
Research Article
A Novel S100 Family-Based Signature Associated with
Prognosis and Immune Microenvironment in Glioma

Yifang Hu ,1 Jiahang Song ,2 Zhen Wang ,3 Jingbao Kan ,1 Yaoqi Ge ,1

Dan Wang ,1 Rihua Zhang ,1 Wensong Zhang ,4 and Yun Liu 1,5

1Department of Geriatrics, �e First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
2Department of Radiation Oncology, �e First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
3Department of Neurosurgery, �e Affiliated Brain Hospital with Nanjing Medical University,
Fourth Clinical College of Nanjing Medical University, Nanjing, Jiangsu, China
4Department of Pharmacy, �e First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
5Department of Medical Informatics, School of Biomedical Engineering and Informatics, Nanjing Medical University,
Nanjing, Jiangsu, China

Correspondence should be addressed to Wensong Zhang; zhangwensong91@126.com and Yun Liu; liuyun@njmu.edu.cn

Received 29 June 2021; Revised 13 August 2021; Accepted 26 August 2021; Published 29 September 2021

Academic Editor: Pramod Darvin

Copyright © 2021 Yifang Hu et al. /is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Background. Glioma is the most common central nervous system (CNS) cancer with a short survival period and a poor prognosis.
/e S100 family gene, comprising 25 members, relates to diverse biological processes of human malignancies. Nonetheless, the
significance of S100 genes in predicting the prognosis of glioma remains largely unclear. We aimed to build an S100 family-based
signature for glioma prognosis. Methods. We downloaded 665 and 313 glioma patients, respectively, from /e Cancer Genome
Atlas (TCGA) and Chinese Glioma Genome Atlas (CGGA) database with RNAseq data and clinical information. /is study
established a prognostic signature based on the S100 family genes through multivariate COX and LASSO regression. /e
Kaplan–Meier curve was plotted to compare overall survival (OS) among groups, whereas Receiver Operating Characteristic
(ROC) analysis was performed to evaluate model accuracy. A representative gene S100B was further verified by in vitro ex-
periments. Results. An S100 family-based signature comprising 5 genes was constructed to predict the glioma that stratified
TCGA-derived cases as a low- or high-risk group, whereas the significance of prognosis was verified based on CGGA-derived
cases. Kaplan–Meier analysis revealed that the high-risk group was associated with the dismal prognosis. Furthermore, the S100
family-based signature was proved to be closely related to immune microenvironment. In vitro analysis showed S100B gene in the
signature promoted glioblastoma (GBM) cell proliferation and migration. Conclusions. We constructed and verified a novel S100
family-based signature associated with tumor immune microenvironment (TIME), which may shed novel light on the glioma
diagnosis and treatment.

1. Introduction

Glioma is the most common type of human primary brain
cancer, which accounts for approximately 30% of all brain
cancer occurrences [1]. Glioma can be divided into low (I-II)
or high (III-IV) grades based on the World Health Orga-
nization (WHO) criteria. It is difficult to entirely remove
tumor tissue during surgery due to the high invasion, infinite
proliferation, diffuse infiltration and lack of a clearly
boundary of high-grade glioma [2]. Despite advances in

surgery, chemotherapy and radiotherapy, glioma is still
associated with a poor prognosis, and its median survival is
as short as <15 months [3]. However, these therapeutic
strategies are limited by drug resistance and tumor recur-
rence, which are influenced by a complicated gene regula-
tory network./erefore, identification of reliable targets and
prognostic biomarkers for glioma is urgently required.

/e S100 family is a category of low-molecular-weight
(10–14 kda), acidic, calcium-binding protein with an EF-
hand motif that was first identified from the bovine brain in
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1965 by Blake W. Moore [4]. Currently, 25 family members
have been described, 16 are clustered together on chromo-
some 1q21, a locus susceptible to genomic rearrangements in
malignant tumors [5]. S100 proteins participate in regulating
some cell processes, like proliferation, differentiation, apo-
ptosis, and immune responses. It has also become evident that
many specific S100 genes are abnormally expressed in some
human tumors, facilitating cancer genesis and development
[6]. S100A4, S100B, and S100P, for example, inhibit the
phosphorylation of p53 and subsequently attenuate the tu-
mor-suppressive ability of p53 [7, 8]. S100A8/S100A9 acti-
vates the MAPK pathway to promote the proliferation of
breast cancer (BC) [9]. Increased S100A11 expression has
been observed in lung cancer, which activates Wnt/β-catenin
pathways to facilitate the development of drug resistance and
cancer metastasis [10]. Additionally, a number of S100
proteins could be identified as molecular biomarkers to di-
agnose or predict a specific cancer [11].

