore the efficiency of the signature, ES patients with
different clinical features were divided into different groups
based on age, gender, and disease state (primary tumor,
metastasis, and recurrence). All the outcomes (Figure 5)

GEO cohort
944 metabolism-related genes, 64 tumor and 18 normal tissues.

Differential expression analysis Univariate Cox regeression for survival genes

Taking the intersection

Multivariate Cox regression and Lasso Cox regression

Six genes model

Comprehensive survival analysis

Construction of the nomogram

Independent  cohort validation
(ICGC, 55 tumor samples)

GO enrichment

Immune infiltration analysis

Figure 1: Flowchart of data collection and analysis.

Table 1: -e characteristics of ES patients in the two datasets.

Variables GEO cohort ICGC cohort
Numbers 64 55
Age, years (%)
>16 36 (56.25%) 26 (47.27%)
≤16 28 (43.75%) 29 (52.73%)

Gender (%)
Female 20 (31.25%) 24 (43.64%)
Male 44 (68.25%) 31 (56.36%)

Survival status (%)
Alive 24 (37.5%) 27 (49.09%)
Dead 40 (62.5%) 28 (50.91%)
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Figure 2: Identification of the candidate MTGs in the GEO dataset. (a) Venn diagram showing the intersection between DEGs and the
survival-related genes. (b, c) LASSO and Cox regression analyses. (d) Boxplot to display the differential expression of genes in MTG
signature. (e) -e GSEA for the GEO cohort.
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Figure 3: Continued.

Journal of Oncology 5



showed that the high-risk group was significantly related to
poorer OS (P< 0.05).

We also applied the nomogram to explore the 3- and 5-
year OS of ES patients based on the risk score and other
clinical variables (Figure 6(a)). -e calibration curve dem-
onstrated satisfactory performance for 3 and 5 years in ES
patients (Figures 6(b)–6(c)).

3.5. Evaluation of Immune Cell Infiltration and Immune
Checkpoints. -e relationship between our MTGs and
immune infiltration was assessed with the CIBERSORT
algorithm. -e infiltration profiling and the heatmap of the
two groups of 22 immune cells are displayed in Figures 7(a)
and 7(b).-e correlation of the 22 immune cells is illustrated
in the heatmap (Figure 7(c)).

Neutrophils (Figures 8(a) and 8(c)) were highly
expressed in the high-risk group (P< 0.001). Plasma cells
(Figure 8(b)) were highly expressed in the low-risk group
(P � 0.042). According to the Kaplan–Meier curves
(Figure 8(d)), ES patients with higher neutrophil levels
exhibited a poorer survival rate.

As for the relationships between immune checkpoint
genes (Figure 8(e)) and MTG signature, we found CD40,
LGALS9, TMIGD2, ICOSLG, LAIR1, CD48, TNFRSF15,
KIR3DL1, and BTNL2 were all significantly highly expressed
in the high-risk group while TNFRSF4 was lowly expressed.

4. Discussion

Ewing sarcoma is one of the most aggressive sarcomas.
Merely 30% of ES patients with metastasis survive [13]. -e
lung is one of the most common sites suffering from Ewing
sarcoma metastasis while the previous study also showed
that colonic Ewing sarcoma could cause liver metastasis [14].

Early diagnosis and treatment can remarkably improve the
clinical prognosis of ES, which justifies the need to seek
effective biomarkers for the early diagnosis and treatment of
ES. Compelling evidence is in support of the finding that
MTGs play crucial roles in the development and progression
of ES. MTGs have immense potential as promising thera-
peutic targets and prognostic predictors. However, studies
on the prognostic value exploration of MTGs are immature.

Moreover, the outcomes of the survival status and K-M
curve demonstrated that the risk score was significantly
related to a poorer survival rate in GEO and ICGC datasets.
Based on univariate andmultivariate Cox analyses, we found
that the risk score was of great value as an independent
prognostic predictor. ROC curves revealed that our signa-
ture could accurately predict the prognosis of ES patients in
the two cohorts. Validation procedures showed that the
efficiency of the signature was satisfactory in patients with
different clinical features. -e constructed nomogram could
predict the 1-, 3-, and 5-year survival probabilities, which
might be useful for personalized treatment. Taken together,
all the outcomes indicated that the MTG signature was of
good robustness for predicting the prognosis of ES patients.
Ren et al. [2] had previously identified immune cell infil-
tration had a close correlation with ES. Here, we adopted
CIBERSORT to explore the roles of the infiltrating immune
cells in our signature. -e results showed that neutrophils
and plasma cells were differentially expressed in the high-
and low-risk groups. Of note, neutrophil cells were signif-
icantly related to poorer OS, which was not the case for
plasma cells.

