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Noncoding RNAs have been shown with powerful ability in post-transcriptional regulation, enabling intertwined RNA crosstalk
and global molecular interaction in a large amount of dysfunctional conditions including cancer. Competing endogenous RNAs
(ceRNAs) are those competitively binding with shared microRNAs (miRNAs), freeing their counterparts from miRNA-induced
degradation, thus actively influencing and connecting with each other. Constantly updated analytical approaches boost out-
standing advancement achieved in this burgeoning hotspot in multilayered intracellular communication, providing new insights
into pathogenesis and clinical treatment. Here, we summarize the mechanisms and correlated factors under this RNA interplay
and deregulated transcription profile in neoplasm and tumor progression, underscoring the great significance of ceRNAs for
diagnostic values, monitoring biomarkers, and prognosis evaluation in cancer.

1. PervasiveNoncodingRNAs inGenomicScope

Numerous evidence has emerged regarding the noncoding
properties of RNA transcripts over the past years, unraveling
whose great capacity that goes far beyond the previously
well-characterized genetic information carrier and indis-
pensable messenger for protein synthesis to post-tran-
scriptional regulation and multilayered sequence
interactions, whereby extensively interweaved molecular
crosstalk along with rapidly changing cellular environment
composes a robust intracellular connection. ,e identified
verification and importance of prevalent noncoding RNAs
(ncRNAs) in evolutionary complexity of diverse organisms
lies partially in the comparison, where up to 75%–95% of the
human genome is transformed into RNA transcripts basi-
cally varying in length and functions, with actually less than
2%, quantitively 21,000 genes [1], attributed with protein-
coding properties [2, 3], yet almost genome-wide translation
has been confirmed in simply structured species such as
unicellular yeast [4], and Caenorhabditis elegans possess
about an equal amount of genes encoding a protein with
human but a 30 times smaller genome [5]. Mingled with
multiple contributing factors, various modes of

transcription generate products including but not limited to
antisense strands or noncoding intergenic transcripts, which
were previously unrecognized and thought to be useless
remainders of an immature expressing mechanism. Taking
200 base pairs as a boundary, noncoding transcripts are
roughly divided into two categories corresponding with
their size, namely small ncRNAs and long ncRNAs
(lncRNAs) [6]. Small ncRNAs have been deeply function-
alized, among which miRNAs enrolled in the intricate RNA-
RNA regulation network are one of the most representative
components and will be clarified later in detail, concerning
their noteworthy roles in biochemical behaviors and path-
ophysiological conditions [3, 7, 8]. Conversely, presenting
pleiotropic effects as guides, scaffolds, natural decoys, and
sponges in large-scale molecular correlations in transcrip-
tional, post-transcriptional, epigenetic, and gene-expressing
events, lncRNAs have been reportedly viewed as “master
regulator” [9], even so, those hitherto hidden approaches
through which lncRNAs flexibly participate in cellular ho-
meostasis stabilization and response to perturbation in
development of plenty of diseases, herein exemplified by
cancer, still await further exploration. Based on existing
achievements underscoring the remarkable potential of
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ncRNAs as regulating elements in carcinogenesis, we
overview the profile of ncRNAs, their derived identity as
ceRNAs in tumor pathogenesis, and objective conditions
affecting their inner action, which facilitates the renewal of
highly targeted predicting tools and lays a deeply rooted
foundation for future research and clinical implications in
biomarker detection, prognosis judgement, and therapeutic
regimen selection.