/is study focused on developing a prognostic nomogram
based on the S100 family members to explore the clinical
significance of this family for glioma prognosis. /e prog-
nostic values and expression profiles of the S100 family in
glioma samples were comprehensively evaluated using public
resources and bioinformatics analysis. We identified five
signature-related genes that are associated with the survival of
glioma patients; besides, multiple tumor-related pathways
were enriched into the high-risk group. Our results indicate
that S100 family-based signature may play a critical role in
glioma progression and could be considered as prognostic
markers and therapeutic targets for glioma in the future.

2. Materials and Methods

2.1. Acquisition of Glioma Datasets. Clinical and FPKM
RNAseq data of 703 glioma cases were obtained from TCGA
database (https://portal.gdc.cancer.gov/) into the training
set. Similarly, we also obtained 325 cases from the CGGA
database (http://www.cgga.org.cn) into the validation set.
According to patient ID, this study compared clinical fea-
tures of patients with corresponding transcriptome data.
Samples were removed if the data did not match. A total of
665 and 313 patients with complete clinical data were finally
selected from TCGA and CGGA database for the next
analysis, respectively.

2.2. Construction and Verification of a Risk Score Prognostic
Model Based on S100 Gene Family Members. A Cox pro-
portional hazard regression model was constructed to es-
timate the prognosis of glioma cases in the TCGA training
set. Furthermore, the model’s prognostic performance was
validated in the CGGA validation set. Firstly, the candidate
S100 family genes related to prognosis were identified by
univariate Cox regression through “survival” package upon
the threshold of P< 0.05 [12]. Secondly, overfitting genes
were removed through LASSO regression via R package
“glmnet” function [13]. /irdly, R package “glmnet” func-
tion was also utilized to build a prognosis prediction no-
mogram bymultivariate Cox proportional hazard regression

[14]. /e final risk score prognostic model was established
with the following formula:

risk score � 􏽘
n

j�1
Coef j × Xj􏼐 􏼑. (1)

Here, Coefj stands for coefficient of multivariate Cox re-
gression for gene j; n represents the overall hub gene number;
Xj indicates relative gene j expression within the model.

For exploring the significance of the risk score model in
predicting prognosis, glioma cases were classified as a low-
or high-risk group according to median risk score value,
with high-risk group having a poor prognostic outcome.
/en Kaplan–Meier curves were plotted to analyze the OS of
two groups of glioma patients through the log-rank test. /e
sensitivity and specificity of the constructed nomogramwere
assessed through determining 1-, 3-, and 5-year area under
the time-dependent ROC curve (AUC) values using the
survival ROC R package, with an AUC> 0.70 denoting a
good predictive value.

2.3. Integration of Protein-Protein Interaction (PPI) Network
and Identification of Hub Genes. /is study constructed the
protein-protein interaction (PPI) network using the
STRING database (http://www.string-db.org/). Cytoscape
(https://cytoscape.org/) is often used for visualizing the
complicated network and integrating them with attribute
data. In the present work, Cytoscape was utilized for
building the PPI network and for analyzing the relationships
among S100 family members. Following that, the Maximal
Clique Centrality (MCC) algorithm in the Cytoscape soft-
ware (v 3.7.0) was employed to identify hub genes.

2.4. Construction and Evaluation of the Nomogram. To
provide an approach for quantitatively analyzing the OS of
glioma, we used the “rms” R packages to construct a no-
mogram based on clinical variables and the prognosis sig-
nature. A calibration curve [15] was plotted to evaluate the
nomogram prediction performance by analyzing the con-
sistency of predicted values with actual measurements.

2.5. Gene Set Enrichment Analysis (GSEA). /e Hallmark
gene set collections (h.all.v7.2) were downloaded in Mo-
lecular Signatures Database (MSigDB) v7.1 (https://www.
gsea-msigdb.org/gsea/downloads.jsp). /e present work
carried out GSEA for comparing the biological functions
and pathways related to signature-related genes between
low- and high-risk groups from both TCGA and CGGA data
sets by the use of GSEA v4.0.3 (https://www.gsea-msigdb.
org/). In line with GSEAUser Guide, the significant gene sets
were selected at the thresholds of FDR q< 0.25, NOM
p< 0.05, and |NES|> 1.

2.6. Assessment of Immune Cell Type Fractions. /e abun-
dance of immune cell type fraction between low- and high-
risk score groups was estimated by CIBERSORT (https://
cibersort.stanford.edu/) [16]. CIBERSORT is a new
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approach that extensively adopted to characterize cellular
components in composite tissues based on gene expression
profiling data within cancers, and it can obtain ground truth
estimates with high consistency in diverse cancer types.
LM22, a white blood cell (WBC) gene signature matrix
involving 547 genes, was adopted for distinguishing 22 kinds
of tumor-infiltrating immune cells (TIICs), such as regu-
latory T cells (Tregs), T cells, B cells, natural killer (NK) cells,
mast cells, dendritic cells (DCs), monocytes, neutrophils,
eosinophils, and macrophages.

