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,e immune microenvironment of liver cancer is of great significance for the treatment of liver cancer. After evaluating the
content of mast cells resting in the transcriptome data of ,e Cancer Genome Atlas database by CIBERSORTanalysis, this study
aimed to group the samples according to the content of mast cells resting in different samples to find the differentially expressed
genes in the two groups. Significant prognostic differences were found between high and lowmast cells resting infiltration groups.
,e prognostic model was constructed according to the differentially expressed genes. ,e model was validated using external
independent datasets. ,e results revealed that the constructed model was reliable. It could well distinguish the prognostic
differences of patients in different characteristic groups.,e high-risk group was mainly concentrated in metabolic pathways.,e
risk score of this model was closely related to some immune cells, immune function, and immune checkpoints. ,erefore, this
model may provide new ideas for immunotherapy of hepatocellular carcinoma.

1. Introduction

Hepatocellular carcinoma (HCC) is highly malignant liver
cancer and a major health problem worldwide. Its prognosis
is poor because of its highly metastatic and recurring nature.
Improvement in the prognosis of liver cancer has become
the goal of many researchers. Bucci et al. found that the
epidemiology of HCC was changing [1]. In the past few
years, drug-centered treatment has dominated, but the re-
sistance of liver cancer to drugs has forced researchers to
find other treatments. Recent studies found that the tumor
microenvironment in patient tissues played an important
role in supporting tumor cells. Among them, the immune
microenvironment of liver cancer has been widely studied
because of its complexity and particularity. Mast cells resting
is particularly important in treating cancer because mast
cells have a unique developmental, phenotypic, and func-
tional plasticity. ,ey participate in tissue homeostasis by
constantly sampling the microenvironment [2]. Li et al.

found that aberrant activation of mast cells and CD4+
memory T cells played crucial roles in cigarette smoking-
induced immune dysfunction in the lung, which is im-
portant in tumor development and progression [3]. Walc-
zak-Drzewiecka et al. found that hypoxia-inducible factor 1
alpha was upregulated in activated mast cells [4].

At present, a considerable number of studies have found
that some genes affected the prognosis of patients with
cancer. Yao et al. found that SNHG6 played an oncogenic
role in colorectal cancer and is a prognostic biomarker [5].
Hlavac et al. found that the genetic variation of ATP-binding
cassette was a prognostic marker in breast cancer [6]. Anwar
et al. found that the T-cell factor-4 was a molecular target in
the prognosis of sporadic colorectal cancer [7]. In recent
years, a large number of studies have been devoted to finding
multiple gene combinations to jointly predict the prognosis
of patients with tumors. Chen et al. found lymph node
metastasis-related key miRNA signatures in cervical cancer
[8]. Shen et al. found the immune-related long noncoding
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RNA prognostic signature for breast cancer [9]. Liu et al.
found a tumor immune microenvironment-related prog-
nostic signature in epithelial ovarian cancer [10].

,is study grouped genes related to high and low infil-
tration of mast cells resting according to the infiltration of
immune cells in HCC. A prognostic model for these genes was
constructed, and the model was deeply analyzed and discussed.

2. Materials and Methods

2.1. Data Download. ,e transcriptome data of HCC
downloaded from,e Cancer Genome Atlas (TCGA, https://
tcga-data.nci.nih.gov/tcga/) were used to construct themodel.
,e transcriptome data from Gene Expression Omnibus
(GEO, https://www.ncbi.nlm.nih.gov/geo/) and the Interna-
tional Cancer Genome Consortium (ICGC, https://dcc.icgc.
org/) were used to verify the reliability of the model. ,e
corresponding clinical data were downloaded from the re-
spective databases.,e genes were annotated by gene transfer
format files from Ensembl (https://asia.ensembl.org).

2.2. Construction and Validation of the Model. ,e genes
used to construct the model were screened by the “limma”
package (https://bioconductor.org/packages/limma/) in R
software (4.0.0). ,e Cox hazard analysis and Lasso re-
gression were used to analyze the genes combined with the
prognosis of patients with “survival” (https://cran.r-project.
org/package�survival), “glmnet” (https://cran.r-project.org/
package�glmnet), and “survminer” (https://cran.r-project.
org/package�survminer) packages. ,e survival curve and
the receiver operating characteristic curve (ROC) were
drawn using the “survivalROC” and “survival” packages.

2.3.Gene Set EnrichmentAnalysis. ,eGene Set Enrichment
Analysis (GSEA) was used to find meaningful biological
characteristics in high- and low-risk groups of the TCGA
cohort. An annotated gene set file (c2.cp.kegg.v7.0.sym-
bols.gmt) was selected as the reference. ,e filter condition
was false discovery rate (FDR) q-val <0.05.