2. ceRNAHypothesis: Derivation and Extension

Transcribed mainly from introns of coding genes, with the rest
from exons of coding genes as well as intronic and exonic
regions of noncoding sequences [10], miRNAs are small single-
stranded RNAs consisting of generally 19–23 nucleotides,
centralizing ceRNAs to regulate and interplay with each other
by recognizing miRNA response elements (MREs) of target
transcripts [2, 11, 12]. miRNA biosynthesis is a sequential
enzyme-dependent process, in which canonically transcribed
precursor miRNAs (pre-miRNAs) in the nucleus, in tandem
catalyzed by RNA polymerase and nuclear Drosha/DGCR8
complex, are released into the cytoplasm and cleaved into
double-stranded miRNAs with appropriate length by Dice, and
finally incorporated into Argonaute-loaded miRNA-induced
silencing complexes (miRISC) after degeneration of comple-
mentary strands [6, 13], base pairing with targets under the
direction of 6–8 nucleotides in miRNAs’ 5′ ends [9]. Seed
matches in target transcripts are required for binding with
miRNAs, while perfect complementarity is not always neces-
sary. MREs are commonly 2–8 nucleotides sited in coding
sequences (CDS), 5′ untranslated regions (5′UTRs), andmostly
3′ UTRs of several subsets of RNAs comprising lncRNAs,
transcribed pseudogenes, circular RNAs (circRNAs), and
mRNAs [14–16], which are subjected to inhibition on ex-
pression through either complete degradation or translation
repression, respectively, occurringwhen in high or relatively low
degrees complementary base pairs are matched between MREs
and miRNAs [2, 3]. Some have pointed out that imperfect
bindings, implying “bulged sponges” in seed regions, are more
effective in soaking up miRNAs and serving as competing
molecules partly because of the longer period of occupation;
otherwise,miRNAs are released once the perfectly paired targets
go through degradation [17]. As a mutual interaction, the
availability and activity of miRNAs are impaired by their
binding targets, some of which degrade them, while others
sequester them from alternative sequences of interest [11, 18].
What’s more, 3′ end modification of miRNAs and target RNA
function in a mathematical titration principle also account for
such reduction in miRNA levels [19]. Given the above, it is
conceivable that miRNAs may act as axis center in complicated
intracellular crosstalk in both homeostatic status and disturbed
physiological milieux like cancer.

,eoretically, when various transcripts are targeted
by the same miRNAs, an elevated transcription level of
one side would alleviate miRNA-induced suppression on
the other, leading to direct or indirect regulation on gene
expression. Transfected into viral vectors, artificial
sponges of specific miRNAs were exploited before natural
targets came into view, which were transcribed by strong

promoters and synthesized to bear repeated binding sites
for aimed miRNAs, thus exhibiting fascinating effects on
derepressing counterpart targets [20, 21], showing pro-
found significance for RNA crosstalk, and more precisely,
the formation of ceRNA hypothesis.

,e first discovered natural sponge was lncRNA IPS1 found
inArabidopsis thaliana, whichwas observed to decoy phosphate
starvation-induced miR-399 and subsequently help maintain
the stability and abundance of its partner target PHO2 [22].
Unlike precedently clarified perfect complementarity in plants,
the mismatched loop on the miRNA cleavage site made IPS1
bypass the impairment and competent for efficient binding
[3, 22]. Following the uncovery of this phenomenon termed
“target mimicry” [22], the parallel finding was disclosed in
animal cells, where ectopic overexpression of MREs resulted in
moderately declining miRNA levels and 1.5–2.5-fold accu-
mulation of the targets [21]. Later in 2010, Herpesvirus saimiri
transformed Tcells were reported to express ncRNA H. saimiri
U-rich RNAs (HSURs), which were correlated with miR-27
degradation and increased FOXO1 levels [23]. ,e underlying
implication andmechanismof these promising discoveries were
extended to the field of cancer when pseudogene PTENP1 was
proved to share common miRNAs with its homologous coding
RNA [24].With the antecedent supporting evidence assembled,
the ceRNA hypothesis was put forward in 2011, demonstrating
that each miRNA has manifold RNA targets and most RNAs
bear a wealth ofMREs, thus endogenous coding and noncoding
RNAs regulate and crosstalk with each other by competitively
binding to the shared but limited miRNA pools [12]. In the
same year, other three research reinforced the crucial role of
ceRNAs in the molecular characterization of cancer cells
[25–27].

Grouping all the noncoding RNAs and noncoding
properties of mRNAs into a functional complexity, the
ceRNA hypothesis essentially opens the window for a
multilevel and trans-regulatory ceRNA network (ceRNET)
over the transcriptome, where competition and interplay
among all subsets of ceRNAs occur in direct, indirect, or
secondary manners with the help of miRNAs, together
shedding light on the biochemical mechanism and post-
transcriptional-layered explanations for pathogenesis and
progression of massive disordered conditions such as cancer.
Moreover, correlation with other factors such as RBPs and
transcription factors also influences ceRNAs’ biological
activities [28], and miRNAs similarly vie for potent binding
with shared target pools [29]. Some suggested ceRNA
concept to be expanded to whatever RNA crosstalk sur-
rounding common regulators [6], while others by the same
token proposed “ceRNome” as a notion referring to the
integration of reciprocally tying RNA molecules in a
comprehensive cellular environment [9], indicating that
ceRNA crosstalk is in no way standalone but in a global post-
transcriptional context.