2.7. Cell Culture and Transfection. GBM cell lines U251 and
T98G were incubated in Dulbecco’s modified Eagle’s medium
(DMEM) with 10% fetal bovine serum (FBS) at 37°C in a 5%
CO2 incubator. /e logarithmic cells were selected for next
experiments. S100B knockdown was achieved by transfecting
cells with S100B-siRNA using Lipofectamine® 3000 trans-
fection reagent (Invitrogen, USA) according to the manufac-
turer’s protocol./e gene encoding human S100B was inserted
into a plasmid vector (Genechem Incorporation, China). /e
target sequences for siS100B-1 and siS100B-2 were 5′-
GAGACGGUCAUGCAAGAAATT-3′ and5′-GAGACGGU-
CAUGCAAGAAATT-3′, respectively.

2.8. RNAExtraction andqRT-PCR. Total RNA was extracted
using Trizol reagent (Invitrogen, America), and cDNAs were
synthesized using HiScript Synthesis kit (Vazyme, China).
Quantitative real-time PCR (qRT-PCR) was then conducted
on a StepOnePlus Real-Time PCR system (Applied Bio-
systems, CA, US) using the Fast SYBR Green Master Mix
(Roche, America). Primer sequences in this study are de-
tailed in Table S1.

2.9.WesternBlotting. Cell protein was extracted using RIPA
lysis buffer (P0013D, Beyotime, China). Equal amounts of
protein samples were separated on 12.5% SDS-PAGE gels,
which were then electrotransferred onto nitrocellulose (NC)
membranes (Pall Corporation, USA). /e membranes were
blocked for 2 h at room temperature with 5% nonfat milk,
then incubated overnight at 4°C with a primary antibody
(against S100B, Abcam), followed by the corresponding
secondary antibody for 2 h.

2.10.CCK-8andEdUProliferationAssay. Cell counting kit-8
(CCK-8) and 5-ethynyl-20-deoxyuridine (EdU) assays were
conducted to evaluate the cells’ proliferative ability. Cells
were seeded in 96-well plates at a density of 2000 cells per
well overnight, and cell growth was assayed at different
periods utilizing CCK-8 kit (C0038, Beyotime, China) based
on the instruction manual. Absorbance at 450 nm was de-
termined by enzyme labeling (/ermo Scientific Multiskan
FC, USA). /e EdU test was carried out using a Cell-Light
EdU Apollo 567 In Vitro Imaging Kit (Ribobio, China)
following the manufacturer’s protocol. Cells were first
stained with 50 μM EdU for 2 hours, then fixed with 4%
paraformaldehyde and permeabilizated with 0.5% Triton X-

100. After three washes with PBS, cells were incubated with
1×Apollo® for 30min, followed by DAPI staining. /e
EdU-positive cells were eventually viewed by fluorescence
microscopy (Olympus, Japan).

2.11. Transwell Invasion Assay. /e Transwell invasion test
was carried out in the 24-well Transwell chambers (Corning,
USA) precoated with Matrigel (BD Biosciences, USA). /e
top chambers were seeded with about 5×104 cells in serum-
free DMEMmedia, whereas the bottom chambers were filled
with DMEM containing 10% FBS. After 24 h of incubation,
the penetrated cells were fixed with 4% methanol, then
stained with 0.1% crystal violet. Treated cells in each well
were finally photographed at random and counted under an
inverted microscope (Nikon, Japan).

2.12. Data Analysis. GraphPad Prism 5.0 (GraphPad
Software, Inc., San Diego, CA, USA) or R software (version
4.0.3) was utilized for statistical analysis. Differences be-
tween two groups were compared by Mann–Whitney U
tests or Students T-tests, whereas those across numerous
groups were compared by Kruskal–Wallis H tests or one-
way ANOVA. Associations of clinical features with risk
scores were analyzed by Fisher’s exact test and chi-square
test. Survival data were analyzed by Kaplan–Meier analysis.
/e influence of risk score on OS was evaluated through
univariate as well as multivariate Cox regression. /e
prognosis prediction performance of the risk model was
assessed through ROC curve analysis. Each experiment was
repeated thrice, and results were expressed as mean± SD.
∗P< 0.05, ∗∗P< 0.01, and ∗∗∗P< 0.001 were considered
significant.

3. Results

3.1. Construction of the S100 Family-Based Signature of
Glioma in the TCGA Cohort. /e flow chart of this study is
shown in Figure 1. A total of 25 genes of S100 family were
retrieved from the previous literature and TCGA/CGGA
databases [6, 17]. To better explore the interaction among
these genes, we established the PPI network comprising 22
nodes and 84 edges (Figure 2(a)). /e 10 genes with the
highest MCC score were identified by the STRING database
and Cytoscape software (Figure 2(b)), suggesting their
important role in human cancers.