2.4. Analysis of Immune Cells. ,e gene transcriptome data
were used to estimate the content of multiple immune cells
infiltrated in tumors, and the “StromalScore,” “ImmuneScore,”
and “ESTIMATEScore” of each sample were found using the
CIBERSORT analysis and “estimate” package. ,e “GSVA”
and “GSEABase” packages were used for ssGSEA analysis and
immune characteristic analysis of each patient. ,e correlation
analysis of index was completed using the Spearman test.

3. Result

3.1. Generation of a Prognostic Model in the TCGA Cohort.
A total of 1113 significant expression difference genes were
found between the high-density mast cell group (86) and the
low-density mast cell group of patients with HCC (87). ,e
follow-up information of the patients was collected, and
among the genes related to mast cell infiltration, 150 genes
with the ability to significantly affect patients’ survival were

selected using univariate Cox hazard analysis. ,e number
of genes was narrowed down, and finally, two genes were
selected to optimize the model by Lasso regression and
multivariate Cox hazard analysis (Figure 1(a)).,e riskScore
of each sample was calculated using the formula
riskScore�KIF2C× 0.0786 +G6PD× 0.0082. ,e high- and
low-risk groups were distinguished by the median of risk-
Score. ,e area under the ROC curve (AUC) was 0.759 at 1
year (Figure 1(b)). ,e survival status of the patients was
significantly different between high- and low-risk groups
(Figure 1(c)). ,e heatmap showed that the expression of
KIF2C in the high-risk group was significantly higher
compared with that in the low-risk group. ,e same trend
was observed for G6PD (Figure 1(d)). ,e risk of death in
patients with HCC increased with the increase in the
riskScore (Figures 1(e) and 1(f )).

3.2. Verification of Model Reliability in Two Centers. ,e
AUC value was 0.732 at 1 year (Figure 2(a)), and the
prognosis of patients in the high- and low-risk groups was
significantly different (Figure 2(b)) in the GSE116774 co-
hort. ,e AUC value was 0.774 at 1 year (Figure 2(c)), and
the prognosis of patients in the high- and low-risk groups
was significantly different (Figure 2(d)) in the ICGC cohort.

3.3. riskScore Was an Independent Prognostic Indicator.
,e relationship between the constructed model and clinico-
pathological characteristics (age, gender, histological grade,
clinical stage, and tumor-node-metastasis stage) was analyzed.
,e forest maps of univariate and multivariate Cox hazard
analyses about clinicopathological features showed that the P

value of the clinical stage, T stage, and riskScore was less than
0.001 and the hazard ratio was more than 1 (Figure 3(a)), and
the P value of the riskScore was less than 0.05 and the hazard
ratio was more than 1 (Figure 3(b)). ,e riskScore in different
age, histological grade, M stage, clinical stage, and T stage
groups had significant differences (Figures 3(c)–3(g)). ,e
prognosis of different riskScore groups in different age, gender,
histological grade, M0, N0, clinical stage, and T stage groups
had significant differences (Figure 3(h)).

3.4. GSEA of Different riskScore Groups. In the high-risk
group, eight gene sets were found (FDR q-val < 0.05):
BASE_EXCISION_REPAIR, CELL_CYCLE, HOMO-
LOGOUS_RECOMBINATION, DNA_REPLICATION, SPLI-
CEOSOME, OOCYTE_MEIOSIS, MISMATCH_REPAIR, and
RNA_DEGRADATION (Figure 4). Metabolic reprogramming
was closely associated with patients in the high-risk group. In the
low-risk group, 12 gene sets were found (FDR q-val < 0.05).

3.5. riskScore and Immune Cells. Significant differences were
found in dendritic cell (DC) resting density and mast cell
resting density between high- and low-risk groups
(Figure 5(a)). A significant correlation was found between the
riskScore and immune cells (Figure 5(b)). No significant dif-
ference was found in the content of B cells, CD8+ Tcells, DCs,
neutrophils, plasmacytoid DCs, T-helper cells, and tumor-
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Figure 1: Generation of the prognostic model. (a) Forest map of multivariate Cox hazard analysis. (b) Prognostic characteristics between
high- and low-risk groups. (c) ROC curves at 1 year in the TCGA cohort. (d) Expression of the two genes in the high- and low-risk groups. (e,
f ) Survival rates of patients with different riskScores.
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infiltrating lymphocytes in the high- and low-risk groups;
antigen-presenting cell coinhibition, cytolytic activity, in-
flammation promotion, parainflammation, and type 1 inter-
feron response were significant between the two groups by
ssGSEA analysis (Figures 5(c) and 5(d)). A significant positive
correlation was found between the riskScore and immune
checkpoint (CD274, CTLA4, and PDCD1) (Figures 5(e)–5(g)).