3. Building Blocks of ceRNA

3.1. Pseudogenes. Previously regarded as nonfunctional
relicts of their ancestral genes due to detrimental mutations
impeding them from being translated into explicit
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phenotypes [2], pseudogenes are gradually performing as
bona fide competitors for their cognate genes with highly
homologous MRE overlaps. Independent epigenetic modi-
fications in pseudogenes signify initiative and stable evo-
lutionary conservation [2]. About 14,505 pseudogenes
contribute to making up human genome according to
GENCODE Release (version 24) [2], consisting of unpro-
cessed pseudogenes originating from gene duplication,
processed pseudogenes through reverse transcription, and
de novo synthesized unitary pseudogenes with no coding
partners [30], whose transcripts participate in gene regu-
lation as antisense sequences or compelling miRNA decoys
as a subset of lncRNAs in ubiquitously expressing and tu-
mor-specific patterns [31].

3.2. lncRNAs. ,ere are estimated approximately 17,910
lnRNAs varying in length from 0.2 to 100 kilobases [32],
which display tissue and developmental complexity, align
with functional and spatial diversity of chromatin
modification, RNA processing in the nucleus, and gene
coding management in cytoplasmic parts [33], coun-
teracting the reportedly low abundance as competitive
candidates for miRNA binding in given conditions [3].
More precisely, lncRNA X-inactive specific transcript
(Xist) could act in cis to devitalize the entire chromosome
[34], and HOX transcript antisense RNA (HOTAIR)
function in trans to drive metastasis through gene ex-
pression regulation [35], and chromatin structure is
remodeled by alternative splicing associated with me-
tastasis-associated lung adenocarcinoma transcript 1
(MALAT1) [36]. ,e most studied lncRNA in hepato-
cellular carcinoma, highly upregulated in liver cancer
(HULC), is able to disengage protein kinase catalytic β
(PRKACB) from miR-372 restraint, therefore promoting
cAMP response element-binding protein (CREB) phos-
phorylation and, in turn, amplifying HULC upregulation
[37]. Besides, lncRNAs are of great importance in con-
trolling cell differentiation and pluripotency mainte-
nance with respect to the effects of long intergenic
noncoding RNAs (lincRNAs) [38].

3.3. circRNAs. circRNAs are fairly abundant in mam-
malian cells, generated from nearly 20% of functional
genes [39]. Self-circularization depends on covalent
conjunction of 3′ and 5′ ends after “backsplicing,”
conferring high stability to these loop RNA structures
compared with their linear counterparts, due to lack of
free terminals and thereby resistance to exonuclease-
induced degradation and miRNA-mediated repression
[40]. circRNA ciRS-7 was identified to contain 60–70
MREs for miR-7 [40], acting as crucial regulators in
cerebral development and tumorigenesis [40, 41]. Con-
siderable evidence disclosed key roles of circRNAs as
ceRNAs with dominant intracellular localization in
malignancy progression [42], and the distinct stability
makes them ideal biomarkers in body fluids such as blood
or saliva for clinical assessment [43, 44].

3.4. mRNAs. Since more than 60% of human mRNAs
harbor MREs according to computational prediction [45], it
is unsurprising to postulate that the function of protein-
coding RNAs is no more restricted to translation templates
but propagated to active fine-tuners in ncRNA-mRNA and
mRNA-mRNA crosstalk, which may give rise to accordant
or opposite effects with their inherent encoding features. It
has been widely studied that VAPA, CNOT6L, ZEB2, and
VCAN mRNAs are ceRNAs for tumor suppressor PTEN
mRNA, representing aberrant transcription levels and
resulting in downregulation of PTEN mRNAs in a Dicer-
dependent way in various cancer types such as colorectal
cancer [25], breast carcinoma [46], and melanoma [26].
Similarly, other classically identified molecules include
VCAN and CD44 with their competing RNAs, endowed
with complex roles in cell proliferation, invasive behaviors,
and some other malignant signatures in contexts of cancer
[47, 48].