To develop a specific S100 family-based signature for
glioma prognosis, this study carried out univariate, multi-
variate, and LASSO regression based on the S100 family
genes in the TCGA training data set. Finally, five S100 family
genes (S100A11, S100A16, S100B, S100PBP, S100A13) were
identified as key prognostic genes to establish the risk model
(Figures 2(c)–2(e)). Risk score value was determined by this
formula: risk score � (S100A11 × 0.431096) + (S100A16 ×

0.208028) + (S100B × 0.108247) + (S100PBP × 0.427990) +
(S100A13 × 0.107616).

Patients were classified as a low- or high-risk group
according to the median risk score value. Figure 3 displays
the prediction performance of our constructed nomogram
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in TCGA and CGGA databases. As revealed by Kaplan-
Meier analysis, high-risk group had markedly short OS
compared with low-risk group (P< 0.001; Figures 3(a) and
3(b)). We then used time-dependent ROC curves to de-
termine the predictive reliability of this model, and the
AUCs of ROC analyses are shown in Figures 3(c) and 3(d).
Moreover, risk score values of glioma cases and the corre-
sponding distribution are shown in Figures 3(e)–3(f), the
survival status of each patient on the dot plot is marked in
Figures 3(g)–3(h), and the heatmap of gene expression
patterns is described in Figures 3(i)–3(f ). /e above findings
suggested that our constructed prognosis prediction no-
mogram could be a good prognostic indicator in patients
with glioma.

3.2. Independent Prognostic Value of the Five-S100 Family
Gene Signature. We performed univariate and multivariate
Cox regression to determine whether the five-S100 family
gene signature could be independent of other clinical pa-
rameters (age, gender, WHO grade, and risk score) as a
predictor for patients with glioma. As revealed by univariate
analysis, age, risk score value and grade were significantly
related to patients’ OS in both data sets (P< 0.001), only
gender was not (Figures 4(a) and 4(c)). Upon multivariate
Cox regression, age, risk score value and grade were the
independent factors to predict OS for TCGA-derived

patients (P< 0.001), whereas only grade and risk score
remained statistically significant in the CGGA cohort
(P< 0.001; Figures 4(b) and 4(d)). /e above findings
suggested that our constructed model served as an inde-
pendent predictor for the prognosis of glioma patients.

3.3. Nomogram Analysis. /is study constructed the no-
mogram based on risk score values and clinical features of
patients for predicting their risk of survival using “rms”
package in R software (Figure 4(e)). /e nomogram inte-
grated age, grade, and risk score, and each factor was
employed for obtaining relevant score summary, as well as
overall score for respective samples. /e higher scores in-
dicated a worse prognosis. In the calibration curve, the
predictive and actual survival showed a good consistency in
1-, 3-, and 5-year OS (Figure 4(f)). /e nomogram model
passed the PH assumption and had no statistically significant
deviation (P< 0.05) (Figure S4). In brief, this nomogram
model performed well in predicting glioma survival.

3.4. GSEA Identifies S100 Family-Based Signature-Related
Signaling Pathways. /e constructed S100 family-based
signature had potent stratification ability in the prediction of
glioma OS, promoting us to investigate the related signal
transduction pathways. GSEA was conducted to compare the

Gene expression profiling data was
downloaded from TCGA and CGGA

Identification of 25 S100 family genes

Training set (TCGA) Test set (CGGA)

A five S100 family genes-based
risk signature 

Kaplan–Meier
analysis ROC analysis

Tumor immune
microenvironment

analysis 

Nomogram
establishment 

GSEA
enrichment 

In vitro experiment
validation 

Figure 1: Flow chart of study design.
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Figure 2: Establishment of a prognostic signature of glioma on the basis of S100 family genes. (a, b) Protein-protein interaction (PPI) among
S100 family genes and the 10 hub genes were identified. (c, d) Multivariate Cox and LASSO regression analyses. (e) Forest plots of risk genes
related to the prognosis prediction nomogram.
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Figure 3: Continued.
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gene sets enriched in low- and high-risk groups from both
data sets. As a result, for TCGA-derived high-risk patients,
GSEA pathways were associated with angiogenesis, apoptosis,
PI3K-AKT-MTOR signal pathway, epithelial-mesenchymal
transition, and glioma stem cell pathway (Figure 5(a)), which
were verified using the CGGA database (Figure 5(b)).

3.5. Immune Landscape between Low- and High-Risk Glioma
Patients. More and more studies indicate that tumor de-
velopment is also affected by the tumor immune micro-
environment (TIME). It is necessary to examine the impact
of prediction nomogram on TIICs in glioma patients.
CIBERSORT with the LM22 signature matrix was adopted
for estimating the heterogeneities in 22 kinds of TIIC in-
filtrating levels in both groups.