-e six genes were identified as follows: PC, CHPT1, and
PYGB were oncogenes, while DGKA, CPT1A, and NUDT12
were protective genes. Studies on the relationships between
the six genes and Ewing sarcoma are immature. In several
cancer tissues, including mammary, lung, gallbladder, and
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Figure 3: Characteristics of the risk score of the MTG signature. -e distribution of the risk scores, survival status, PCA analysis, and K-M
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thyroid, Kiesel et al. found that PC was overexpressed as
compared with the normal tissue [15]. Other pieces of ev-
idence indicate that PC exerts crucial effects in metastasis,
particularly because it connects many metabolism pathways,
whereas metastatic tumor cells show an increased need for
redox defense and ATP. Mounting evidence shows that
CHPT1 is a curative target for prostate cancer [16] and is
related to stemness and trastuzumab resistance in breast
cancer [17]. Elsewhere, PYGB was also reported to be
upregulated in numerous tumors, including gastric cancer,
lung cancer, ovarian cancer, and renal cell cancer [18].
Studies have also revealed a close correlation of DGKA,
CPT1A, and NUDT12 with numerous tumors [19–21].

Appling a nomogram to cancer prognosis can allow for
the interpretation of prediction models and the establish-
ment of numerical possibilities for individualized treatment
[22]. We integrated the risk score with other clinicopath-
ological features and established a novel nomogram to assist
clinical decision-making. Fang and Chen [23] recently
established a nomogram based on the autophagy-related
genes, which embodied a favorable effect in hepatocellular
carcinoma. In another study, a nomogram containing

clinicopathological features and the MTG signature
exhibited good results for LUAD prognosis predicting [1].
-ese data are in support of our nomogram which dem-
onstrated good predictivity potential for 1-, 3-, and 5-year
survival of ES patients. In addition, increased studies had
revealed the relationship between tumor metabolism and
tumor immune [24, 25]. As one of the immune infiltration
cells, neutrophils served as prognosis-related cells and were
found to be overexpressed in the high-risk group. According
to the immune checkpoint genes, the high-risk group was
mainly positively related to the expression levels of immune
checkpoint genes.

Although our study presents valid clinical significance, a
few limitations cannot be ignored. To begin with, the GEO
and ICGC cohorts were derived from the public database,
and the clinicopathological features in the two cohorts were
incomplete and limited. As such, we needed our dataset to
show the effectiveness of the MTG signature. Besides, we did
not identify the detailed molecular mechanisms of each
MTGs in ES, and further studies are warranted to analyze the
details. Lastly, the detailed relationships between the risk
score and immune infiltration should be addressed in future.
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Figure 5: -e efficiency of the MTG signature for prognosis of different subgroups in the GEO cohort. K-M survival analysis for the low-
and high-risk groups categorized by clinical variables, comprising age (a, b), metastasis (c), primary tumor (d), recurrence (e), and gender
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Figure 7: Twenty-two immune cells proportion (a), heatmap (b), and correlation (c) analysis in the GEO cohort.
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5. Conclusion

In conclusion, the MTG signature developed in this work
displayed an upstanding performance as an independent
factor for predicting the prognosis of ES patients. -e sig-
nature has been validated in an independent cohort. Also,
the MTG signature-related nomogram can predict 3- and 5-
year survival outcomes accurately. Overall, this study
presents six genes with potential roles as prognostic indi-
cators and therapeutic targets for ES.

Abbreviations

ES: Ewing sarcoma
LDH: Lactate dehydrogenase
DEGs: Differentially expressed genes
MTG: Metabolism-related gene
ICGC: International Cancer Genome Consortium
ssGSEA: Single-sample gene set enrichment analysis
LASSO: Least absolute shrinkage and selection operator
GSEA: Gene Set Enrichment Analysis
OS: Overall survival

PCA: Principal component analysis.

Data Availability

-e datasets analyzed in this study can be derived from
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc�GSE1
7679 and https://dcc.icgc.org/repositories. -e codes in this
study are available from the corresponding author on rea-
sonable request.

Conflicts of Interest

-e authors declare no conflicts of interest.

Authors’ Contributions

ZYC and HL designed the study; ZYC wrote the manuscript.
HY and JB obtained the two cohorts. ZY performed sta-
tistical analyses. HL revised the manuscript. HY and QC
generated all figures and prepared the supplementary
information.

0.042

0.05

0.10

0.15

Cluster 1 Cluster 2

Pl
as

m
a c

el
ls

Cluster
low risk
High risk

(b)

0.0004

0.00

0.01

0.02

0.03

0.04

Cluster 1 Cluster 2

N
eu

tr
op

hi
ls

Cluster
low risk
High risk

(c)

+

+
+ + + + +++ +

p<0.001
0.00

0.25

0.50

0.75

1.00

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Time (years)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Time (years)

Su
rv

iv
al

 p
ro

ba
bi

lit
y

Neutrophils
+
+

High
Low

13 7 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0

51 47 35 31 24 20 16 14 12 12 6 2 2 2 2 2 0Low

High

N
eu

tr
op

hi
ls

(d)
** ** ** * *** ** * ** * **

2.0

2.5

3.0

G
en

e e
xp

re
ss

io
n

Risk
low
high

BTNL2KIR3DL1TNFSF15CD48LAIR1TNFRSF4ICOSLGTMIGD2LGALS9CD40

(e)
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