4. ceRNA Crosstalk Decipherment

Increasing computational, mathematical, and experimental
tools have been posed for decoding ceRNA crosstalk and
identifying putative candidates for their topology and dynamic
fluctuation. Typical verifying process of ceRNA interactions
successively includes corroborative tests such as RNA immu-
noprecipitation for miRNA-ceRNA binding, confirmation of
positive correlation of transcription levels of ceRNAs, repeated
miRNA-dependency tests through Dicer knock-out or MRE
mutations, and finally epigenetic changes induced by up- or
downregulation of ceRNAs in disrupted physiological condi-
tions [6]. Prediction algorithms including PITA, TargetScan,
miRanda, and rna22 have been validated efficient for seeking
ceRNAs through recognition of MREs and scoring overlaps in
quantified assessment, forming the database of predicted
ceRNA interactions (ceRDB), yet the unclear targeting rules and
incomplete complementarity brought out limitations in some
cases [49]. With high-throughput sequencing of RNA isolated
by crosslinking immunoprecipitation (HITS-CLIP) and pho-
toactivatable ribonucleoside-enhanced crosslinking and im-
munoprecipitation (PAR-CLIP) introduced into wide use,
RISC-bound targets are more efficiently and precisely identified
[49–51]. Moreover, MS2-tagged RNA affinity purification
(MS2-TRAP) makes it possible for context-specific verification
[52]. Further elucidation of ncRNA regulation for each subtype
includes PseudoFun for pseudogenes [53] and GDCRNATools
for lncRNAs [54]. ,e combination of HITS-CLIP/PAR-CLIP
with subcellular RNA imaging [5] andmass spectrometry-based
RBP abundancemeasurement allows analysis of sublocalization
and RBP binding [6]. Taken together, the Smart Cancer Survival
Predictive Systemand theGene Survival Analysis Screen System
are brought up for individual prognostic evaluation and precise
clinical supervision [55].

5. Molecular Bases for ceRNA Interaction

Mathematical, in silico, and laboratory approaches have
been carried out as above enumerated, yielding conclusions
that abundance of ceRNAs and miRNAs, subcellular

Journal of Oncology 3



localization, the number of shared MREs, and many other
indirect contributing factors are suggested to influence
ceRNA-miRNA interaction efficiency.

Analyses for optimal cross-talk conditions showed that
only when the stoichiometry of the interrelated ceRNA and
miRNA falls in a narrow range of equivalence could sig-
nificant cross-regulation occur [18, 56, 57]. Such swift
mutual effects are initiated with a threshold-like behavior,
accounting for miRNAs presenting both their roles as
“switches” when target transcripts are highly repressed in
low abundance and “fine-tuners” when ceRNA levels are
floating around the threshold for sensitive regulation
[58, 59], partly consistent with the assumption that higher
amount of miRNAs for target ceRNAs exert stronger re-
pressive effects [60]. Furthermore, with MREs in equal af-
finity for the shared miRNAs, the wider repertoire of
ceRNAs targeted by the miRNA is, the weaker influence the
miRNA would exert on each individual target [57]. In other
words, distant ceRNAs in the same regulatory network
bidirectionally detriment miRNAs’ efficacy on each other.
Notably, a quantitative assay for miR-122 and its ceRNA
aldolase mRNA revealed that significant derepression for
ceRNA rivals was only observed when aldolase mRNA
experienced nonphysiological overexpression [59], indi-
cating particular ceRNA crosstalk may be quite mild in
normal conditions but prevalent in pathological contexts.