As shown in Figure 6, high-risk patients with glioma
showed markedly increased M2 macrophage and Treg
proportions, whereas apparently decreased activated Mast
cell proportion in both CGGA and TCGA cohorts. Addi-
tionally, high-risk group had a markedly increased pro-
portion of resting Mast cells compared with low-risk group
in TCGA, but there was no significant difference in CGGA.
Based on the Human Protein Atlas (HPA) database (http://
www.proteinatlas.org), we also found that M2-related mo-
lecular (CD163) and Treg-related makers (CD25, STAT5B,
and IL-10) were highly expressed in GBM tissues
(Figure S1). /e qRT-PCR results revealed that two im-
portant immune checkpoints, TGF-β and IL-10, were sig-
nificantly higher in GBM cells than in NHA control
(Figure S2).

3.6. Immune Checkpoint Inhibitors (ICIs) of S100 Family-
Based Signature. ICIs have vital functions in maintaining
immune homeostasis, which can be utilized by cancer cells
to escape the immune response. Here, this study analyzed
ICIs levels in both groups. As a result, high-risk patients had
markedly increased levels of checkpoints like PD-1, PD-L1,
PD-L2, TIM-3, LAG3, and CTLA-4 compared with low-
group patients (Figures 7(a)–7(h)). Additionally, the levels

of immunosuppressive cytokines (ARG1, TGF-β, IL-10,
IDO1, MOS2, MOS3) increased among high-risk cases
(Figures 7(i)–7(j)).

/e above findings suggested that high-risk patients were
more likely to develop the immunosuppressive microenvi-
ronment by upregulating immune checkpoints and im-
munosuppressive cytokines.

3.7. Verification of the Target Genes. Furthermore, the da-
tabases CGGA and GEPIA were adopted to verify the re-
lationship between the expression of those 5 signature-
related genes and patient survival. For the GEPIA-derived
cohort, the expression levels of S100A11, S100A16, and
S100B in low-grade glioma (LGG) and GBM samples in-
creased compared with those in noncarcinoma samples,
while S10013 in LGG tissue was upregulated in normal
tissues (Figure 8). In TCGA and CGGA database, we per-
formed a series of survival analyses to reveal the prognostic
value of target genes of the signature in glioma patients.
According to Figure 9, the group with high expression of
S100A11, S100A13, S100A16, S100B, and S100PBP showed
shorter OS relative to the group with low expression for all
patients with glioma in the TCGA database (P< 0.001). In
the CCGA database, the OS rate in patients with high levels
of S10011, S100A16, and S100B was markedly worse than
those with low expression (P< 0.001). /en, a subgroup
survival analysis was also performed for patients with LGG
and HGG (Figure S3). In general, upregulated target gene
mRNA expression of the S100 family-based signature pre-
dicted dismal prognostic outcomes.

3.8. S100B Mediates GBM Cell Growth and Migration. To
further validate this prognostic model, S100B gene was
selected as a representative to carry out the functional ex-
periments for the following reasons. Firstly, the S100A11,
S100A16, and S100B expression levels were significantly
upregulated in glioma tissues than in normal controls from
GEPIA database. Secondly, the survival analysis further
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Figure 3: Identification of prognosis prediction performance of S100 family-basedmodel of glioma fromTCGA and CGGA databases. (a, b)
/e Kaplan–Meier (K-M) curve analysis for low- and high-risk patients based on risk score. (c, d) ROC analysis of 1-, 3-, and 5-year survival.
(e, f ) Patient survival status on the dot pot and survival time with different risk scores. (g, h) Patient distribution of groups and rank of risk
score. (i, j) A heatmap of gene levels between high- and low-risk patients.
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Figure 4: Continued.
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demonstrated the significant prognostic power of these 3
signature-related genes in TCGA and CGGA cohorts. /en,
the qRT-PCR analysis showed that S100B expression was
increased more markedly in GBM cell lines (Figure 10(a)),
indicating that S100B may serve as an important prognostic
biomarker.

S100B expression level was relatively higher in U251 cells
than in T98G cells. /erefore, we knocked down the S100B
expression in U251 cells by si-S100B transfection, and
upregulated S100B in T98G cells (Figure 10(b)). /is study
conducted CCK-8 and EdU assays for detecting S100B’s
effect on the proliferation of GBM cells. As revealed by CCK-
8 assay, downregulated S100B expression markedly
inhibited U251 cell viability, with its overexpression in T98G
cells and yielded the opposite effect (Figure 10(c)).
According to EdU assay, inhibiting S100B dramatically
decreased the percentage of EdU-positive U251 cells, and
overexpressing S100B increased EdU-positive T98G cells
(Figure 10(d)). Also, this study conducted a transwell assay
for investigating S100B’s function in GBM migration and
invasion. Silencing S100B expression by siRNA obviously
decrease the number of invaded cells, whereas upregulating
S100B resulted in more invaded cells (Figure 10(e)). /e
findings suggested that S100B promoted GBM cell growth
and migration.