4. Discussion

Liver cancer has been widely studied by clinicians and re-
searchers because of its relatively high incidence rate and
poor prognosis. A large number of experiments have been
carried out and great progress has been made in the research

of liver cancer. ,e popularity of high-throughput se-
quencing technology has led researchers to explore liver
cancer from the perspective of genes, clarifying the biological
role of a large number of genes in liver cancer.

,e immune microenvironment of tumors can have a
significant impact on the biological behavior of tumors.
,erefore, the exploration of the immunemicroenvironment is
particularly important. ,e infiltration density of mast cells in
HCC and intrahepatic cholangiocarcinoma was found to be
significantly higher than that in normal liver tissue [11]. It
suggests that mast cells may play an important role in tumor
immunity. It was found that high mast cell infiltration was
associated with poor prognosis in patients with HCC [12].
Grizzi et al. found that mast cells may be considered necessary
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Figure 2: Verification of model reliability. (a) ROC curve at 1 year in the GSE14520 cohort. (b) Comparison of the survival status between
different groups in the GSE14520 cohort. (c) ROC curve at 1 year in the ICGC cohort. (d) Comparison of the survival status between
different groups in the ICGC cohort.

4 Journal of Oncology



Age

Gender

Grade

Stage

T

M

N

riskScore <0.001

0.50 0.71 1.0
Hazard ratio

1.41 2.0

<0.001

<0.001

0.246

0.078

0.369

0.167

0.147

pvalue Hazard ratio

1.011(0.996−1.026)

0.765(0.524−1.119)

1.123(0.872−1.445)

1.675(1.364−2.057)

1.655(1.361−2.012)

1.209(0.979−1.493)

1.134(0.917−1.401)

1.350(1.223−1.491)

(a)

Age

Gender

Grade

Stage

T

M

N

riskScore <0.001

0.50 1.0
Hazard ratio

2.0

0.456

0.685

0.631

0.184

0.269

0.367

0.245

pvalue Hazard ratio

1.009(0.994−1.024)

0.834(0.562−1.237)

1.172(0.884−1.553)

1.187(0.519−2.716)

1.354(0.610−3.007)

1.196(0.919−1.556)

1.067(0.820−1.388)

1.242(1.110−1.388)

(b)

2.5

5.0

7.5

0.041

Age

Age

>=65

>=65

<65

<65

ris
kS
co
re

10.0

(c)

1.5e−08

Grade
G1-2 G3-4

2.5

5.0

7.5

ris
kS
co
re

10.0

Grade
G1-2
G3-4

(d)
0.033

2.5

5.0

7.5

ris
kS
co
re

10.0

M
M0
MX

M
M0 MX

(e)

Stage
Stage I-II
Stage III-IV

0.0037

2.5

5.0

7.5

ris
kS

co
re

10.0

Stage

Stage I-II Stage III-IV

(f )

T
T1-2
T3-4

0.0037

2.5

5.0

7.5

ris
kS
co
re

10.0

T
T1-2 T3-4

(g)

Figure 3: Continued.
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Figure 4: Gene sets of the high-risk group.
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Figure 5: Continued.
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in the transition from sinusoidal to capillary-type endothelial
cells and HCC growth [13]. Granito et al. studied that CD4+
CD25+ Foxp3 regulatory T cells could be induced by tumor-
associated macrophages (by secreting interleukin-10) and in-
directly support tumor growth and progression [14].

,e model constructed in this study could significantly
distinguish the difference in mast cell beauty in high- and low-
risk groups, and the risk score negatively correlated with the
content of mast cells, which was an exciting result. ,is model
was constructed using two genes, which were found to play an
important role in many tumors. Wei et al. found that KIF2C
was a novel link between Wnt/beta-catenin and mechanistic
target of rapamycin complex 1 signaling inHCC [15]. Zhu et al.
found that KIF2C was important in regulating DNA double-
strand break dynamics and repair [16]. Hong et al. found that
phosphatase and tensin homolog antagonized G6PD pre-
mRNA splicing, which contributed to hepatocarcinogenesis
[17]. Rao et al. found that G6PD promoted tumor growth [18].
Ghergurovich et al. found that G6PD dehydrogenase was not
important for K-Ras-driven tumor growth or metastasis [19].

,e prognostic model constructed in this study was
verified in two independent databases, which proved the
reliability of the model. Only two genes were present in the
model, which reduced the cost. ,e model might be closely
related to many immune indexes, significantly improving
the value of the model.
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