RNA-binding proteins (RBPs) are greatly involved in
post-transcriptional regulation by means of RNA splicing,
transport, and stability mediation. Except for MREs, there
are RBP binding sites located in ceRNA sequences, whereby
RBPs antagonize or cooperate with miRNAs by directly
occupying specific binding sites or indirectly altering affinity
to miRNAs through reordering the secondary structure of
ceRNAs. With numerous binding locus neighboring or
overlapping miRISC binding sites in 3′ UTR [61], RBP HuR
largely stabilizes RNA transcripts, whereas AUF1 exerts
synergistic effects with miRNAs on target energy [62].
Similarly, HuR recruits let-7 RISC for repression of tran-
scriptional regulator c-Myc [63], and c-Myc is widely ac-
cepted in controlling miRNA transcription, including
upregulation of oncogenetic miR-17-92 cluster [64]. Ex-
pectedly, RNAs may be relocated into different subcellular
distributions once loaded with RBPs, which also affects the
efficacy of spatiotemporally mutual interaction.

Hydrolytic deamination of adenosine to inosine (A to I
editing), most frequently existing in UTRs and intronic
sequences [65], epitomizes widespread RNA editing events
in post-transcriptional regulation. It has been validated
predominant in the majority of pre-mRNAs relying on
adenosine deaminase, and to create new seed regions and
accordingly corresponding target spectrum for miRNAs,
destroying or generating miRNA matching substrates in
ceRNAs [66]. Other forms of RNA editing resulting in base
insertion, deletion, and nucleotide substitution simulta-
neously enrich the variation and diversity of the ceRNA
network.

ceRNA crosstalk embraces multilayered regulatory
hallmarks. Aside from the aforementioned aspects, the
abundance of argonaute also causes competition among

miRNAs as a bottleneck in the enzyme catalyzing process of
miRISC synthesis [67]. Single-nucleotide polymorphism
(SNP) allows subtle nucleotide component differences in
MREs sharing collective miRNA pools, and alternative
splicing provides miRNAs with shortened 3′ UTRs in a
variety of cancer cells [68], both embodied in the altered
affinity of MREs for miRNA binding, with higher affinity
possessing stronger binding capacity. Hence, the overall
regulating network is presented in given conditions, where
additional determinants are exactly taken into
consideration.

6. ceRNAs in Cancer

Chromosomal rearrangement, point mutation, shortened 3′
UTR, and other alterations in chromosome structure are
commonly seen in the cancer cell genome, as a consequence,
dysregulation of the ceRNA network and closely linked
tumorigenesis, cell proliferation, and resistance to con-
ventional treatment occur in such circumstances (Table 1).

As has been well elucidated, a decreased level of pseu-
dogene PTENP1 leads to inhibition of tumor suppressor
PTEN in a miRNA-dependent manner in numerous cancer
types. ,e antisense lncRNAs, asRNAa, and asRNAb, de-
rived from PTENP1 locus, respectively, recruit epigenetic
regulators to the PTEN promoter region, confining PTEN
transcription, and stabilize PTENP1 to derepress PTEN
from miRNA absorption [69]. Coincident with previously
published materials, ceRNA rivals for PTEN mRNA also
includes mRNAs, whose competition for a large number of
miRNAs is weakened in given pathological conditions, thus
disrupting the downstream anti-oncogenic PTEN/AKT/p53
pathway [70].

Recent evidence deepens the body of knowledge con-
cerning circRNAs in cancer progression. ,e absence of
NUDT21, an RNA splicing factor, causes downregulation of
circRNAs in HCC occurrence [71], and UGUA elements
were pointed out to be crucial for sequence cyclization
through binding with NUDT21 to form a dimer. Microarray
revealed cirr5615 as an effective sponge for miR-149-5p, and
its upregulation results in worse clinical outcomes in CRC
patients, through disinhibition of β-catenin stabilization
regulator tankyrase (TNKS) [72]. Similar mechanisms and
positive correlation are found between increased circTP63
and FOXM1 levels in lung cancer, linked by miR-873-3p
[73]. A prognostic model of N stage in TNM classification
and overexpression of circCRIM1 was established based on
circCRIM1-miR-422a-FOXQ1 crosstalk in nasopharyngeal
carcinoma, which is related to peripheral implantation,
epithelial-mesenchymal transition (EMT), and impaired
chemosensitivity [74].