4. Discussion

Glioma is the most common type of brain tumor originating
from neuroglial progenitor cells. Typically, the blood-brain
barrier (BBB), comprising capillaries, basilar membranes,
and endothelial cells, is a major reason for limiting the
progress of antitumor drugs. With the recent advances in
high-throughput technology, identifying novel prognostic
markers and therapeutic targets may help improve glioma
survival. Many S100 family proteins showed high expression
levels within the nervous system [18]. We speculated that
S100 family genes might exhibit a potent prognostic value
for glioma patients.

A growing amount of open-sourced online platforms
and genomic data have made it possible to explore family
gene expression levels in glioma as well as the corresponding

clinical significance. /e present work analyzed S100 family
genes and constructed a robust nomogram on this basis to
predict glioma OS. Using Cox hazards and LASSO regres-
sion, five S100 family genes were identified for the prog-
nostic model. /e nomogram reliability, prediction
performance, and stability were next analyzed and validated.
As a result, the constructed signature could discriminate
glioma prognosis with high accuracy. In addition, we created
a nomogram consisting of clinical features and risk scores to
present a personalized survival prediction for each patient
with glioma. /e calibration curves showed that the pre-
dicted patient survival was close to the actual measurement,
indicating good predictive effects of the nomogram for
survival time. Our signature, therefore, has great potential to
be a clinical prognostic and predictive biomarker of glioma.

By focusing on the five signature-related genes of S100
family in this study, most of which have important functions
in cancer genesis and development. S100A11, is also called
calgizzarin or S100C, is localized both in the nucleus and in
the cytoplasm. S100A11 binds to RAGE receptor thereby
increasing epidermal growth factor (EGF) protein expres-
sion and stimulating cell growth [19]. It has been reported
that S100A11 shows overexpression in many cancer types,
including glioblastoma (GBM) [20–23]. S100A13 is iden-
tified to be involved in the nonclassical protein export,
containing fibroblast growth factor (FGF), interleukin-1α
(IL-1α), and synaptotagmins [24]. Growing evidence
showed that S100A13 has a strong relationship with tu-
morigenesis [25–27], and it has been proved as a novel
biomarker for papillary thyroid carcinomas (PTC) [28, 29].
Interestingly, S100A13 shows differential expression in brain
development process, which suggests that it is of great
importance to maintain the function of nervous system [30].
S100A16 is a recently discovered member of the S100 family
obtained from astrocytoma, which is structurally more stable
than other S100 genes [31]. S100A16 overexpression is
detected in different cancers, including pancreas cancer,
lung cancer, ovarian cancer, bladder cancer, and thyroid
gland cancers [32]. S100B is a nervous system-specific
protein that is mainly secreted from astrocytes. S100B is
widely involved in the regulation of phosphorylation, pro-
tein degradation, cellular proliferation, and differentiation.
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Figure 4: Independent prognosis significance of S100 family-based signature. (a–d) Univariate as well as multivariate Cox regression for OS
in glioma cases from TCGA and CGGA databases. (e) A model constructed by incorporating clinical features and signature. (f ) Calibration
curve showing the nomogram prediction performance in 1-, 3-, and 5-year OS.
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Figure 5: GSEA identifying the S100 family-based signature-related signaling pathways. (a) GSEA pathways were enriched into hallmarks of
malignant tumors for TCGA-derived high-risk patients. (b) Results were verified using the CGGA database.
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Additionally, serum of S100B is used as the diagnostic
biomarker for melanoma for a long time, which has also
been adopted to be the candidate predicting factor for lung
cancer brain metastasis recently [33, 34]. S100PBP is dif-
ferentially expressed in various organs and disease states,
which is dependent on tissue and cancer type. In breast
cancer, S100PBP expression was markedly related to patient
prognosis and different metastatic sites [35]. S100PBP level
is suggested to be related to pancreatic ductal adenocarci-
noma [36]. /e biological roles of these five genes in cancer
have partially provided clues for understanding the diag-
nostic and prognostic significance of the risk model in
glioma. In our study, we demonstrated that most of these
genes show high expression within GBM, and glioma pa-
tients with high expression levels have a shorter survival time
than those with low expression. Moreover, we chose S100B
as representative in subsequent functional analyses. /e
results showed that S100B expression markedly increased
within GBM cells, and S100B promoted GBM cells growth,
invasion, and migration. More investigations are needed to
explore the molecular mechanisms underlying S100B and
roles of other markers in the model in GBM.

Functional annotation of the S100 family-based signa-
ture via GSEA showed that there are a series of biological
functions, such as PI3K-AKT-MTOR signaling,

angiogenesis, apoptosis, epithelial-mesenchymal transition,
and glioma stem cell pathways. It is worth mentioning here
that apart from cancer-associated pathway, cancer stem cells
(CSCs) are highly enriched in the high-risk group. CSCs are
known as a rare population of self-renewing tumor cells,
which contribute mainly to tumor recurrence and resistant
to therapy [37, 38]. /ese findings indicated that high-risk
patients based on the prognostic signature are more pre-
disposed to tumorigenesis, recurrence, and resistance. In the
future, more functional experiments are expected to explore
the role of these five signature-related genes in glioma stem
cells.

In addition, accumulating evidence suggests that TIME
exerts an important part in glioma progress and develop-
ment [39]. As a result, this study also examined the asso-
ciation of TIIC infiltration levels with risk score value in the
prognosis mode. /e high-risk group showed increased
fractions of Treg cells and M2 macrophages phenotype.
Macrophages can be divided into classically activated M1
macrophages and alternatively activatedM2macrophages. It
is clear that M1 macrophages are involved in the antitumor
immune response, and M2 macrophages are mainly re-
sponsible for tumor initiation, growth, and metastasis. It is
also noted that Treg could promote tumor progression by
specifically inhibiting tumor-reactive T cells [40]. Consistent
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Figure 6: Association of risk score with TIIC infiltration. Box plots showing the TIICs with significant difference: (a) M2 macrophages,
(b) Regulatory T cells, (c) activated Mast cells, and (d) resting Mast cells between low- and high-risk patients with glioma in TCGA and
CGGA databases.

Journal of Oncology 11



CD274***

PDCD1LG2***

HAVCR2***

LAG3***

PDCD1***

CTLA4***

Type

Type

High

Low

−4

−2

0

2

4

TCGA

(a)

Type

High

Low

CD274***

PDCD1LG2***

HAVCR2***

LAG3***

PDCD1***

CTLA4***

Type

−3
−2
−1
0
1
2
3

CGGA

(b)

Risk

low

high

**

0

1

2

low high

Risk

PD
1 

ex
pr

es
sio

n

TCGA

Risk

low

high

CGGA
***

0.0

1.0

1.5

0.5

2.0

low high

Risk

PD
1 

ex
pr

es
sio

n

(c)

Risk

low

high

TCGA
**

0

1

4

3

2

low high

Risk

PD
-L

1 
ex

pr
es

sio
n

Risk

low

high

CGGA
***

0

1

3

2

low high

Risk

PD
-L

1 
ex

pr
es

sio
n

(d)

Risk

low

high

TCGA
****

0

1

3

2

4

low high

Risk

PD
-L

2 
ex

pr
es

sio
n

Risk

low

high

CGGA
****

0

1

2

3

low high

Risk

PD
-L

2 
ex

pr
es

sio
n

(e)

Risk

low

high

TCGA
*

0

6

4

2

low high

Risk

CT
LA

4 
ex

pr
es

sio
n

Risk

low

high

CGGA
**

0

1

2

low high

Risk

CT
LA

4 
ex

pr
es

sio
n

(f )

Risk

low

high

TCGA
*

0

6

4

2

low high

Risk

LA
G

3 
ex

pr
es

sio
n

Risk

low

high

CGGA
**

0

2

1

low high

Risk

LA
G

3 
ex

pr
es

sio
n

(g)

Risk

low

high

TCGA
***

2

6

4

low high

Risk

TI
M

-3
 ex

pr
es

sio
n

Risk

low

high

CGGA
****

2

6

4

low high

Risk

TI
M

-3
 ex

pr
es

sio
n

(h)

Figure 7: Continued.

12 Journal of Oncology



Ex
pr

es
sio

n−
lo

g 2
(T

PM
+1

)

8

6

4

2

0

10

S100A11

LGG
(num(T)=518; num(N)=207)

Ex
pr

es
sio

n−
lo

g 2
(T

PM
+1

)

8

6

4

2

0

12

10

S100B

LGG
(num(T)=518; num(N)=207)

Ex
pr

es
sio

n−
lo

g 2
(T

PM
+1

)

4

3

2

1

0

5

6
S100PBP

LGG
(num(T)=518; num(N)=207)

Ex
pr

es
sio

n−
lo

g 2
(T

PM
+1

) 8

6

4

2

0

10

S100A13

LGG
(num(T)=518; num(N)=207)

Ex
pr

es
sio

n−
lo

g 2
(T

PM
+1

) 8

6

4

2

0

10

S100A16

LGG
(num(T)=518; num(N)=207)

* * * *

(a)

Ex
pr

es
sio

n−
lo

g 2
(T

PM
+1

)

8

6

4

2

0

10

S100A11

GBM
(num(T)=163; num(N)=207)

Ex
pr

es
sio

n−
lo

g 2
(T

PM
+1

) 8

6

4

2

0

10

S100A13

GBM
(num(T)=163; num(N)=207)