Constantly emerging lncRNA protagonists also provide
new avenues for refinement of deregulated ceRNA interplay
in carcinoma development. Based on vast achievements in
this field, integrated analysis has risen up luxuriantly,
delving into tissue- and cancer-specific differentially
expressed genes (DEGs), harnessing intensive databases
such as the Cancer Genome Atlas (TCGA) and the Gene
Expression Omnibus (GEO), with statistical methods
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supporting bioinformatics analysis. Profile of lncRNA
transcription has been outlined in a multitude of cancers
such as HCC, breast cancer, glioblastoma, GC, and meta-
static melanoma [75–80], providing promising biomarkers
for prognostic evaluation and early-stage detection of these
pathological changes.

Countless breakthrough in ceRNAs has undoubtedly
sparkled diagnostic and curative potent towards cancer; what
deserves extra attention, on the other hand, is that sometimes, it
is the part of the integrated regulatory axis that paves theway for
more outward-extending investigations. It has been revealed in
2018 that scaffold protein disabled-2 (DAB2), whose antineo-
plastic role was initially identified in ovarian cancer, was
downregulated bymiR-191 through bindingwith itsMREs in 3′
UTR in response to estrogen stimulation, heralding promoted
cellular viability, tumor growth, and poor long-term survival in
patients with ER+breast cancer [81]. At the same time, the
miR-203/SNAI2 axis emerged as a high-profile symbol in tumor
stemness, EMT, and angiogenesis in prostate cancer, in which
suppression of miR-203 on transcriptional inhibitor SNAI2 is
relieved due to lessened miR-203 existence, rendering rean-
imation of the downstream oncogenic GSK-3β/β-CATENIN
signal pathway by activated SNAI2 [82]. Later in 2019, similar
molecular activities, somewhat replenishing the former, were
unveiled in tumorigenesis of lung adenocarcinoma (LUAD),
where overexpressed lncRNA chromatin-associated RNA 10
(CAR10) and lncRNA histocompatibility leukocyte antigen
complex P5 (HCP5), which was transcriptionally up-regulated
by SMAD3 after TGFβ communication in advanced stages of
LUAD, were both identified to prompt cell proliferation and
metastasis exactly bymeans of miR-203/SNAI regulatory access
[83, 84]. Such findings suggest a vast potential for future de-
velopment with previous research.

7. Resistance to Immunotherapy
and Chemotherapy

Despite endlessly upgraded triumphs in typical immu-
notherapies, such as monoclonal antibodies, immune
checkpoint (IC) inhibitors, chimeric antigen receptor
(CAR) genetically-modified T cell therapy, and genetic
modification of T cell receptor (TCR), which are cate-
gorized into adoptive T cell therapy (ACT), tumor cells
obstinately escape from internal or exogenously ad-
ministered immune surveillance, through intrinsic,
adaptive, or acquired accommodation, leading to ma-
lignant performance and nonresponse to immunother-
apy. Cytotoxic T-lymphocyte-associated protein 4
(CTLA4) on T cells has been well studied as an immune
checkpoint, which blocks T-cell-stimulating binding of
CD28 and APC B7 molecules, inducing Tcell inactivation
[85]. Contrary regulatory trends of miR-29 and B7–H3,
one of the eight isoforms of the B7 family, were confirmed
in solid tumors such as neuroblastoma, sarcoma, cuta-
neous melanoma, and breast cancer [86–88]. Another
commonly upregulated IC in cancers is PD-1, whose
binding with its ligand PD-L1 induces T cell disability.
Somatic mutation of guanine to cytosine in PD-L1 3′
UTR leads to altered MRE sequences in various

gastrointestinal cancers (GCs), freeing PD-L1 mRNA
from the restriction of miR-570 [89, 90]. Additionally, an
array of miRNAs have been found related to aberrant
overexpression of PD-L1 in both solid and hematological
cancers and to motivate chemoresistance and metastasis.
lncRNA-miRNA-PD-L1 regulations are also broadly
discovered in tumor growth, cell proliferation, and mi-
gration in GCs and nonsmall cell lung carcinoma
(NSCLC) [91–94]. Possible explanations for resistance to
IC inhibitor (ICI) immunotherapy reside in the hetero-
geneity of MHC loss and susceptibility to spontaneous
mutations, with deteriorated recognition and immune
response to abnormal stimuli.

,e development of TCR-engineered T cell therapy
and CAR-T cell therapy reflects and, to a great extent,
stands for the longstanding exploration of adoptive T cell
therapy. Granted as a breakthrough designation with
CD19-targeting CAR-T cell therapy on CD19+ B cell
hematological malignancies leading to complete or
partial remission in clinical trials, cancer immunotherapy
focuses on fully arousing or assisting the autologous
immune system to exert intensified supervision and re-
striction on tumor progression, but in fact, immune
evasion is always inevitable ascribed to the ever-changing
tumor microenvironment, immunosuppressive cytokine
pathways (e.g., IFNc in PD-L1 expression, TGFβ in
urothelial cancer, VEGF in producing myeloid-derived
suppressor cells (MDSCs), Wnt/β-catenin signals in co-
lorectal cancer, and lack of sensitizing cytokines such as
IL-2, IL-12, and IL-15), impaired function or expression
of antigen loading molecules and abnormal post-tran-
scriptional background of ceRNAs, letting tumor cells
subtly get away with immunological monitoring
[95–100]. LncRNA MALAT1 drives dendritic cells (DCs)
into tolerogenic types with the secretion of IL-10 and
low-level expression of CD80 and MHC by acting as an
miR-155 sponge [101]. Meanwhile, PD-L1 is overex-
pressed in the regulation of miR-195 on MALAT1 in
diffuse large B-cell lymphoma and Linc00473 in pan-
creatic cancer [91, 102]. ,e above-mentioned lncRNA
HOTAIR frees human leukocyte antigen-G (HLA-G)
expression from miR-152, oppressing immune response
through devitalizing NK cell activity in gastric cancer
[103, 104]. CD8+ T cell fatigue and exhaustion, which is
positively related with T cell immunoglobulin and mucin
domain protein 3 (Tim-3), is a common route of immune
escape in hepatic cell carcinoma and could be restored by
inhibition of nuclear-enriched autosomal transcript 1
(NEAT1) to enhance Tim-3 capture via miR-155 [94].
Also, NEAT1 directly binds with DNMT1, a member of
DNA methyltransferase family, with aberrant methyla-
tion in promoter regions leading to epigenetically
downregulated antioncogene P53 expression and cGAS/
STING pathway for T cell invigoration [105]. Here, we
have merely touched on limited elements of ceRNA
regulation in adoptive immunotherapy, while the un-
derstanding of therapeutic agents and regulatory hinges
informs a feasible combination of T cell therapy with
selected chemokines, cytokines, ICIs, and monoclonal
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antibodies, foreboding accessible application and benefits
of optional strategies in cancer treatment.

Chemoresistance is an Achilles heel for progression
and unsatisfying prognosis of malignancy and is always
accompanied by disadjust biological mechanisms in-
cluding drug outflow, cell proliferation, distant migra-
tion, and EMT. One of the most exploited regulators in
chemoresistance is lncPVT1-representing noncoding
sequences transcribed from the cancer-prone 8q24
chromosome [106] (Table 2). lncPVT1 is empowered with
three regulating approaches. First, it recruits modifiers

such as EZH2 to epigenetically dampen tumor sup-
pressors, including p53 in HCC [107], large tumor
suppressor kinase 2 (LATS2) in NSCLC [108], and miR-
195 [109]. Second, differential processing of lncPVT1 is
referred to the generation of lncPVT1-derived miRNAs,
taking miR-1204 in NSCLC for instance, which accel-
erates cell proliferation through targeting paired-like
homeodomain 1 (PITX1) [110]. Finally and predomi-
nantly, lncPVT1 dysregulation in resistance to chemo-
therapeutic agents towards a myriad of cancers reconciles
its tremendous vitality as a ceRNA.

Table 1: ceRNAs in cancers.