Ex
pr

es
sio

n−
lo

g 2
(T

PM
+1

)

8

6

4

2

0

10

S100A16

GBM
(num(T)=163; num(N)=207)

Ex
pr

es
sio

n−
lo

g 2
(T

PM
+1

)

8

6

4

2

0

10

12

14
S100B

GBM
(num(T)=163; num(N)=207)

Ex
pr

es
sio

n−
lo

g 2
(T

PM
+1

)

4

3

2

1

0

5

S100PBP

GBM
(num(T)=163; num(N)=207)

* * *

(b)

Figure 8: Expression of five signature-related genes based GEPIA database. (a) S100A11, S100A13, S100A16, S100B, and S100PBP levels
between low-grade glioma (LGG) and normal tissues. (b) Gene levels within glioblastoma (GBM) and noncarcinoma samples.
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Figure 7: /e estimation of two prognostic subtypes in immunosuppressive microenvironment. (a, b) Heatmap showing expressions of
immune checkpoints between high- and low-risk patients derived from TCGA and CGGA databases. (c) PD-1 levels between high- and low-
risk patients; (d) PD-L1 levels within high- and low-risk patients; (e) PD-L2 levels within low- and high-risk groups; (f ) CTLA-4 expression
in low- and high-risk patients; (g) LAG3 levels within low- and high-risk patients; (h) TIM-3 levels within low- and high-risk patients. (i, j)
Cytokine levels in tumor immunosuppressive microenvironment between low- and high-risk patients. ∗P< 0.05, ∗∗P< 0.01, ∗∗∗P< 0.001,
and ∗∗∗∗P< 0.0001.
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Figure 9: Prognosis of five signature-related genes based on TCGA and CGGA database. (a) Prognostic value of S100A11, S100A13,
S100A16, S100B, and S100PBP in glioma from TCGA database. (b) Prognostic value of these genes in glioma from CGGA database.
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Figure 10: S100B mediates GBM cell proliferation and migration. (a) qPCR results showing 5 signature-related genes levels within GBM
cells and NHA controls. (b) WB results revealing S100B was efficiently knocked down within U251 cells and overexpressed within T98G
cells. (c) CCK-8 assay of U251 cells subjected to specific siRNA transfection and T98G cells after S100B plasmid or vector transfection.
(d) EdU assay of U251 cells subjected to specific siRNA transfection and T98G cells S100B plasmid transfection. (e) Transwell assay of U251
cells subjected to specific siRNA transfection and T98G cells S100B plasmid transfection. ∗P< 0.05, ∗∗P< 0.01, and ∗∗∗P< 0.001.
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with these, our study suggested that the increased tumor-
associated M2 macrophages and Tregs are related to poor
prognosis of glioma, probably due to their involvement in
immune invasion.

Tumor immune cytokines and checkpoints are consid-
ered important factors to determine glioma prognosis and
efficacy [41]. Interleukin-10 (IL-10) and transforming
growth factor-β (TGF-β) represent two typical immuno-
suppressive cytokines within TIME. TGF-β is known to
inhibit immune responses through suppressing the activity
of NK-cells, regulating the generation of proinflammatory
cytokines, and changing the differentiation of Tcells [42]. IL-
10 is an anti-inflammatory cytokine that is broadly expressed
by various immune cells, including M2 macrophages, my-
eloid dendritic cells (DCs), /1, /2, and Treg cells. Es-
pecially, Treg-derived IL-10 can enhance Treg function and
involve in Treg-induced immune regulation [43]. In our
study, immunosuppressive cytokines, TGF-β and IL-10,
were upregulated in the high-risk group. In addition, as the
immune checkpoints are often used to escape immune
surveillance by cancer cells, we also explore the response of
checkpoint inhibitors (e.g., PD-1, PD-L1, PD-L2, CTLA-4,
LAG3, and TIM-3) and discovered that many of these genes
significantly increased in the high-risk group. Based on our
results, high-risk glioma patients may have a better response
for immunotherapy.

However, there are some limitations in the present
study. Firstly, the data downloaded from public sources
was restricted and incomplete, as well as no clinical
samples were used for validation. Secondly, the five genes
in the signature required more in vitro and in vivo ex-
periments to verify their function in glioma. Finally,
further researches in multicenter, large-scale, and pro-
spective clinical trials are needed to confirm the risk
model’s predictive efficacy.

5. Conclusion

/is work first constructed and validated an S100 family-
based signature for the prognosis of glioma. /is risk
signature can be used as a factor to independently predict
the glioma patients’ OS. We also proved an important
value of this model in glioma immune microenvironment.
Moreover, we identified that S100B, as an important
biomarker, could promote GBM cell growth and invasion
in vitro. Our study provided a prognostic model
and promising biomarkers for glioma diagnosis and
treatment.
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