Cancer ceRNA miRNA Target Reference
Breast cancer CYP4Z2P-3′ UTR miR-211, miR-197, miR-204 CYP4Z1 [111]

FOXO1 3′ UTR miR-9 E-cadherin [112]
VERSICAN 3′ UTR miR-136, miR-199a-3p, miR-144 Rb1, PTEN [46]

lncRNA GAS5 miR-21 — [113]
linc-ROR miR-205 ZEB2 [114]

miR-145 ARF6 [115]
lncRNA–CDC6 miR-215 CDC6 [116]

CC lncRNA XLOC_006390 miR-331-3p, miR-338-3p PKM2, EYA2 [117]
CRC OCT4B mRNA miR-145, miR-20a/b, miR-106a/b, miR-335 OCT4A [118]

circ-ITCH miR-7, miR-17, miR-214 ITCH [119]
circ5615 miR-149-5p TNKS [72]

Endometrial cancer linc-ROR miR-145 — [120]
GC lncRNA GAPLINC miR-211-3p CD44 [121]

lncRNA HOTAIR miR-331-3p HER2 [122]
LncRNA MT1JP miR-92a-3p FBXW7 [123]

HCC lncRNA CCAT1 let-7 HMGA2, c-Myc [124]
lncRNA HOTTIP miR-125b — [125]
lncRNA HULC miR-372 PRKACB [37]
LINC00974 miR-642 KRT19 [126]

lncRNA UCA1 miR-216b FGFR1 [127]
Pseudogene INTS6P1 miR-17-5p INTS6 [128]

PTENP1 miR-17, miR-19b, miR-20a PTEN, [129]
lncRNA FAL1 miR-1236 AFP, ZEB1 [130]

Lung cancer lncRMA LCAT1 miR-4715-5p RAC1 [131]
LUSC circTP63 miR-873-3p FOXM1 [73]
NPC circCRIM1 miR-422a FOXQ1 [74]

lncRNA FAM225A miR-590-3p, miR-1275 ITGB3 [132]
lncRNA PTPRG-AS1 miR-194-3p PRC1 [133]

lncRNA ZFAS1 miR-892b LPAR1 [134]
NSCLC AEG-1 3′ UTR miR-30a Vimentin, snail [135]
OC lnc-OC1 miR-34a, miR-34c — [136]
Prostate cancer CNOT6L/VAPA miR-17, miR-19a, miR-20a/b, miR-106a/b, miR-93 PTEN [25]

lncRNA PCAT1 miR-3667-3p c-Myc [137]
K-RAS1P — K-RAS [24]
PTENP1 miR-17, miR-19, miR-21, miR-26, miR-214 PTEN [24]

lncRNA UCA1 miR143 MYO6 [138]
Abbreviation: CC: cervical cancer; CRC: colorectal cancer; GC: gastrointestinal cancer; HCC: hepatocellular carcinoma; LUSC: lung squamous cell car-
cinoma; NPC: nasopharyngeal carcinoma; NSCLC: nonsmall cell lung cancer. —: not available.
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8. Conclusion

In this review, we present a genome-wide molecular
interaction dominated by ncRNAs in a deep-going extent
of post-transcriptional regulation regarding different
types of cancer, where detailed mechanisms of the dy-
namic network, powerful predicting tools, and typical
ceRNA crosstalk in pathogenesis, progression, and drug
resistance in cancer have all together sketched out an
encouraging blueprint for in-depth scientific research
and translation into clinical application. Still, we have to
acknowledge that despite extensive efforts endeavored
into broadening our understanding of this realm, there is
much more Terra incognita remaining to be carved out.
Primarily, with most of the current research carried out
on the overall cell-cluster level, intratumor heterogeneity
among cancer cells has long been neglected, which is also
crucial for neoplasia and therapeutic resistance. Here, we
lay emphasis on two points of concern. First, even if
numerous regulating nodes have been implicated as
prospective targets for clinical therapy, accurate ma-
nipulation on these hubs without the involvement of
other irrelevant locus waits for delicate Polish. Given that
each single molecular tends to be the junction of, or to be
indirectly covered by separate regulatory pathways with
synergistic, antagonistic, or unrelated functions, con-
trollable and unidirectional interventions would furthest
avoid adverse reactions and achieve desired outcomes.
Second, phenotypes observed through lowered expres-
sion or overexpression of single ceRNA/miRNA axis may
need to be dialectically viewed, as its significance could be
overmuch exaggerated under counteraction of other
seemingly nonessential issues when conducting the re-
search, or it is so tightly dragged by many other un-
clarified interlinks that enforced changes on the target
axis alone is too weak to stand out in physiological
conditions. ,ere is no denying that booming advance in
ceRNA network provides an exciting starting point for
clinical practice and future research in cancer.
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